1
|
Balovic G, Stojanovic BS, Radovanovic D, Lazic D, Ilic M, Jovanovic I, Svilar D, Stankovic V, Sibalija Balovic J, Markovic BS, Dimitrijevic Stojanovic M, Jovanovic D, Stojanovic B. A Detailed Examination of Retroperitoneal Undifferentiated Pleomorphic Sarcoma: A Case Report and Review of the Existing Literature. J Clin Med 2024; 13:3684. [PMID: 38999251 PMCID: PMC11242107 DOI: 10.3390/jcm13133684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/21/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
This detailed review focuses on retroperitoneal undifferentiated pleomorphic sarcoma (UPS), a particularly aggressive soft-tissue sarcoma that poses unique diagnostic and therapeutic challenges due to its rarity and complex presentation. By documenting a new case of retroperitoneal UPS and conducting a comprehensive review of all known cases, this article aims to expand the existing body of knowledge on the epidemiology, molecular pathogenesis, and treatment strategies associated with this rare disease. The complexity of diagnosing UPS is emphasized given that it rarely occurs in the retroperitoneal space and its histological and molecular complexity often complicates its recognition. This review highlights the need for specialized diagnostic approaches, including advanced imaging techniques and histopathological studies, to accurately diagnose and stage the disease. In terms of treatment, this paper advocates a multidisciplinary approach that combines surgery, radiotherapy and chemotherapy and tailors it to individual patients to optimize treatment outcomes. This review highlights case studies that illustrate the effectiveness of surgical intervention in the treatment of these tumors and emphasize the importance of achieving clear surgical margins to prevent recurrence. Furthermore, this review discusses the potential of new molecular targets and the need for innovative therapies that could bring new hope to patients affected by this challenging sarcoma.
Collapse
Affiliation(s)
- Goran Balovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Bojana S Stojanovic
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Dragce Radovanovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Dejan Lazic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Milena Ilic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Ivan Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Dejan Svilar
- Department of Radiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Vesna Stankovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | | | - Bojana Simovic Markovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Milica Dimitrijevic Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Dalibor Jovanovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Bojan Stojanovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
2
|
Anastasiou M, Kyriazoglou A, Kotsantis I, Economopoulou P, Kyrkasiadou M, Giannopoulou A, Kosmidou A, Smerdi D, Moutafi M, Gavrielatou N, Psyrri A. Immune checkpoint inhibitors in sarcomas: a systematic review. IMMUNO-ONCOLOGY TECHNOLOGY 2023; 20:100407. [PMID: 38192615 PMCID: PMC10772240 DOI: 10.1016/j.iotech.2023.100407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Sarcomas are tumors that originate from mesenchymal cells. The variety of sarcomas' response to chemotherapy and the wide range of prognosis reflect their heterogeneity. In order to improve the rates of response, the research has been orientated toward other forms of therapy, such as targeted therapies and immunotherapy or toward combinations of them. Immune checkpoint inhibitors (ICIs) have been the highlight of immunotherapy in the last decade. Although ICIs are already included in the guidelines of different malignancies, their clinical benefit in sarcomas is still under study. Alveolar soft part sarcomas, undifferentiated pleomorphic sarcomas and other subtypes of sarcoma with high presence of tertiary lymphoid structures tend to respond to ICIs, but further investigation is still needed. Furthermore, the search of predictive biomarkers to determine the type of sarcomas that are sensitive to ICIs is still very challenging. This review will focus on the results of clinical trials, which examine the effect of ICIs and their combination with chemotherapy, targeted therapies and other forms of immunotherapy in sarcomas.
Collapse
Affiliation(s)
- M. Anastasiou
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - A. Kyriazoglou
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - I. Kotsantis
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - P. Economopoulou
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - M. Kyrkasiadou
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - A. Giannopoulou
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - A. Kosmidou
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - D. Smerdi
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - M. Moutafi
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - N. Gavrielatou
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - A. Psyrri
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| |
Collapse
|
3
|
Kokubun H, Kijima T, Takada‐Owada A, Mamiya D, Kurashina R, Okubo N, Uematsu T, Takei K, Ishida K, Kamai T. A case of adrenal undifferentiated pleomorphic sarcoma with tertiary lymphoid structures responded to pembrolizumab. IJU Case Rep 2023; 6:440-444. [PMID: 37928308 PMCID: PMC10622227 DOI: 10.1002/iju5.12643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/06/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction Although undifferentiated pleomorphic sarcomas are aggressive, a subset of these tumors are immunogenic and may respond to immunotherapy. Case presentation A 69-year-old man developed bilateral adrenal tumors and underwent bilateral adrenalectomy. Pathological examination revealed undifferentiated pleomorphic sarcoma harboring tertiary lymphoid structures and infiltration of CD8+ T cells. Genome profiling revealed PD-L1 amplification, microsatellite instability, and a high tumor mutation burden. He developed local recurrence and multiple peritoneal dissemination 2 months after surgery; adriamycin chemotherapy was ineffective for these lesions. Sustained complete remission of all lesions was achieved by administering pembrolizumab. Conclusion Immunohistochemical analysis focusing on tertiary lymphoid structures and genome profiling to evaluate microsatellite instability and tumor mutation burden are essential for precision medicine and informed clinical decision-making when treating advanced undifferentiated pleomorphic sarcoma.
