1
|
Sala C, Tarozzi M, Simonetti G, Pazzaglia M, Cammarata FP, Russo G, Acquaviva R, Cirrone GAP, Petringa G, Catalano R, Elia VC, Fede F, Manti L, Castellani G, Remondini D, Zironi I. Impact on the Transcriptome of Proton Beam Irradiation Targeted at Healthy Cardiac Tissue of Mice. Cancers (Basel) 2024; 16:1471. [PMID: 38672554 PMCID: PMC11048382 DOI: 10.3390/cancers16081471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/20/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Proton beam therapy is considered a step forward with respect to electromagnetic radiation, thanks to the reduction in the dose delivered. Among unwanted effects to healthy tissue, cardiovascular complications are a known long-term radiotherapy complication. The transcriptional response of cardiac tissue from xenografted BALB/c nude mice obtained at 3 and 10 days after proton irradiation covering both the tumor region and the underlying healthy tissue was analyzed as a function of dose and time. Three doses were used: 2 Gy, 6 Gy, and 9 Gy. The intermediate dose had caused the greatest impact at 3 days after irradiation: at 2 Gy, 219 genes were differently expressed, many of them represented by zinc finger proteins; at 6 Gy, there were 1109, with a predominance of genes involved in energy metabolism and responses to stimuli; and at 9 Gy, there were 105, mainly represented by zinc finger proteins and molecules involved in the regulation of cardiac function. After 10 days, no significant effects were detected, suggesting that cellular repair mechanisms had defused the potential alterations in gene expression. The nonlinear dose-response curve indicates a need to update the models built on photons to improve accuracy in health risk prediction. Our data also suggest a possible role for zinc finger protein genes as markers of proton therapy efficacy.
Collapse
Affiliation(s)
- Claudia Sala
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40127 Bologna, Italy; (C.S.); (G.C.)
| | - Martina Tarozzi
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40127 Bologna, Italy; (C.S.); (G.C.)
| | - Giorgia Simonetti
- Biosciences Laboratory, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (G.S.)
| | - Martina Pazzaglia
- Biosciences Laboratory, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (G.S.)
| | - Francesco Paolo Cammarata
- Institute of Bioimaging and Molecular Physiology, National Council of Research (IBFM-CNR), 90015 Cefalù, Italy (G.R.)
- Laboratori Nazionali del SUD, National Institute of Nuclear Physics, (LNS-INFN), 95125 Catania, Italy (G.P.)
| | - Giorgio Russo
- Institute of Bioimaging and Molecular Physiology, National Council of Research (IBFM-CNR), 90015 Cefalù, Italy (G.R.)
- Laboratori Nazionali del SUD, National Institute of Nuclear Physics, (LNS-INFN), 95125 Catania, Italy (G.P.)
| | - Rosaria Acquaviva
- Department of Drug Science, Section of Biochemistry, University of Catania, 95125 Catania, Italy;
| | | | - Giada Petringa
- Laboratori Nazionali del SUD, National Institute of Nuclear Physics, (LNS-INFN), 95125 Catania, Italy (G.P.)
| | - Roberto Catalano
- Laboratori Nazionali del SUD, National Institute of Nuclear Physics, (LNS-INFN), 95125 Catania, Italy (G.P.)
| | - Valerio Cosimo Elia
- Department of Physics “E. Pancini”, University of Naples Federico II, 80126 Naples, Italy; (V.C.E.); (F.F.); (L.M.)
- National Institute of Nuclear Physics, Napoli Section (INFN NA), 80126 Naples, Italy
| | - Francesca Fede
- Department of Physics “E. Pancini”, University of Naples Federico II, 80126 Naples, Italy; (V.C.E.); (F.F.); (L.M.)
- National Institute of Nuclear Physics, Napoli Section (INFN NA), 80126 Naples, Italy
| | - Lorenzo Manti
- Department of Physics “E. Pancini”, University of Naples Federico II, 80126 Naples, Italy; (V.C.E.); (F.F.); (L.M.)
