1
|
Kögl J, Pan TL, Marth C, Zeimet AG. The game-changing impact of POLE mutations in oncology-a review from a gynecologic oncology perspective. Front Oncol 2024; 14:1369189. [PMID: 39239272 PMCID: PMC11374733 DOI: 10.3389/fonc.2024.1369189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/31/2024] [Indexed: 09/07/2024] Open
Abstract
Somatic mutations within the exonuclease proofreading domain (EDM) of the DNA polymerase Pol ϵ (POLE) gene are increasingly being discovered in ovarian, colorectal, urological, and, especially, endometrial carcinoma (EC), where these are found in up to 10% of the cases. In EC, there are five confirmed pathogenic somatic POLE-EDM mutations that are located at codons 286, 411, 297, 456, and 459, and these are called "hotspot" mutations. POLE mutant tumors are ultramutated entities with a frequency of base substitution mutations that is among the highest in human tumors. Interestingly, these mutations are associated with excellent clinical outcome in EC. An additional six "non-hotspot" POLE-EDM EC mutations are also considered pathogenic, and they also confer a favorable prognosis. Currently, de-escalation of adjuvant treatment is recommended for patients with EC with stage I-II tumors involving any of these 11 EDM mutations, even in patients with other clinicopathological risk factors. The high tumor mutational burden and the consequent increased infiltration of immune cells due to the overexpression of different neoantigens are probably responsible for the improved prognosis. Ongoing studies are examining POLE hotspot mutations among many non-gynecologic tumors, although the impact of such mutations on clinical outcomes is still a topic of debate. Therapeutic modalities for these hypermutated tumors are also an important consideration, including the need for or de-escalation of adjuvant treatments and the response to immune therapy. This review addresses the critical role of POLE mutations in gynecologic oncology and oncology in general, focusing on definitions, variants, underlying pathogenic mechanisms, upcoming developments in the field, and the clinic behavior associated with such mutations.
Collapse
Affiliation(s)
- Johanna Kögl
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Teresa L Pan
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Marth
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alain G Zeimet
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Li C, Wang B, Tu J, Liu C, Wang Y, Chen J, Huang Y, Liu B, Yuan X. ATM inhibition enhance immunotherapy by activating STING signaling and augmenting MHC Class I. Cell Death Dis 2024; 15:519. [PMID: 39033176 PMCID: PMC11271473 DOI: 10.1038/s41419-024-06911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Accumulating evidence supports the concept that DNA damage response targeted therapies can improve antitumor immune response by increasing the immunogenicity of tumor cells and improving the tumor immune microenvironment. Ataxia telangiectasia mutated (ATM) is a core component of the DNA repair system. Although the ATM gene has a significant mutation rate in many human cancers, including colorectal, prostate, lung, and breast, it remains understudied compared with other DDR-involved molecules such as PARP and ATR. Here, we found that either gene knockout or drug intervention, ATM inhibition activated the cGAS/STING pathway and augmented MHC class I in CRC cells, and these effects could be amplified by radiation. Furthermore, we found that MHC class I upregulation induced by ATM inhibition is dependent on the activation of the NFκB/IRF1/NLRC5 pathway and independent of STING. Animal experiments have shown increasing infiltration and cytotoxic function of T cells and better survival in ATM-deficient tumors. This work indicated that ATM nonsense mutation predicted the clinical benefits of radiotherapy combined with immune checkpoint blockade for patients with CRC. It also provides a molecular mechanism rationale for ATM-targeted agents for patients with CRC.