Collapse
Affiliation(s)
| | - Toshiki Kijima
- Department of UrologyDokkyo Medical UniversityTochigiJapan
| | | | - Daisuke Mamiya
- Department of UrologyDokkyo Medical UniversityTochigiJapan
| | - Ryo Kurashina
- Department of UrologyDokkyo Medical UniversityTochigiJapan
| | - Naoya Okubo
- Department of UrologyDokkyo Medical UniversityTochigiJapan
| | | | - Kohei Takei
- Department of UrologyDokkyo Medical UniversityTochigiJapan
| | - Kazuyuki Ishida
- Department of Diagnostic PathologyDokkyo Medical UniversityTochigiJapan
| | - Takao Kamai
- Department of UrologyDokkyo Medical UniversityTochigiJapan
| |
Collapse
|
4
|
Sun H, Liu J, Hu F, Xu M, Leng A, Jiang F, Chen K. Current research and management of undifferentiated pleomorphic sarcoma/myofibrosarcoma. Front Genet 2023; 14:1109491. [PMID: 36873946 PMCID: PMC9978151 DOI: 10.3389/fgene.2023.1109491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Undifferentiated pleomorphic sarcoma (UPS), once termed as malignant fibrous histiocytoma, has always been diagnosed exclusively in clinical practice because it lacks any defined resemblance to normal mesenchymal tissue. Although myxofibrosarcoma (MFS) has been separated from UPS due to its fibroblastic differentiation with myxoid stroma, UPS and MFS are still identified as a sarcoma group in terms of molecular landscapes. In this review article, we will describe the associated genes and signaling pathways involved in the process of sarcoma genesis and make a summary of conventional management, targeted therapy, immunotherapy, and some novel potential treatments of UPS/MFS. With the progressive advancements in medical technology and a better understanding about the pathogenic mechanism of UPS/MFS in the coming decades, new lights will be shed on the successful management of UPS/MFS.
Collapse
Affiliation(s)
- Haitao Sun
- Department of Spine Surgery, Naval Hospital of Eastern Theater Command, Zhoushan, China
| | - Jilu Liu
- Department of Spine Surgery, Naval Hospital of Eastern Theater Command, Zhoushan, China
| | - Fangyuan Hu
- Department of Spine Surgery, Naval Hospital of Eastern Theater Command, Zhoushan, China
| | - Meng Xu
- Department of Spine Surgery, Naval Hospital of Eastern Theater Command, Zhoushan, China
| | - Ao Leng
- Department of Orthopaedics, General Hospital of Northern Theater Command, Shenyang, China
| | - Feng Jiang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Kefu Chen
- The No.988th hospital of Joint Logistic Support Force of PLA, Zhengzhou, China.,Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, China
| |
Collapse
|
5
|
Sun X, Xu J, Xie L, Guo W. Effectiveness and Tolerability of Anlotinib Plus PD-1 Inhibitors for Patients with Previously Treated Metastatic Soft-Tissue Sarcoma. Int J Gen Med 2022; 15:7581-7591. [PMID: 36196372 PMCID: PMC9527032 DOI: 10.2147/ijgm.s379269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Abstract
Objective This study was to investigate the effectiveness and tolerability of anlotinib plus PD-1 inhibitors for patients with previously treated metastatic soft tissue sarcoma (STS). Methods Patients with previously treated metastatic STS who were administered with anlotinib plus PD-1 inhibitors in clinical practice were included for analysis retrospectively. All the common subtypes of advanced STS were appropriate for analysis. Efficacy of the regimen was assessed according to the change of target lesion radiologically, and all the patients were followed up regularly. Safety profile during the combination administration was recorded and documented specifically. Clinical significance according to different STS subtypes was analyzed accordingly. Results From September 2018 to January 2022, a total of 32 patients with previously treated metastatic STS who received anlotinib plus PD-1 blockades were screened for the analysis in this study. The best overall response during the combination administration indicated that partial response was observed in 11 patients, stable disease was noted in 16 patients and progressive disease was found in 6 patients, yielding an objective response rate (ORR) of 34.4% (95% CI: 18.6–53.2%) and a disease control rate (DCR) of 84.4% (95% CI: 67.2–94.7%). Furthermore, the median PFS of 32 patients with metastatic STS was 7.6 months (95% CI: 3.31–11.89) and the median OS was 14.9 months (95% CI: 8.36–21.44). Besides, adverse reactions related to the treatment during anlotinib plus PD-1 inhibitors administration were observed in 29 patients (90.6%), of whom, a total of 13 patients (40.6%) were deemed as grade 3–4 adverse reactions and no grade 5 adverse reaction was found. Specifically, the most common adverse reactions were fatigue, hypertension, hand-foot syndrome, diarrhea and dermal toxicity. Conclusion Anlotinib plus PD-1 inhibitors demonstrated durable and promising efficacy and tolerable safety for patients with metastatic STS in real world. Further prospective clinical trials were warranted to validate the feasibility of anlotinib plus PD-1 blockades clinically.
Collapse
Affiliation(s)
- Xin Sun
- Department of Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, 100044, People’s Republic of China
| | - Jie Xu
- Department of Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, 100044, People’s Republic of China
| | - Lu Xie
- Department of Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, 100044, People’s Republic of China
| | - Wei Guo
- Department of Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, 100044, People’s Republic of China
- Correspondence: Wei Guo, Department of Musculoskeletal Tumor Center, Peking University People’s Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, People’s Republic of China, Tel +86 13810548607, Email
| |
Collapse
|
6
|
Roulleaux Dugage M, Nassif EF, Italiano A, Bahleda R. Improving Immunotherapy Efficacy in Soft-Tissue Sarcomas: A Biomarker Driven and Histotype Tailored Review. Front Immunol 2021; 12:775761. [PMID: 34925348 PMCID: PMC8678134 DOI: 10.3389/fimmu.2021.775761] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/19/2021] [Indexed: 12/16/2022] Open
Abstract
Anti-PD-(L)1 therapies yield a disappointing response rate of 15% across soft-tissue sarcomas, even if some subtypes benefit more than others. The proportions of TAMs and TILs in their tumor microenvironment are variable, and this heterogeneity correlates to histotype. Tumors with a richer CD8+ T cell, M1 macrophage, and CD20+ cells infiltrate have a better prognosis than those infiltrated by M0/M2 macrophages and a high immune checkpoint protein expression. PD-L1 and CD8+ infiltrate seem correlated to response to immune checkpoint inhibitors (ICI), but tertiary lymphoid structures have the best predictive value and have been validated prospectively. Trials for combination therapies are ongoing and focus on the association of ICI with chemotherapy, achieving encouraging results especially with pembrolizumab and doxorubicin at an early stage, or ICI with antiangiogenics. A synergy with oncolytic viruses is seen and intratumoral talimogene laherpavec yields an impressive 35% ORR when associated to pembrolizumab. Adoptive cellular therapies are also of great interest in tumors with a high expression of cancer-testis antigens (CTA), such as synovial sarcomas or myxoid round cell liposarcomas with an ORR ranging from 20 to 50%. It seems crucial to adapt the design of clinical trials to histology. Leiomyosarcomas are characterized by complex genomics but are poorly infiltrated by immune cells and do not benefit from ICI. They should be tested with PIK3CA/AKT inhibition, IDO blockade, or treatments aiming at increasing antigenicity (radiotherapy, PARP inhibitors). DDLPS are more infiltrated and have higher PD-L1 expression, but responses to ICI remain variable across clinical studies. Combinations with MDM2 antagonists or CDK4/6 inhibitors may improve responses for DDLPS. UPS harbor the highest copy number alterations (CNA) and mutation rates, with a rich immune infiltrate containing TLS. They have a promising 15-40% ORR to ICI. Trials for ICB should focus on immune-high UPS. Association of ICI with FGFR inhibitors warrants further exploration in the immune-low group of UPS. Finally translocation-related sarcomas are heterogeneous, and although synovial sarcomas a poorly infiltrated and have a poor response rate to ICI, ASPS largely benefit from ICB monotherapy or its association with antiangiogenics agents. Targeting specific neoantigens through vaccine or adoptive cellular therapies is probably the most promising approach in synovial sarcomas.