- National Institute of Nuclear Physics, Napoli Section (INFN NA), 80126 Naples, Italy
| | - Gastone Castellani
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40127 Bologna, Italy; (C.S.); (G.C.)
| | - Daniel Remondini
- National Institute for Nuclear Physics, Bologna Section (INFN BO), 40127 Bologna, Italy
- Department of Physics and Astronomy “Augusto Righi” (DIFA), Alma Mater Studiorum University of Bologna, 40127 Bologna, Italy
| | - Isabella Zironi
- National Institute for Nuclear Physics, Bologna Section (INFN BO), 40127 Bologna, Italy
- Department of Physics and Astronomy “Augusto Righi” (DIFA), Alma Mater Studiorum University of Bologna, 40127 Bologna, Italy
| |
Collapse
|
2
|
Patwardhan RS, Rai A, Sharma D, Sandur SK, Patwardhan S. Txnrd1 as a prognosticator for recurrence, metastasis and response to neoadjuvant chemotherapy and radiotherapy in breast cancer patients. Heliyon 2024; 10:e27011. [PMID: 38524569 PMCID: PMC10958228 DOI: 10.1016/j.heliyon.2024.e27011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/17/2024] [Accepted: 02/22/2024] [Indexed: 03/26/2024] Open
Abstract
Thioredoxin reductase 1 (Txnrd1) is known to have prognostic significance in a subset of breast cancer patients. Despite the pivotal role of Txnrd1 in regulating several cellular and physiological processes in cancer progression and metastasis, its clinical significance is largely unrecognized. Here, we undertook a retrospective comprehensive meta-analysis of 13,322 breast cancer patients from 43 independent cohorts to assess prognostic and predictive roles of Txnrd1. We observed that Txnrd1 has a positive correlation with tumor grade and size and it is over-expressed in higher-grade and larger tumors. Further, hormone receptor-negative and HER2-positive tumors exhibit elevated Txnrd1 gene expression. Patients with elevated Txnrd1 expression exhibit significant hazards for shorter disease-specific and overall survival. While Txnrd1 has a positive correlation with tumor recurrence and metastasis, it has a negative correlation with time to recurrence and metastasis. Txnrd1High patients exhibit 2.5 years early recurrence and 1.3 years early metastasis as compared to Txnrd1Low cohort. Interestingly, patients with high Txnrd1 gene expression exhibit a pathologic complete response (pCR) to neoadjuvant chemotherapy, but they experience early recurrence after radiotherapy. Txnrd1High MDA-MB-231 cells exhibit significant ROS generation and reduced viability after doxorubicin treatment compared to Txnrd1Low MCF7 cells. Corroborating with findings from meta-analysis, Txnrd1 depletion leads to decreased survival, enhanced sensitivity to radiation induced killing, poor scratch-wound healing, and reduced invasion potential in MDA-MB-231 cells. Thus, Txnrd1 appears to be a potential predictor of recurrence, metastasis and therapy response in breast cancer patients.
Collapse
Affiliation(s)
- Raghavendra S. Patwardhan
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Archita Rai
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Deepak Sharma
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Santosh K. Sandur
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Sejal Patwardhan
- Homi Bhabha National Institute, Mumbai, 400094, India
- Patwardhan Lab, Advanced Centre for Treatment Research & Education in Cancer, (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, 410210, India
| |
Collapse
|
3
|
Su YH, Wu YZ, Ann DK, Chen JLY, Kuo CY. Obesity promotes radioresistance through SERPINE1-mediated aggressiveness and DNA repair of triple-negative breast cancer. Cell Death Dis 2023; 14:53. [PMID: 36681663 PMCID: PMC9867751 DOI: 10.1038/s41419-023-05576-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/22/2023]
Abstract
Obesity is a risk factor in various types of cancer, including breast cancer. The disturbance of adipose tissue in obesity highly correlates with cancer progression and resistance to standard treatments such as chemo- and radio-therapies. In this study, in a syngeneic mouse model of triple-negative breast cancer (TNBC), diet-induced obesity (DIO) not only promoted tumor growth, but also reduced tumor response to radiotherapy. Serpine1 (Pai-1) was elevated in the circulation of obese mice and was enriched within tumor microenvironment. In vitro co-culture of human white adipocytes-conditioned medium (hAd-CM) with TNBC cells potentiated the aggressive phenotypes and radioresistance of TNBC cells. Moreover, inhibition of both cancer cell autonomous and non-autonomous SERPINE1 by either genetic or pharmacological strategy markedly dampened the aggressive phenotypes and radioresistance of TNBC cells. Mechanistically, we uncovered a previously unrecognized role of SERPINE1 in DNA damage response. Ionizing radiation-induced DNA double-strand breaks (DSBs) increased the expression of SERPINE1 in cancer cells in an ATM/ATR-dependent manner, and promoted nuclear localization of SERPINE1 to facilitate DSB repair. By analyzing public clinical datasets, higher SERPINE1 expression in TNBC correlated with patients' BMI as well as poor outcomes. Elevated SERPINE1 expression and nuclear localization were also observed in radioresistant breast cancer cells. Collectively, we reveal a link between obesity and radioresistance in TNBC and identify SERPINE1 to be a crucial factor mediating obesity-associated tumor radioresistance.