Collapse
Affiliation(s)
- Chunya Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Boyu Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaofan Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Yan J, Wang S, Zhang J, Yuan Q, Gao X, Zhang N, Pan Y, Zhang H, Liu K, Yu J, Lu L, Liu H, Gao X, Zhao S, Zhang W, Reyila A, Qi Y, Zhang Q, Cang S, Lu Y, Pan Y, Kong Y, Nie Y. DNA damage response-related immune activation signature predicts the response to immune checkpoint inhibitors: from gastrointestinal cancer analysis to pan-cancer validation. Cancer Biol Med 2023; 21:j.issn.2095-3941.2023.0303. [PMID: 38164720 PMCID: PMC10976329 DOI: 10.20892/j.issn.2095-3941.2023.0303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024] Open
Abstract
OBJECTIVE DNA damage response (DDR) deficiency has emerged as a prominent determinant of tumor immunogenicity. This study aimed to construct a DDR-related immune activation (DRIA) signature and evaluate the predictive accuracy of the DRIA signature for response to immune checkpoint inhibitor (ICI) therapy in gastrointestinal (GI) cancer. METHODS A DRIA signature was established based on two previously reported DNA damage immune response assays. Clinical and gene expression data from two published GI cancer cohorts were used to assess and validate the association between the DRIA score and response to ICI therapy. The predictive accuracy of the DRIA score was validated based on one ICI-treated melanoma and three pan-cancer published cohorts. RESULTS The DRIA signature includes three genes (CXCL10, IDO1, and IFI44L). In the discovery cancer cohort, DRIA-high patients with gastric cancer achieved a higher response rate to ICI therapy than DRIA-low patients (81.8% vs. 8.8%; P < 0.001), and the predictive accuracy of the DRIA score [area under the receiver operating characteristic curve (AUC) = 0.845] was superior to the predictive accuracy of PD-L1 expression, tumor mutational burden, microsatellite instability, and Epstein-Barr virus status. The validation cohort demonstrated that the DRIA score identified responders with microsatellite-stable colorectal and pancreatic adenocarcinoma who received dual PD-1 and CTLA-4 blockade with radiation therapy. Furthermore, the predictive performance of the DRIA score was shown to be robust through an extended validation in melanoma, urothelial cancer, and pan-cancer. CONCLUSIONS The DRIA signature has superior and robust predictive accuracy for the efficacy of ICI therapy in GI cancer and pan-cancer, indicating that the DRIA signature may serve as a powerful biomarker for guiding ICI therapy decisions.
Collapse
Affiliation(s)
- Junya Yan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Air Force Military Medical University, Xi’an 710032, China
- Department of Oncology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou 450003, China
| | - Shibo Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Air Force Military Medical University, Xi’an 710032, China
| | - Jing Zhang
- Faculty of Life Science, Northwest University, Xi’an 710069, China
| | - Qiangqiang Yuan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Air Force Military Medical University, Xi’an 710032, China
| | - Xianchun Gao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Air Force Military Medical University, Xi’an 710032, China
| | - Nannan Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Air Force Military Medical University, Xi’an 710032, China
| | - Yan Pan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Air Force Military Medical University, Xi’an 710032, China
| | - Haohao Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Air Force Military Medical University, Xi’an 710032, China
| | - Kun Liu
- Unit 73211 of the People’s Liberation Army, Nanjing 211800, China
| | - Jun Yu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Air Force Military Medical University, Xi’an 710032, China
| | - Linbin Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Air Force Military Medical University, Xi’an 710032, China
| | - Hui Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), School of Medicine, Northwest University, Xi’an 710069, China
| | - Xiaoliang Gao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Air Force Military Medical University, Xi’an 710032, China
| | - Sheng Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Air Force Military Medical University, Xi’an 710032, China
| | - Wenyao Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Air Force Military Medical University, Xi’an 710032, China
| | - Abudurousuli Reyila
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Air Force Military Medical University, Xi’an 710032, China
| | - Yu Qi
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Air Force Military Medical University, Xi’an 710032, China
| | - Qiujin Zhang
- Shaanxi University of Chinese Medicine, Second Clinical Medicine Faculty, Xi’an 712046, China
| | - Shundong Cang
- Department of Oncology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou 450003, China
| | - Yuanyuan Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Air Force Military Medical University, Xi’an 710032, China
| | - Yanglin Pan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Air Force Military Medical University, Xi’an 710032, China
| | - Yan Kong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Air Force Military Medical University, Xi’an 710032, China
| |
Collapse
|
4
|
Lutfi A, Afghan MK, Kasi PM. Circulating Tumor DNA Response and Minimal Residual Disease Assessment in DNA Polymerase Epsilon-Mutated Colorectal Cancer Undergoing Immunotherapy. Cureus 2023; 15:e43391. [PMID: 37593074 PMCID: PMC10428188 DOI: 10.7759/cureus.43391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2023] [Indexed: 08/19/2023] Open
Abstract
Exonuclease domain mutation (EDM) in polymerase epsilon (POLE)-mutated colorectal cancer patients is characterized by specific clinical features and a very high tumor mutation burden (TMB). The therapeutic effectiveness of immune checkpoint inhibitors (ICIs) for the treatment of colorectal cancer in patients with POLE mutations is poorly defined. Our case represents a young-onset colon cancer patient who has had a continued response to programmed cell death protein 1 (PD1) blockade alongside clearance of circulating tumor DNA (ctDNA) using a tumor-informed approach. Utilizing ctDNA kinetics to assess minimal residual disease (MRD) in the context of colorectal cancer is a very important topic. Furthermore, utilizing ctDNA kinetics in response to immunotherapy is something that is relevant to all tumor types undergoing immunotherapy. Recently, several landmark articles have proposed this as a promising approach. There is, however, limited information in the literature showing the feasibility of such an approach. Our case report is going to be of value, both from a scientific as well as a clinical standpoint. This is particularly relevant given the rise of colorectal cancers in young individuals.