Collapse
Affiliation(s)
- Matthieu Roulleaux Dugage
- Département d’Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Elise F. Nassif
- Département d’Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Antoine Italiano
- Département d’Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
- Département d’Oncologie Médicale, Institut Bergonié, Bordeaux, France
| | - Rastislav Bahleda
- Département d’Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| |
Collapse
|
7
|
Sumransub N, Murugan P, Marette S, Clohisy DR, Skubitz KM. Multiple malignant tumors in a patient with familial chordoma, a case report. BMC Med Genomics 2021; 14:213. [PMID: 34465320 PMCID: PMC8406958 DOI: 10.1186/s12920-021-01064-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Chordoma is a rare bone tumor that is typically resistant to chemotherapy and is associated with genetic abnormalities of the T-box transcription factor T (TBXT) gene, which encodes the transcription factor brachyury. Brachyury is felt to be a major contributor to the development of chordomas. CASE PRESENTATION We describe a 67-year-old woman who developed an undifferentiated pleomorphic sarcoma in her thigh. Despite treatment with standard chemotherapy regimens, she had a rapidly progressive course of disease with pulmonary metastases and passed away 8 months from diagnosis with pulmonary complications. Her medical history was remarkable in that she had a spheno-occipital chordoma at age 39 and later developed multiple other tumors throughout her life including Hodgkin lymphoma and squamous cell carcinoma and basal cell carcinoma of the skin. She had a family history of chordoma and her family underwent extensive genetic study in the past and were found to have a duplication of the TBXT gene. CONCLUSIONS Brachyury has been found to associate with tumor progression, treatment resistance, and metastasis in various epithelial cancers, and it might play roles in tumorigenesis and aggressiveness in this patient with multiple rare tumors and germ line duplication of the TBXT gene. Targeting this molecule may be useful for some malignancies.
Collapse
Affiliation(s)
- Nuttavut Sumransub
- Department of Medicine, University of Minnesota, 420 Delaware St SE, Minneapolis, MN, 55455, USA
| | - Paari Murugan
- Department of Laboratory Medicine and Pathology, University of Minnesota, 420 Delaware St SE, Minneapolis, MN, 55455, USA
- The Masonic Cancer Center, 425 E River Pkwy, Minneapolis, MN, 55455, USA
| | - Shelly Marette
- The Masonic Cancer Center, 425 E River Pkwy, Minneapolis, MN, 55455, USA
- Department of Radiology, 420 Delaware St SE, Minneapolis, MN, 55455, USA
| | - Denis R Clohisy
- The Masonic Cancer Center, 425 E River Pkwy, Minneapolis, MN, 55455, USA
- Department of Orthopaedic Surgery, 2450 Riverside Ave Suite R200, Minneapolis, MN, 55454, USA
| | - Keith M Skubitz
- Department of Medicine, University of Minnesota, 420 Delaware St SE, Minneapolis, MN, 55455, USA.
- The Masonic Cancer Center, 425 E River Pkwy, Minneapolis, MN, 55455, USA.
- Department of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, 420 Delaware St. SE MMC 480, Minneapolis, MN, 55455, USA.
| |
Collapse
|
8
|
Chung J, Shevchenko A, Lee JB. Evolution of a melanoma in situ to a sarcomatoid dedifferentiated melanoma. J Cutan Pathol 2021; 48:943-947. [PMID: 33675557 DOI: 10.1111/cup.14003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/30/2021] [Accepted: 02/22/2021] [Indexed: 01/12/2023]
Abstract
Sarcomatoid dedifferentiated melanoma (SDDM) is a recently recognized subtype of melanoma that stains diffusely for CD10 and lacks the expression of the usual melanocytic markers including S100, SOX10, MITF, and Melan A. Advances in next-generation DNA sequencing technology have facilitated the increased recognition of this rare, aggressive spindle cell melanoma. Herein, a case of relatively early lesion of SDDM arising in association with melanoma in situ is highlighted. A 72-year-old man with a history of previously treated melanoma in situ on the face five years prior presented with a new rapidly growing lesion within the scar of the treated site. A shave biopsy of the lesion revealed a centrally located 1.8-mm deep, poorly differentiated spindle cell neoplasm in association with an adjacent recurrent melanoma in situ. The spindle cell component stained diffusely for CD10, but failed to stain for S100, SOX10, and Melan-A while the melanoma in situ expressed all three melanocytic markers. Next-generation DNA sequencing assay revealed mutations in NF1, CDKN2A, TP53, and TSC1. A diagnosis of stage 2B SDDM arising in association with melanoma in situ was established based on the clinical context and genomic assay results.