Collapse
Affiliation(s)
- Yong-Han Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Zhen Wu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - David K Ann
- Department of Diabetes Complications & Metabolism, City of Hope, Duarte, CA, USA
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, USA
| | - Jenny Ling-Yu Chen
- Department of Radiology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Radiation Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Ching-Ying Kuo
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
4
|
Jabbarzadeh Kaboli P, Luo S, Chen Y, Jomhori M, Imani S, Xiang S, Wu Z, Li M, Shen J, Zhao Y, Wu X, Hin Cho C, Xiao Z. Pharmacotranscriptomic profiling of resistant triple-negative breast cancer cells treated with lapatinib and berberine shows upregulation of PI3K/Akt signaling under cytotoxic stress. Gene X 2022; 816:146171. [PMID: 35026293 DOI: 10.1016/j.gene.2021.146171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 12/05/2021] [Accepted: 12/13/2021] [Indexed: 11/27/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most incurable type of breast cancer, accounting for 15-20% of breast cancer cases. Lapatinib is a dual tyrosine kinase inhibitor targeting EGFR and Her2, and berberine (BBR) is a plant-based alkaloid suggested to inhibit several cancer signaling pathways. We previously reported that lapatinib activates the Akt oncoprotein in MDA-MB231 TNBC cells. The present study determined the mechanism(s) of Akt activation in response to lapatinib, BBR, and capivasertib (Akt inhibitor) as well as the role of Akt signaling in chemoresistance in TNBC cells. Genetic profiles of 10 TNBC cell lines and patients were analyzed using datasets obtained from Gene Expression Omnibus and The Cancer Genome Atlas Database. Then, the effects of lapatinib, BBR, and capivasertib on treated MDA-MB231 and MCF-7 cell lines were studied using cytotoxicity, immunoblot, and RNA-sequencing analyses. For further confirmation, we also performed real-time PCR for genes associated with PI3K signaling. MDA-MB231 and MCF-7 cell lines were both strongly resistant to capivasertib largely due to significant Akt activation in both breast cancer cell lines, while lapatinib and BBR only enhanced Akt signaling in MDA-MB231 cells. Next-generation sequencing, functional enrichment analysis, and immunoblot revealed downregulation of CDK6 and DNMT1 in response to lapatinib and BBR lead to a decrease in cell proliferation. Expression of placental, fibroblast growth factor, and angiogenic biomarker genes, which are significantly associated with Akt activation and/or dormancy in breast cancer cells, was significantly upregulated in TNBC cells treated with lapatinib and BBR. Lapatinib and BBR activate Akt through upregulation of alternative signaling, which lead to chemoresistance in TNBC cell. In addition, lapatinib overexpresses genes related to PI3K signaling in resistant TNBC cell model.