Collapse
Affiliation(s)
- Areeb Lutfi
- Oncology, Weill Cornell Medicine, New York, USA
| | | | | |
Collapse
|
5
|
Jiang M, Jia Y, Han J, Shi J, Su C, Zhang R, Xing M, Jin S, Zong H. Distinct clinical pattern of colorectal cancer patients with POLE mutations: A retrospective study on real-world data. Front Genet 2022; 13:963964. [PMID: 36479248 PMCID: PMC9719917 DOI: 10.3389/fgene.2022.963964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2023] Open
Abstract
Objective: Studies have demonstrated an association between somatic POLE exonuclease domain mutations (EDMs) and the prognosis of colorectal cancer (CRC). However, the prognostic value of POLE non-EDMs remains unclear. This retrospective study aimed to explore the possible relationships between POLE mutation subtypes and CRC prognosis. Methods: The 272 CRC patients from the First Affiliated Hospital of Zhengzhou University (ZZ cohort) and 499 CRC patients from The Cancer Genome Atlas database (TCGA cohort) were retrospectively collected. The cases were divided into subgroups based on POLE mutation sites and microsatellite instability (MSI) status. The continuous variables were compared among three subgroups with Kruskal-Wallis tests. Pairwise comparisons between three groups were performed by Bonferroni correction method, and adjusted p < 0.05 was considered statistically significant. The categorical variables were compared with Chi-square test and Fisher's exact test. The Kaplan-Meier curves and Cox regression models were conducted to evaluate prognostic values of POLE mutations. Results: In the ZZ cohort, POLE EDMs (2.6%) were significantly associated with younger age (p = 0.018) and localized in the left colon (p = 0.001). POLE non-EDMs were significantly associated with MSI-high status (p < 0.001) and localization in the right colon (p = 0.001). In the TCGA cohort, the tumor mutation burden (TMB) of both POLE EDM tumors (p < 0.001) and POLE non-EDM tumors (p < 0.001) was significantly higher than that of POLE wild-type (WT) tumors. A similar trend was observed in the ZZ cohort, although there were no significant differences. In the ZZ cohort, the POLE EDM group had higher progression-free survival (PFS) (p = 0.002) and overall survival (OS) (p = 0.042) than the POLE non-EDM group and POLE WT group. We also report one CRC patient harboring a germline POLE mutation who received camrelizumab and exhibited long-term stable disease. Conclusion: Both POLE-EDMs and POLE non-EDMs were associated with significantly increased TMB in CRC and may be biomarkers for CRC treatment and prognosis. Current evidence does not support an effect of POLE non-EDMs on PFS and OS. A significant association between POLE EDMs and improved PFS and OS may exist, but future studies with larger sample sizes are needed. Entire coding region of the POLE gene should be screened.
Collapse
Affiliation(s)
- Miao Jiang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yongliang Jia
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jinming Han
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jianxiang Shi
- Precision Medicine Center, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chang Su
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Rui Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Menglu Xing
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shuiling Jin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hong Zong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Shi C, Qin K, Lin A, Jiang A, Cheng Q, Liu Z, Zhang J, Luo P. The role of DNA damage repair (DDR) system in response to immune checkpoint inhibitor (ICI) therapy. J Exp Clin Cancer Res 2022; 41:268. [PMID: 36071479 PMCID: PMC9450390 DOI: 10.1186/s13046-022-02469-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/18/2022] [Indexed: 11/10/2022] Open
Abstract
As our understanding of the mechanisms of cancer treatment has increased, a growing number of studies demonstrate pathways through which DNA damage repair (DDR) affects the immune system. At the same time, the varied response of patients to immune checkpoint blockade (ICB) therapy has prompted the discovery of various predictive biomarkers and the study of combination therapy. Here, our investigation explores the interactions involved in combination therapy, accompanied by a review that summarizes currently identified and promising predictors of response to immune checkpoint inhibitors (ICIs) that are useful for classifying oncology patients. In addition, this work, which discusses immunogenicity and several components of the tumor immune microenvironment, serves to illustrate the mechanism by which higher response rates and improved efficacy of DDR inhibitors (DDRi) in combination with ICIs are achieved.