Collapse
Affiliation(s)
- Jina Chung
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Alina Shevchenko
- Department of Dermatology, Temple University Hospital, Philadelphia, Pennsylvania, USA
| | - Jason B Lee
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Li DY, Yang F, Liao WQ, Zhou XF, Li WB, Cai JR, Liu BL, Luo Y, Zhan HL. Deep Genomic Sequencing of Bladder Urothelial Carcinoma in Southern Chinese Patients: A Single-Center Study. Front Oncol 2021; 11:538927. [PMID: 34055593 PMCID: PMC8160294 DOI: 10.3389/fonc.2021.538927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/21/2021] [Indexed: 12/31/2022] Open
Abstract
Objective Bladder urothelial carcinoma (BUC) is a common urological malignancy with molecular heterogeneity. However, the genetic feature of Chinese BUC patients is still not well-identified. Methods We performed deep sequencing by a large panel (450 genes) on 22 BUC samples and using matched normal bladder tissue as control. Genomic alterations (GAs), pathways and Tumor Mutation Burden (TMB) were investigated. Results The frequencies of GAs (TERT, 54.5%; CREBBP, 27.3%; GATA3, 22.7%; BRAF, 18.2%; TEK, 18.2% and GLI1, 18.2%) were significantly higher in Chinese than Western BUC patients. Other GAs' frequencies were in accordance with previous study (TP53, 50.0%; KDM6A, 31.8%; KMT2D, 22.7%; etc.). Besides, we detected gene amplification in ERBB2, FRS2, FAS, etc. The gene fusion/rearrangement took place in the chromosome 11, 12, 14, 17, 19, 22, and Y. Other than cell cycle and PI3K-AKT-mTOR, mutated genes were more associated with the transcription factor, chromatin modification signaling pathways. Interestingly, the TMB value was significantly higher in the BUC patients at stages T1-T2 than T3-T4 (P = 0.025). Conclusion Deep genomic sequencing of BUC can provide new clues on the unique GAs of Chinese patients and assist in therapeutic decision.
Collapse
Affiliation(s)
- Dong-Yang Li
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Fei Yang
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wei-Qiang Liao
- Department of Urology, Luoding People's Hospital, Luoding, China
| | - Xiang-Fu Zhou
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wen-Biao Li
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jia-Rong Cai
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Bo-Long Liu
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yun Luo
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hai-Lun Zhan
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
10
|
Luo Y, Min L, Zhou Y, Tang F, Lu M, Xie H, Wang Y, Duan H, Zhang W, Tu C. Remarkable response to anti-PD1 immunotherapy in refractory metastatic high-grade myxofibrosarcoma patient: A case report. Medicine (Baltimore) 2021; 100:e25262. [PMID: 33761725 PMCID: PMC9281969 DOI: 10.1097/md.0000000000025262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/04/2021] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Myxofibrosarcoma (MFS) is a locally aggressive tumor and has the potential to be fatal because of distant metastasis. Immunotherapy targeting either programmed cell death protein 1 (PD-1) or programmed death ligand 1 (PD-L1) has recently shown a curative effect on multiple cancers including melanoma, non-small cell lung cancer, and renal cell carcinoma. Although the immunotherapy has been applied in sarcoma, there is little information about the efficiency to treat metastatic MFS. PATIENT CONCERNS A 42-year-old male presented to the clinic with a mass in the left thigh. Mass resection and ligament replacement surgery were performed. DIAGNOSES The patient was diagnosed as high-grade MFS (federation nationale des centres de lutte contre le cancer, Grade 3) with pulmonary metastasis. INTERVENTIONS In the past few years, he was treated with surgery, chemoradiotherapy, and Anlotinib (an angiogenesis inhibitor), but the metastatic lesion continued to progress. About 40% to 50% of tumor cells in his pulmonary tissues were showed positive PD-L1 expression and his tumor mutational burden was 215Muts. Thus, he received Camrelizumab (PD-1 inhibitor). OUTCOMES Six months after the initiating immunotherapy of Camrelizumab, the size of pulmonary lesions showed marked shrinkage, indicating a partial response. After a follow-up of 18 months, the patient remained in good condition without progressive disease. CONCLUSION This case described here demonstrated that immunotherapy of PD-1 inhibitor is a promising treatment option for refractory MFS with PD-L1 positive or tumor mutational burden -high, which could contribute to effective tumor response.
Collapse
Affiliation(s)
- Yi Luo
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Li Min
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Yong Zhou
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Fan Tang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Minxun Lu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | | | - Yitian Wang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Hong Duan
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Wenli Zhang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Chongqi Tu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
11
|
Genomic Characterization of Radiation-Induced Intracranial Undifferentiated Pleomorphic Sarcoma. Case Rep Genet 2021; 2021:5586072. [PMID: 33747576 PMCID: PMC7960067 DOI: 10.1155/2021/5586072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 12/01/2022] Open
Abstract
Intracranial undifferentiated pleomorphic sarcoma remains a rare pathology within the sarcoma literature that may arise primarily or secondary after radiation therapy. Despite first-line treatment with maximal surgical resection, followed by nonstandardized adjuvant chemotherapy/radiation regimens, clinical prognosis remains exceedingly poor. Furthermore, there is a lack of genetic or molecular characterization to guide potential for targeted therapies. We present genomic analysis of a radiation-induced intracranial undifferentiated pleomorphic sarcoma in an 83-year-old woman with notable KIT and PDGFRA alterations. Further similar genomic studies of intracranial pleomorphic sarcoma are needed to develop better therapies for this rare but challenging disease entity.