Collapse
Affiliation(s)
- Parham Jabbarzadeh Kaboli
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan, ROC.
| | - Shuang Luo
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Yao Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Masume Jomhori
- Department of Biotechnology Research, Razi Vaccine and Serum Research Institute, Mashhad, Iran
| | - Saber Imani
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Shixin Xiang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Zhigui Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China; Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China.
| |
Collapse
|
5
|
Minafra L, Cammarata FP, Calvaruso M. The Role of Radiation in Cancer Treatment: New Insights towards Personalized Therapies. J Pers Med 2022; 12:jpm12020312. [PMID: 35207800 PMCID: PMC8878217 DOI: 10.3390/jpm12020312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
|
6
|
Kahl I, Mense J, Finke C, Boller AL, Lorber C, Győrffy B, Greve B, Götte M, Espinoza-Sánchez NA. The cell cycle-related genes RHAMM, AURKA, TPX2, PLK1, and PLK4 are associated with the poor prognosis of breast cancer patients. J Cell Biochem 2022; 123:581-600. [PMID: 35014077 DOI: 10.1002/jcb.30205] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 01/02/2023]
Abstract
Breast cancer is the third most common type of cancer diagnosed. Cell cycle is a complex but highly organized and controlled process, in which normal cells sense mitogenic growth signals that instruct them to enter and progress through their cell cycle. This process culminates in cell division generating two daughter cells with identical amounts of genetic material. Uncontrolled proliferation is one of the hallmarks of cancer. In this study, we analyzed the expression of the cell cycle-related genes receptor for hyaluronan (HA)-mediated motility (RHAMM), AURKA, TPX2, PLK1, and PLK4 and correlated them with the prognosis in a collective of 3952 breast cancer patients. A high messenger RNA expression of all studied genes correlated with a poor prognosis. Stratifying the patients according to the expression of hormonal receptors, we found that in patients with estrogen and progesterone receptor-positive and human epithelial growth factor receptor 2-negative tumors, and Luminal A and Luminal B tumors, the expression of the five analyzed genes correlates with worse survival. qPCR analysis of a panel of breast cancer cell lines representative of major molecular subtypes indicated a predominant expression in the luminal subtype. In vitro experiments showed that radiation influences the expression of the five analyzed genes both in luminal and triple-negative model cell lines. Functional analysis of MDA-MB-231 cells showed that small interfering RNA knockdown of PLK4 and TPX2 and pharmacological inhibition of PLK1 had an impact on the cell cycle and colony formation. Looking for a potential upstream regulation by microRNAs, we observed a differential expression of RHAMM, AURKA, TPX2, PLK1, and PLK4 after transfecting the MDA-MB-231 cells with three different microRNAs. Survival analysis of miR-34c-5p, miR-375, and miR-142-3p showed a different impact on the prognosis of breast cancer patients. Our study suggests that RHAMM, AURKA, TPX2, PLK1, and PLK4 can be used as potential targets for treatment or as a prognostic value in breast cancer patients.
Collapse
Affiliation(s)
- Iris Kahl
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Julian Mense
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Christopher Finke
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Anna-Lena Boller
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Clara Lorber
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary.,Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Münster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Nancy A Espinoza-Sánchez
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.,Department of Radiotherapy-Radiooncology, Münster University Hospital, Münster, Germany
| |
Collapse
|
7
|
Calvaruso M, Militello C, Minafra L, La Regina V, Torrisi F, Pucci G, Cammarata FP, Bravatà V, Forte GI, Russo G. Biological and Mechanical Characterization of the Random Positioning Machine (RPM) for Microgravity Simulations. Life (Basel) 2021; 11:life11111190. [PMID: 34833068 PMCID: PMC8619501 DOI: 10.3390/life11111190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
The rapid improvement of space technologies is leading to the continuous increase of space missions that will soon bring humans back to the Moon and, in the coming future, toward longer interplanetary missions such as the one to Mars. The idea of living in space is charming and fascinating; however, the space environment is a harsh place to host human life and exposes the crew to many physical challenges. The absence of gravity experienced in space affects many aspects of human biology and can be reproduced in vitro with the help of microgravity simulators. Simulated microgravity (s-μg) is applied in many fields of research, ranging from cell biology to physics, including cancer biology. In our study, we aimed to characterize, at the biological and mechanical level, a Random Positioning Machine in order to simulate microgravity in an in vitro model of Triple-Negative Breast Cancer (TNBC). We investigated the effects played by s-μg by analyzing the change of expression of some genes that drive proliferation, survival, cell death, cancer stemness, and metastasis in the human MDA-MB-231 cell line. Besides the mechanical verification of the RPM used in our studies, our biological findings highlighted the impact of s-μg and its putative involvement in cancer progression.