Collapse
|
7
|
Serial Circulating Tumor DNA in Monitoring the Effect of Neoadjuvant and Adjuvant Immunotherapy in Patients With Colon Cancer: Case Series and Review of the Literature. J Immunother 2022; 45:358-362. [PMID: 35980372 DOI: 10.1097/cji.0000000000000436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022]
Abstract
Although programmed death 1 blockade has significantly improved the survival of advanced colorectal cancer patients with DNA mismatch repair-deficient (dMMR)/microsatellite instability-high (MSI-H), clinical data in neoadjuvant and adjuvant setting are limited. The role of circulating tumor DNA (ctDNA) in precision oncology is promising, but its clinical significance in immunotherapy needs to be validated. We report a case series of 3 colon patients who received neoadjuvant and adjuvant immunotherapy and serial ctDNA analysis. This report summarizes clinical and molecular details for 3 patients with locally advanced or recurrent dMMR/MSI-H/polymerase epsilon (POLE) mutation-positive tumors treated with neoadjuvant/adjuvant immunotherapy. One stage IV recurrent colon cancer patient diagnosed with Lynch syndrome received adjuvant sintilimab monotherapy and had a progression-free survival (PFS) over 16 months, one stage Ⅲc colon cancer patient with MSI-H/high tumor mutation burden received neoadjuvant toripalimab monotherapy, was assessed as clinical complete response before surgery, continued with adjuvant sintilimab monotherapy and had a PFS over 17 months, one stage Ⅱ colon cancer patient with POLE P286R also received adjuvant sintilimab monotherapy and had a PFS over 17 months. All patients had detectable ctDNA after radical surgery and clearance of ctDNA during adjuvant immunotherapy. All 3 patients are free of tumor disease at the time of this report. Further studies are warranted to evaluate the long-term efficacy of neoadjuvant and adjuvant programmed death 1 blockade in locally advanced and metastasis in dMMR/MSI-H/POLE mutated colorectal cancer and the role of ctDNA monitoring.
Collapse
|
8
|
Galbraith NJ, Wood C, Steele CW. Targeting Metastatic Colorectal Cancer with Immune Oncological Therapies. Cancers (Basel) 2021; 13:3566. [PMID: 34298779 PMCID: PMC8307556 DOI: 10.3390/cancers13143566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023] Open
Abstract
Metastatic colorectal cancer carries poor prognosis, and current therapeutic regimes convey limited improvements in survival and high rates of detrimental side effects in patients that may not stand to benefit. Immunotherapy has revolutionised cancer treatment by restoring antitumoural mechanisms. However, the efficacy in metastatic colorectal cancer, is limited. A literature search was performed using Pubmed (Medline), Web of Knowledge, and Embase. Search terms included combinations of immunotherapy and metastatic colorectal cancer, primarily focusing on clinical trials in humans. Analysis of these studies included status of MMR/MSS, presence of combination strategies, and disease control rate and median overall survival. Evidence shows that immune checkpoint inhibitors, such as anti-PD1 and anti-PD-L1, show efficacy in less than 10% of patients with microsatellite stable, MMR proficient colorectal cancer. In the small subset of patients with microsatellite unstable, MMR deficient cancers, response rates were 40-50%. Combination strategies with immunotherapy are under investigation but have not yet restored antitumoural mechanisms to permit durable disease regression. Immunotherapy provides the potential to offer additional strategies to established chemotherapeutic regimes in metastatic colorectal cancer. Further research needs to establish which adjuncts to immune checkpoint inhibition can unpick resistance, and better predict which patients are likely to respond to individualised therapies to not just improve response rates but to temper unwarranted side effects.
Collapse
Affiliation(s)
- Norman J. Galbraith
- Academic Department of Surgery, University of Glasgow, Level 2 New Lister Building, Glasgow Royal Infirmary, 10-16 Alexandra Parade, Glasgow G31 2ER, UK; (C.W.); (C.W.S.)
| | - Colin Wood
- Academic Department of Surgery, University of Glasgow, Level 2 New Lister Building, Glasgow Royal Infirmary, 10-16 Alexandra Parade, Glasgow G31 2ER, UK; (C.W.); (C.W.S.)
| | - Colin W. Steele
- Academic Department of Surgery, University of Glasgow, Level 2 New Lister Building, Glasgow Royal Infirmary, 10-16 Alexandra Parade, Glasgow G31 2ER, UK; (C.W.); (C.W.S.)
- Institute of Cancer Sciences, Beatson Institute, Garscube Campus, Switchback Road, Bearsden G61 1BD, UK
| |
Collapse
|