Collapse
|
12
|
Franceschini N, Verbruggen B, Tryfonidou MA, Kruisselbrink AB, Baelde H, de Visser KE, Szuhai K, Cleton-Jansen AM, Bovée JVMG. Transformed Canine and Murine Mesenchymal Stem Cells as a Model for Sarcoma with Complex Genomics. Cancers (Basel) 2021; 13:cancers13051126. [PMID: 33807947 PMCID: PMC7961539 DOI: 10.3390/cancers13051126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Sarcomas are rare cancers of mesenchymal origin, the majority of which are characterized by many copy number alterations, amplifications, or deletions. Because of these complex genomics, it is notoriously difficult to identify driver events of malignant transformation. In this study, we show that murine and canine mesenchymal stem cells (MSCs) can be used to model spontaneous malignant transformation towards sarcomas with complex genomics. We show that these MSCs have an abnormal karyotype, many structural variants, and point mutations at whole genome sequencing analysis, and form sarcomas after injection into mice. Our cross-species analysis reveals that p53 loss is an early event in sarcomagenesis, and it was shown that MSCs with a knock-out in Trp53 transform earlier compared to wild-type MSCs. Our study points to the importance of p53 loss in the transformation process towards sarcomas with complex genomics. Abstract Sarcomas are rare mesenchymal tumors with a broad histological spectrum, but they can be divided into two groups based on molecular pathology: sarcomas with simple or complex genomics. Tumors with complex genomics can have aneuploidy and copy number gains and losses, which hampers the detection of early, initiating events in tumorigenesis. Often, no benign precursors are known, which is why good models are essential. The mesenchymal stem cell (MSC) is the presumed cell of origin of sarcoma. In this study, MSCs of murine and canine origin are used as a model to identify driver events for sarcomas with complex genomic alterations as they transform spontaneously after long-term culture. All transformed murine but not canine MSCs formed sarcomas after subcutaneous injection in mice. Using whole genome sequencing, spontaneously transformed murine and canine MSCs displayed a complex karyotype with aneuploidy, point mutations, structural variants, inter-chromosomal translocations, and copy number gains and losses. Cross-species analysis revealed that point mutations in Tp53/Trp53 are common in transformed murine and canine MSCs. Murine MSCs with a cre-recombinase induced deletion of exon 2–10 of Trp53 transformed earlier compared to wild-type murine MSCs, confirming the contribution of loss of p53 to spontaneous transformation. Our comparative approach using transformed murine and canine MSCs points to a crucial role for p53 loss in the formation of sarcomas with complex genomics.
Collapse
Affiliation(s)
- Natasja Franceschini
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (N.F.); (B.V.); (A.B.K.); (H.B.); (A.-M.C.-J.)
| | - Bas Verbruggen
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (N.F.); (B.V.); (A.B.K.); (H.B.); (A.-M.C.-J.)
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands;
| | - Alwine B. Kruisselbrink
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (N.F.); (B.V.); (A.B.K.); (H.B.); (A.-M.C.-J.)
| | - Hans Baelde
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (N.F.); (B.V.); (A.B.K.); (H.B.); (A.-M.C.-J.)
| | - Karin E. de Visser
- Division of Tumour Biology & Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
- Oncode Institute, Office Jaarbeurs Innovation Mile (JIM), Jaarbeursplein 6, 3521 AL Utrecht, The Netherlands
| | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Anne-Marie Cleton-Jansen
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (N.F.); (B.V.); (A.B.K.); (H.B.); (A.-M.C.-J.)
| | - Judith V. M. G. Bovée
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (N.F.); (B.V.); (A.B.K.); (H.B.); (A.-M.C.-J.)
- Correspondence: ; Tel.: +31-715266622
| |
Collapse
|
13
|
Xu L, Xie X, Shi X, Zhang P, Liu A, Wang J, Zhang B. Potential application of genomic profiling for the diagnosis and treatment of patients with sarcoma. Oncol Lett 2021; 21:353. [PMID: 33747210 PMCID: PMC7967939 DOI: 10.3892/ol.2021.12614] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 12/14/2020] [Indexed: 01/13/2023] Open
Abstract
Sarcomas represent a heterogeneous group of mesenchymal malignancies arising at various locations in the soft tissue and bone. Though a rare disease, sarcoma affects ~200,000 patients worldwide every year. The prognosis of patients with sarcoma is poor, and targeted therapy options are limited; therefore, accurate diagnosis and classification are essential for effective treatment. Sarcoma samples were acquired from 199 patients, in which TP53 (39.70%, 79/199), CDKN2A (19.10%, 38/199), CDKN2B (15.08%, 30/199), KIT (14.07%, 28/199), ATRX (10.05%, 20/199) and RB1 (10.05%, 20/199) were identified as the most commonly mutated genes (>10% incidence). Among 64 soft-tissue sarcomas that were unclassified by immunohistochemistry, 15 (23.44%, 15/64) were subsequently classified using next-generation sequencing (NGS). For the most part, the sarcoma subtypes were evenly distributed between male and female patients, while a significant association with sex was detected in leiomyosarcomas. Statistical analysis showed that osteosarcoma, Ewing's sarcoma, gastrointestinal stromal tumors and liposarcoma were all significantly associated with the patient age, and that angiosarcoma was significantly associated with high tumor mutational burden. Furthermore, serially mutated genes associated with myxofibrosarcoma, gastrointestinal stromal tumor, osteosarcoma, liposarcoma, leiomyosarcoma, synovial sarcoma and Ewing's sarcoma were identified, as well as neurotrophic tropomyosin-related kinase (NTRK) fusions of IRF2BP2-NTRK1, MEF2A-NTRK3 and ITFG1-NTRK3. Collectively, the results of the present study suggest that NGS-targeting provides potential new biomarkers for sarcoma diagnosis, and may guide more precise therapeutic strategies for patients with bone and soft-tissue sarcomas.