Collapse
Affiliation(s)
- Marco Calvaruso
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy; (M.C.); (C.M.); (F.P.C.); (V.B.); (G.I.F.); (G.R.)
| | - Carmelo Militello
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy; (M.C.); (C.M.); (F.P.C.); (V.B.); (G.I.F.); (G.R.)
| | - Luigi Minafra
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy; (M.C.); (C.M.); (F.P.C.); (V.B.); (G.I.F.); (G.R.)
- Correspondence:
| | | | - Filippo Torrisi
- Departments of Biomedical and BioTechnological Science (BIOMETEC), University of Catania, 95123 Catania, Italy;
| | - Gaia Pucci
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, 90128 Palermo, Italy;
| | - Francesco P. Cammarata
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy; (M.C.); (C.M.); (F.P.C.); (V.B.); (G.I.F.); (G.R.)
| | - Valentina Bravatà
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy; (M.C.); (C.M.); (F.P.C.); (V.B.); (G.I.F.); (G.R.)
| | - Giusi I. Forte
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy; (M.C.); (C.M.); (F.P.C.); (V.B.); (G.I.F.); (G.R.)
| | - Giorgio Russo
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy; (M.C.); (C.M.); (F.P.C.); (V.B.); (G.I.F.); (G.R.)
| |
Collapse
|
8
|
Transcriptomics and Metabolomics Integration Reveals Redox-Dependent Metabolic Rewiring in Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13205058. [PMID: 34680207 PMCID: PMC8534001 DOI: 10.3390/cancers13205058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022] Open
Abstract
Rewiring glucose metabolism toward aerobic glycolysis provides cancer cells with a rapid generation of pyruvate, ATP, and NADH, while pyruvate oxidation to lactate guarantees refueling of oxidized NAD+ to sustain glycolysis. CtPB2, an NADH-dependent transcriptional co-regulator, has been proposed to work as an NADH sensor, linking metabolism to epigenetic transcriptional reprogramming. By integrating metabolomics and transcriptomics in a triple-negative human breast cancer cell line, we show that genetic and pharmacological down-regulation of CtBP2 strongly reduces cell proliferation by modulating the redox balance, nucleotide synthesis, ROS generation, and scavenging. Our data highlight the critical role of NADH in controlling the oncogene-dependent crosstalk between metabolism and the epigenetically mediated transcriptional program that sustains energetic and anabolic demands in cancer cells.
Collapse
|
9
|
Garmpis N, Damaskos C, Garmpi A, Nikolettos K, Dimitroulis D, Diamantis E, Farmaki P, Patsouras A, Voutyritsa E, Syllaios A, Zografos CG, Antoniou EA, Nikolettos N, Kostakis A, Kontzoglou K, Schizas D, Nonni A. Molecular Classification and Future Therapeutic Challenges of Triple-negative Breast Cancer. In Vivo 2021; 34:1715-1727. [PMID: 32606140 DOI: 10.21873/invivo.11965] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is an extremely diverse group of breast tumors, with aggressive clinical behavior, higher rates of distant recurrence and worse overall survival compared to other types of breast cancers. The genetic, transcriptional histological and clinical heterogeneity of this disease has been an obstacle in the progression of targeted therapeutic approaches, as a ubiquitous TNBC marker has not yet been discerned. In terms of that, current studies focus on the classification of TNBC tumors in subgroups with similar characteristics in order to develop a treatment specialized for each group of patients. To date, a series of gene expression profiles analysis in order to identify the different molecular subtypes have been used. Complementary DNA microarrays, PAM50 assays, DNA and RNA sequencing as well as immunohistochemical analysis are some of the methods utilized to classify TNBC tumors. In 2012, the Cancer Genome Atlas (TCGA) Research Network conducted a major analysis of breast cancers using six different platforms, the genomic DNA copy number arrays, DNA methylation, exome sequencing, messenger RNA arrays, microRNA sequencing and reverse-phase protein arrays, in order to assort the tumors in homogenous subgroups. Since then, an increasing number of breast cancer data sets are being examined in an attempt to distinguish the classification with biological interpretation and clinical implementation. In this review, the progress in molecular subtyping of TNBC is discussed, providing a brief insight in novel TNBC biomarkers and therapeutic strategies.
Collapse
Affiliation(s)
- Nikolaos Garmpis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Damaskos
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Garmpi
- First Department of Propedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Nikolettos
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Dimitroulis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Diamantis
- Department of Endocrinology and Diabetes Center, G. Gennimatas General Hospital, Athens, Greece
| | - Paraskevi Farmaki
- First Department of Pediatrics, Agia Sofia Children's Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandros Patsouras
- Second Department of Internal Medicine, Tzanio General Hospital, Piraeus, Greece
| | - Errika Voutyritsa
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Syllaios
- First Department of Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos G Zografos
- First Department of Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios A Antoniou
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikos Nikolettos
- Obstetric - Gynecologic Clinic, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Konstantinos Kontzoglou
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Schizas
- First Department of Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Afroditi Nonni
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
10
|
Paramanantham A, Jung EJ, Go SIL, Jeong BK, Jung JM, Hong SC, Kim GS, Lee WS. Activated ERK Signaling Is One of the Major Hub Signals Related to the Acquisition of Radiotherapy-Resistant MDA-MB-231 Breast Cancer Cells. Int J Mol Sci 2021; 22:ijms22094940. [PMID: 34066541 PMCID: PMC8124562 DOI: 10.3390/ijms22094940] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/19/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is one of the major causes of deaths due to cancer, especially in women. The crucial barrier for breast cancer treatment is resistance to radiation therapy, one of the important local regional therapies. We previously established and characterized radio-resistant MDA-MB-231 breast cancer cells (RT-R-MDA-MB-231 cells) that harbor a high expression of cancer stem cells (CSCs) and the EMT phenotype. In this study, we performed antibody array analysis to identify the hub signaling mechanism for the radiation resistance of RT-R-MDA-MB-231 cells by comparing parental MDA-MB-231 (p-MDA-MB-231) and RT-R-MDA-MB-231 cells. Antibody array analysis unveiled that the MAPK1 protein was the most upregulated protein in RT-R-MDA-MB-231 cells compared to in p-MDA-MB-231 cells. The pathway enrichment analysis also revealed the presence of MAPK1 in almost all enriched pathways. Thus, we used an MEK/ERK inhibitor, PD98059, to block the MEK/ERK pathway and to identify the role of MAPK1 in the radio-resistance of RT-R-MDA-MB-231 cells. MEK/ERK inhibition induced cell death in both p-MDA-MB-231 and RT-R-MDA-MB-231 cells, but the death mechanism for each cell was different; p-MDA-MB-231 cells underwent apoptosis, showing cell shrinkage and PARP-1 cleavage, while RT-R-MDA-MB-231 cells underwent necroptosis, showing mitochondrial dissipation, nuclear swelling, and an increase in the expressions of CypA and AIF. In addition, MEK/ERK inhibition reversed the radio-resistance of RT-R-MDA-MB-231 cells and suppressed the increased expression of CSC markers (CD44 and OCT3/4) and the EMT phenotype (β-catenin and N-cadherin/E-cadherin). Taken together, this study suggests that activated ERK signaling is one of the major hub signals related to the radio-resistance of MDA-MB-231 breast cancer cells.
Collapse
Affiliation(s)
- Anjugam Paramanantham
- Departments of Internal Medicine, Institute of Health Sciences and Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, 90 Chilam-dong, Jinju 660-702, Korea; (A.P.); (E.J.J.); (S.-I.G.)