Collapse
Affiliation(s)
- Libin Xu
- Department of Orthopedic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Xianbiao Xie
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat Sen University, Guangzhou, Guangdong 510080, P.R. China
| | | | - Peng Zhang
- OrigiMed Co. Ltd., Shanghai 201114, P.R. China
| | - Angen Liu
- OrigiMed Co. Ltd., Shanghai 201114, P.R. China
| | - Jian Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Bo Zhang
- Department of Pathology, Peking University Third Hospital, Beijing 100191, P.R. China
| |
Collapse
|
14
|
The Sarcoma Immune Landscape: Emerging Challenges, Prognostic Significance and Prospective Impact for Immunotherapy Approaches. Cancers (Basel) 2021; 13:cancers13030363. [PMID: 33498238 PMCID: PMC7863949 DOI: 10.3390/cancers13030363] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Sarcomas are a rare disease with high rates of recurrence and poor prognosis. Important discoveries about the biology of sarcomas have been done during the last decades, without a substantial improvement of systemic treatments. With the agnostic effectivity of immuno-oncological agents in different cancer indications, it is expected that sarcomas can also benefit from these treatments. This article gathers the available data on the specific immune tumor microenvironment of sarcoma and the immunotherapeutic strategies currently under investigation. Abstract Despite significant advances in multidisciplinary treatment strategies including surgery, radiotherapy, targeted therapy and chemotherapy there are yet no substantial improvements in the clinical benefit of patients with sarcomas. Current understanding of the underlying cellular and molecular pathways which govern the dynamic interactions between the tumor stroma, tumor cells and immune infiltrates in sarcoma tissues, led to the clinical development of new therapeutic options based on immunotherapies. Moreover, progress of the treatment of sarcomas also depends on the identification of biomarkers with prognostic and predictive values for selecting patients most likely to benefit from these new therapeutic treatments and also serving as potent therapeutic targets. Novel combinations with radiotherapy, chemotherapy, targeted therapy, vaccines, CAR-T cells and treatments targeting other immune components of the tumor microenvironment are underway aiming to bypass known resistance mechanisms. This review focuses on the role of tumor microenvironment in sarcoma, prognosis and response to novel immunotherapies.
Collapse
|
15
|
Gutierrez WR, Scherer A, McGivney GR, Brockman QR, Knepper-Adrian V, Laverty EA, Roughton GA, Dodd RD. Divergent immune landscapes of primary and syngeneic Kras-driven mouse tumor models. Sci Rep 2021; 11:1098. [PMID: 33441747 PMCID: PMC7806664 DOI: 10.1038/s41598-020-80216-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
Immune cells play critical functions in cancer, and mice with intact immune systems are vital to understanding tumor immunology. Both genetically engineered mouse models (GEMMs) and syngeneic cell transplant approaches use immunocompetent mice to define immune-dependent events in tumor development and progression. Due to their rapid and reproducible nature, there is expanded interest in developing new syngeneic tools from established primary tumor models. However, few studies have examined the extent that syngeneic tumors reflect the immune profile of their originating primary models. Here, we describe comprehensive immunophenotyping of two well-established GEMMs and four new syngeneic models derived from these parental primary tumors. To our knowledge, this is the first systematic analysis comparing immune landscapes between primary and orthotopic syngeneic tumors. These models all use the same well-defined human-relevant driver mutations, arise at identical orthotopic locations, and are generated in mice of the same background strain. This allows for a direct and focused comparison of tumor immune landscapes in carefully controlled mouse models. We identify key differences between the immune infiltrate of GEMM models and their corresponding syngeneic tumors. Most notable is the divergence of T cell populations, with different proportions of CD8+ T cells and regulatory T cells across several models. We also observe immune variation across syngeneic tumors derived from the same primary model. These findings highlight the importance of immune variance across mouse modeling approaches, which has strong implications for the design of rigorous and reproducible translational studies.
Collapse
Grants
- P30 CA086862 NCI NIH HHS
- T32 GM007337 NIGMS NIH HHS
- T32 GM067795 NIGMS NIH HHS
- Pharmacology Training Grant, University of Iowa, United States
- Medical Scientist Training Program, University of Iowa, United States
- Holden Comprehensive Cancer Center, University of Iowa, United States
- Sarcoma Multidisciplinary Oncology Group, University of Iowa, United States
- NCI Core Grant, Holden Comprehensive Cancer Center, University of Iowa, United States
Collapse
Affiliation(s)
- Wade R Gutierrez
- Cancer Biology Graduate Program, Carver College of Medicine, University of Iowa, 285 Newton Rd, 3269C CBRB, Iowa City, IA, 52246, USA
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Amanda Scherer
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Gavin R McGivney
- Cancer Biology Graduate Program, Carver College of Medicine, University of Iowa, 285 Newton Rd, 3269C CBRB, Iowa City, IA, 52246, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Qierra R Brockman
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
- Molecular Medicine Graduate Program, University of Iowa, Iowa City, IA, USA
| | | | - Emily A Laverty
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Grace A Roughton
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Rebecca D Dodd
- Cancer Biology Graduate Program, Carver College of Medicine, University of Iowa, 285 Newton Rd, 3269C CBRB, Iowa City, IA, 52246, USA.
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA.
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.
- Molecular Medicine Graduate Program, University of Iowa, Iowa City, IA, USA.
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
16
|
Jin G, Wang C, Jia D, Qian W, Yin C, Wang D, Yang Q, Li T, Zheng A. Next Generation Sequencing Reveals Pathogenic and Actionable Genetic Alterations of Soft Tissue Sarcoma in Chinese Patients: A Single Center Experience. Technol Cancer Res Treat 2021; 20:15330338211068964. [PMID: 34939467 PMCID: PMC8721396 DOI: 10.1177/15330338211068964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 11/11/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Next generation sequencing (NGS) has systematically investigated the genomic landscape of soft tissue sarcoma (STS) in Western patients, but few reports have described the utility of NGS in identifying pathogenic and targetable mutations in Asian patients. Methods: We review our single center experience of identifying the genomic profile and feasible genetic mutations in 65 Chinese patients with STS by NGS. Results: On average, 3.35 mutations were identified per patient (range, 0-28), and at least one mutation could be detected in 95.4% (62/65) of patients. TP53, MDM2, CDK4, KDR, and NF1 were the most frequent mutation genes in Chinese STS patients. Actionable mutations were discovered in 36.9% (24/65) of patients, and clinical benefit was achieved in 4 patients treated with corresponding molecular targeted therapies. Conclusions: Our study describes the mutation profile of Chinese STS patients by a single center experience. Some patients have achieved improved clinical outcomes by adopting treatment based on the results of genetic testing. NGS may affect clinical decision-making as a routine clinical test for patients with STS.
Collapse
Affiliation(s)
- Gu Jin
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | | | - Dongdong Jia
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Wenkang Qian
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | | | | | | | - Tao Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Aiwen Zheng
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
17
|
Massimino M, Tirrò E, Stella S, Pennisi MS, Vitale SR, Puma A, Romano C, DI Gregorio S, Romeo MA, DI Raimondo F, Manzella L. Targeting BCL-2 as a Therapeutic Strategy for Primary p210BCR-ABL1-positive B-ALL Cells. In Vivo 2020; 34:511-516. [PMID: 32111748 DOI: 10.21873/invivo.11802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/19/2019] [Accepted: 01/05/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIM Philadelphia-positive acute lymphoblastic leukemia (Ph+ B-ALL) is caused by the malignant transformation of lymphoid cells induced by BCR-ABL1 constitutive catalytic activity. BCR-ABL1 tyrosine kinase inhibitors (TKIs) are effective against chronic myeloid leukemia (CML) cells, inducing durable hematological, cytogenetic and molecular responses. However, in Ph+ B-ALL - as in CML progressing to blast crisis - TKIs fail to maintain disease remission. We, therefore, wanted to investigate if dual targeting of BCL-2 and BCR-ABL1 would be more effective in killing Ph+ B-ALL cells. MATERIALS AND METHODS p210-B-ALL CD34-positive cells were used to evaluate the BCR-ABL expression and pharmacological targeting of BCL-2, by venetoclax, alone or in combination with BCR-ABL1 inhibition. RESULTS We demonstrated the cytotoxic effect of BCL-2 inhibition and that dual targeting of BCL-2 and BCR-ABL1 with venetoclax and nilotinib further increases this cytotoxicity. CONCLUSION BCL-2 is a key survival factor for primary Ph+ B-ALL cells and its inhibition - alone or in combination with a BCR-ABL1 TKI - should be further investigated as a potential therapeutic strategy for these patients.
Collapse
Affiliation(s)
- Michele Massimino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy .,Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Catania, Italy
| | - Elena Tirrò
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Catania, Italy
| | - Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Catania, Italy
| | - Maria Stella Pennisi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Catania, Italy
| | - Silvia Rita Vitale
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Catania, Italy
| | - Adriana Puma
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Catania, Italy
| | - Chiara Romano
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Catania, Italy
| | - Sandra DI Gregorio
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Catania, Italy
| | - Maria Anna Romeo
- Division of Hematology and Bone Marrow Transplant, A.O.U. Policlinico Vittorio Emanuele, Catania, Italy
| | - Francesco DI Raimondo
- Division of Hematology and Bone Marrow Transplant, A.O.U. Policlinico Vittorio Emanuele, Catania, Italy
| | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Catania, Italy
| |
Collapse
|
18
|
Xu LB, Zhao ZG, Xu SF, Zhang XX, Liu T, Jing CY, Zhang SG, Yu SJ. The landscape of gene mutations and clinical significance of tumor mutation burden in patients with soft tissue sarcoma who underwent surgical resection and received conventional adjuvant therapy. Int J Biol Markers 2020; 35:14-22. [PMID: 32520634 DOI: 10.1177/1724600820925095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND The aim of this study was to evaluate the landscape of gene mutations and the clinical significance of tumor mutation burden (TMB) in patients with soft tissue sarcoma who underwent surgical resection and received conventional adjuvant therapy. METHODS A total of 68 patients with soft tissue sarcoma were included. Postoperative tumor tissue specimens from the patients were collected for DNA extraction. Targeted next-generation sequencing of cancer-relevant genes was performed for the detection of gene mutations and the analysis of TMB. Univariate analysis between TMB status and prognosis was carried out using the Kaplan-Meier survival analysis, and multivariate analysis was adjusted by the Cox regression model. RESULTS No specific genetic mutations associated with soft tissue sarcoma were found. The mutation frequency of TP53, PIK3C2G, NCOR1, and KRAS of the 68 patients with soft tissue sarcoma were observed in 19 cases (27.94%), 15 cases (22.06%), 14 cases (20.59%), and 14 cases (20.59%), respectively. With regard to the analysis of TMB, the overall TMB of the 68 patients with soft tissue sarcoma was relatively low (median: 2.05 per Mb (range: 0∼15.5 per Mb)). Subsequently, TMB status was divided into TMB-Low and TMB-Middle according to the median TMB. Patients with TMB-Low and TMB-Middle were 37 cases (54.41%) and 31 cases (45.59%), respectively. Overall survival analysis indicated that the median overall survival of patients with TMB-Low and TMB-Middle was not reached, and 4.5 years, respectively (P=0.015). CONCLUSION This study characterizes the genetic background of patients with STS soft tissue sarcoma. The TMB was of clinical significance for patients with soft tissue sarcoma who underwent surgical resection and received conventional adjuvant therapy.