- School of Veterinary and Institute of Life Science, Gyeongsang National University, 900 Gajwadong, Jinju 660-701, Korea
| | - Eun Joo Jung
- Departments of Internal Medicine, Institute of Health Sciences and Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, 90 Chilam-dong, Jinju 660-702, Korea; (A.P.); (E.J.J.); (S.-I.G.)
| | - Se-IL Go
- Departments of Internal Medicine, Institute of Health Sciences and Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, 90 Chilam-dong, Jinju 660-702, Korea; (A.P.); (E.J.J.); (S.-I.G.)
| | - Bae Kwon Jeong
- Departments of Radiation Oncology, Institute of Health Sciences and Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, 90 Chilam-dong, Jinju 660-702, Korea;
| | - Jin-Myung Jung
- Departments of Neurosurgery, Institute of Health Sciences and Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, 90 Chilam-dong, Jinju 660-702, Korea;
| | - Soon Chan Hong
- Departments of Surgery, Institute of Health Sciences and Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, 90 Chilam-dong, Jinju 660-702, Korea;
| | - Gon Sup Kim
- School of Veterinary and Institute of Life Science, Gyeongsang National University, 900 Gajwadong, Jinju 660-701, Korea
- Correspondence: (G.S.K.); (W.S.L.); Tel.: +82-55-772-2356 (G.S.K.); +82-55-750-8733 (W.S.L.); Fax: +82-55-758-9122 (W.S.L.)
| | - Won Sup Lee
- Departments of Internal Medicine, Institute of Health Sciences and Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, 90 Chilam-dong, Jinju 660-702, Korea; (A.P.); (E.J.J.); (S.-I.G.)
- Correspondence: (G.S.K.); (W.S.L.); Tel.: +82-55-772-2356 (G.S.K.); +82-55-750-8733 (W.S.L.); Fax: +82-55-758-9122 (W.S.L.)
| |
Collapse
|
11
|
Hypoxia Transcriptomic Modifications Induced by Proton Irradiation in U87 Glioblastoma Multiforme Cell Line. J Pers Med 2021; 11:jpm11040308. [PMID: 33923454 PMCID: PMC8073933 DOI: 10.3390/jpm11040308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
In Glioblastoma Multiforme (GBM), hypoxia is associated with radioresistance and poor prognosis. Since standard GBM treatments are not always effective, new strategies are needed to overcome resistance to therapeutic treatments, including radiotherapy (RT). Our study aims to shed light on the biomarker network involved in a hypoxic (0.2% oxygen) GBM cell line that is radioresistant after proton therapy (PT). For cultivating cells in acute hypoxia, GSI’s hypoxic chambers were used. Cells were irradiated in the middle of a spread-out Bragg peak with increasing PT doses to verify the greater radioresistance in hypoxic conditions. Whole-genome cDNA microarray gene expression analyses were performed for samples treated with 2 and 10 Gy to highlight biological processes activated in GBM following PT in the hypoxic condition. We describe cell survival response and significant deregulated pathways responsible for the cell death/survival balance and gene signatures linked to the PT/hypoxia configurations assayed. Highlighting the molecular pathways involved in GBM resistance following hypoxia and ionizing radiation (IR), this work could suggest new molecular targets, allowing the development of targeted drugs to be suggested in association with PT.
Collapse
|
12
|
Local Disease-Free Survival Rate (LSR) Application to Personalize Radiation Therapy Treatments in Breast Cancer Models. J Pers Med 2020; 10:jpm10040177. [PMID: 33080870 PMCID: PMC7712665 DOI: 10.3390/jpm10040177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/29/2022] Open
Abstract
Cancer heterogeneity represents the main issue for defining an effective treatment in clinical practice, and the scientific community is progressively moving towards the development of more personalized therapeutic regimens. Radiotherapy (RT) remains a fundamental therapeutic treatment used for many neoplastic diseases, including breast cancer (BC), where high variability at the clinical and molecular level is known. The aim of this work is to apply the generalized linear quadratic (LQ) model to customize the radiant treatment plan for BC, by extracting some characteristic parameters of intrinsic radiosensitivity that are not generic, but may be exclusive for each cell type. We tested the validity of the generalized LQ model and analyzed the local disease-free survival rate (LSR) for breast RT treatment by using four BC cell cultures (both primary and immortalized), irradiated with clinical X-ray beams. BC cells were chosen on the basis of their receptor profiles, in order to simulate a differential response to RT between triple negative breast and luminal adenocarcinomas. The MCF10A breast epithelial cell line was utilized as a healthy control. We show that an RT plan setup based only on α and β values could be limiting and misleading. Indeed, two other parameters, the doubling time and the clonogens number, are important to finely predict the tumor response to treatment. Our findings could be tested at a preclinical level to confirm their application as a variant of the classical LQ model, to create a more personalized approach for RT planning.