Collapse
Affiliation(s)
- Li-Bin Xu
- Department of Orthopedic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhen-Guo Zhao
- Department of Orthopedic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Song-Feng Xu
- Department of Orthopedic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-Xin Zhang
- Department of Orthopedic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Liu
- Department of Orthopedic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chang-You Jing
- Department of Orthopedic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shu-Guang Zhang
- Department of Orthopedic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sheng-Ji Yu
- Department of Orthopedic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Tian W, Hu W, Shi X, Liu P, Ma X, Zhao W, Qu L, Zhang S, Shi W, Liu A, Cao J. Comprehensive genomic profile of cholangiocarcinomas in China. Oncol Lett 2020; 19:3101-3110. [PMID: 32256810 PMCID: PMC7074170 DOI: 10.3892/ol.2020.11429] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 10/25/2019] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a primary malignancy, which is often diagnosed as locally advanced or metastatic. Previous studies have revealed genomic characteristics of CCA in Western patients, however comprehensive genomic features of CCA in Chinese patients have not been well understood. To explore the specific genomic characteristics of Chinese patients with CCA, a total of 66 patients with CCA, including 44 intrahepatic CCA (iCCA) and 22 extrahepatic CCA (exCCA) cases, were studied. The most commonly altered genes in CCAs were TP53 (62.12%, 41/66), KRAS (36.36%, 24/66), SMAD4 (24.24%, 16/66), TERT (21.21%, 14/66), ARID1A (19.70%, 13/66), CDKN2A (19.70%, 13/66), KMT2C (9.09%, 6/66) and RBM10 (9.09%, 6/66), ERBB2 (7.58%, 5/66) and BRAF (7.58%, 5/66). Many gene mutations, including STK11, CCND1 and FGF19, were only found in iCCA. RBM10 mutations were found to be significantly higher in exCCA. The gene mutations of neurofibromin 1, STK11, CCND1 and FBXW7 specifically occurred in males, whereas gene mutations of ERBB2, AXIN2 and CREBBP specifically occurred in females. ERBB2 mutations were significantly associated with the sex of patients with CCA. Mutations in PIK3CA, FGFR2 and ZNF750 were significantly associated with the age of patients with CCA and TERT mutations were significantly associated with tumor differentiation. Alterations in KMT2C, PBRM1, AXIN2, MAGI2, BRCA2 and SPTA1 were associated with tumor mutational burden. The findings of the present study suggest that targeted sequencing, using next-generation sequencing technology, provides comprehensive and accurate information on genomic alterations, which will provide novel potential biomarkers for the diagnosis of CCA and may guide precise therapeutic strategies for Chinese patients with CCA.
Collapse
Affiliation(s)
- Weijun Tian
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Weiyu Hu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | | | - Peng Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xiang Ma
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Wei Zhao
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Linlin Qu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | | | - Weiwei Shi
- Origimed Co. Ltd, Shanghai 201114, P.R. China
| | - Angen Liu
- Origimed Co. Ltd, Shanghai 201114, P.R. China
| | - Jingyu Cao
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
20
|
Zheng B, Zhang S, Cai W, Wang J, Wang T, Tang N, Shi Y, Luo X, Yan W. Identification of Novel Fusion Transcripts in Undifferentiated Pleomorphic Sarcomas by Transcriptome Sequencing. Cancer Genomics Proteomics 2020; 16:399-408. [PMID: 31467233 DOI: 10.21873/cgp.20144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND/AIM Undifferentiated pleomorphic sarcoma (UPS) is an aggressive mesenchymal neoplasm characterized by chromosomal instability. The aim of this study was to identify fusion events involved in UPS. MATERIALS AND METHODS Transcriptome sequencing was performed to search for new fusion genes in 19 UPS samples, including two paired recurrent (R) and re-recurrent (RR) samples. RESULTS A total of 66 fusion genes were detected. Among them, 10 novel fusion genes were further confirmed by reverse transcription polymerase chain reaction (RT-PCR) and Sanger sequencing. Retinoblastoma (RB1) fusions (2 cases) were the most recurrent fusion genes. The gene fusions RB1-RNASEH2B, RB1-FGF14-AS1, and E2F6-FKBP4 were correlated with the Rb/E2F pathway. Pseudogenes were involved in the formation of the gene fusions CIC-DUX4L8 and EIF2AK4-ANXA2P2. Importantly, targetable gene fusions (PDGFRA-MACROD2 and NCOR1-MAP2K1) were detected in UPS. CONCLUSION Screening for the presence of fusion transcripts will provide vital clues to the understanding of genetic alterations and the finding of new targeted therapies for UPS.
Collapse
Affiliation(s)
- Biqiang Zheng
- Department of Musculoskeletal Cancer Surgery, Fudan University Shanghai Cancer Center, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | | | - Weiluo Cai
- Department of Musculoskeletal Cancer Surgery, Fudan University Shanghai Cancer Center, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Jian Wang
- Department of Musculoskeletal Cancer Surgery, Fudan University Shanghai Cancer Center, Shanghai, P.R. China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
| | - Ting Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Ning Tang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Yingqiang Shi
- Department of Musculoskeletal Cancer Surgery, Fudan University Shanghai Cancer Center, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Xiaoying Luo
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Wangjun Yan
- Department of Musculoskeletal Cancer Surgery, Fudan University Shanghai Cancer Center, Shanghai, P.R. China .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| |
Collapse
|
21
|
Lee P, Malik D, Perkons N, Huangyang P, Khare S, Rhoades S, Gong YY, Burrows M, Finan JM, Nissim I, Gade TPF, Weljie AM, Simon MC. Targeting glutamine metabolism slows soft tissue sarcoma growth. Nat Commun 2020; 11:498. [PMID: 31980651 PMCID: PMC6981153 DOI: 10.1038/s41467-020-14374-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022] Open
Abstract
Tumour cells frequently utilize glutamine to meet bioenergetic and biosynthetic demands of rapid cell growth. However, glutamine dependence can be highly variable between in vitro and in vivo settings, based on surrounding microenvironments and complex adaptive responses to glutamine deprivation. Soft tissue sarcomas (STSs) are mesenchymal tumours where cytotoxic chemotherapy remains the primary approach for metastatic or unresectable disease. Therefore, it is critical to identify alternate therapies to improve patient outcomes. Using autochthonous STS murine models and unbiased metabolomics, we demonstrate that glutamine metabolism supports sarcomagenesis. STS subtypes expressing elevated glutaminase (GLS) levels are highly sensitive to glutamine starvation. In contrast to previous studies, treatment of autochthonous tumour-bearing animals with Telaglenastat (CB-839), an orally bioavailable GLS inhibitor, successfully inhibits undifferentiated pleomorphic sarcoma (UPS) tumour growth. We reveal glutamine metabolism as critical for sarcomagenesis, with CB-839 exhibiting potent therapeutic potential.
Collapse
Affiliation(s)
- Pearl Lee
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Dania Malik
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nicholas Perkons
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Peiwei Huangyang
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Sanika Khare
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Seth Rhoades
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yao-Yu Gong
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Michelle Burrows
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jennifer M Finan
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Itzhak Nissim
- Division of Genetics and Metabolism, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Biochemistry, and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Terence P F Gade
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Aalim M Weljie
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|