Collapse
|
13
|
Cammarata FP, Forte GI, Broggi G, Bravatà V, Minafra L, Pisciotta P, Calvaruso M, Tringali R, Tomasello B, Torrisi F, Petringa G, Cirrone GAP, Cuttone G, Acquaviva R, Caltabiano R, Russo G. Molecular Investigation on a Triple Negative Breast Cancer Xenograft Model Exposed to Proton Beams. Int J Mol Sci 2020; 21:ijms21176337. [PMID: 32882850 PMCID: PMC7503243 DOI: 10.3390/ijms21176337] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 12/15/2022] Open
Abstract
Specific breast cancer (BC) subtypes are associated with bad prognoses due to the absence of successful treatment plans. The triple-negative breast cancer (TNBC) subtype, with estrogen (ER), progesterone (PR) and human epidermal growth factor-2 (HER2) negative receptor status, is a clinical challenge for oncologists, because of its aggressiveness and the absence of effective therapies. In addition, proton therapy (PT) represents an effective treatment against both inaccessible area located or conventional radiotherapy (RT)-resistant cancers, becoming a promising therapeutic choice for TNBC. Our study aimed to analyze the in vivo molecular response to PT and its efficacy in a MDA-MB-231 TNBC xenograft model. TNBC xenograft models were irradiated with 2, 6 and 9 Gy of PT. Gene expression profile (GEP) analyses and immunohistochemical assay (IHC) were performed to highlight specific pathways and key molecules involved in cell response to the radiation. GEP analysis revealed in depth the molecular response to PT, showing a considerable immune response, cell cycle and stem cell process regulation. Only the dose of 9 Gy shifted the balance toward pro-death signaling as a dose escalation which can be easily performed using proton beams, which permit targeting tumors while avoiding damage to the surrounding healthy tissue.
Collapse
Affiliation(s)
- Francesco P. Cammarata
- Institute of Molecular Bioimaging and Physiology (IBFM-CNR), 90015 Cefalù (Palermo), Italy; (F.P.C.); (G.I.F.); (L.M.); (M.C.); (G.R.)
- National Laboratory of South, National Institute for Nuclear Physics (LNS-INFN), 95123 Catania, Italy; (P.P.); (F.T.); (G.P.); (G.A.P.C.); (G.C.)
| | - Giusi I. Forte
- Institute of Molecular Bioimaging and Physiology (IBFM-CNR), 90015 Cefalù (Palermo), Italy; (F.P.C.); (G.I.F.); (L.M.); (M.C.); (G.R.)
- National Laboratory of South, National Institute for Nuclear Physics (LNS-INFN), 95123 Catania, Italy; (P.P.); (F.T.); (G.P.); (G.A.P.C.); (G.C.)
| | - Giuseppe Broggi
- Department of Medical, Surgical and Advanced Technological Sciences “Gian Filippo Ingrassia”, Section of Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (R.C.)
| | - Valentina Bravatà
- Institute of Molecular Bioimaging and Physiology (IBFM-CNR), 90015 Cefalù (Palermo), Italy; (F.P.C.); (G.I.F.); (L.M.); (M.C.); (G.R.)
- National Laboratory of South, National Institute for Nuclear Physics (LNS-INFN), 95123 Catania, Italy; (P.P.); (F.T.); (G.P.); (G.A.P.C.); (G.C.)
- Correspondence:
| | - Luigi Minafra
- Institute of Molecular Bioimaging and Physiology (IBFM-CNR), 90015 Cefalù (Palermo), Italy; (F.P.C.); (G.I.F.); (L.M.); (M.C.); (G.R.)
- National Laboratory of South, National Institute for Nuclear Physics (LNS-INFN), 95123 Catania, Italy; (P.P.); (F.T.); (G.P.); (G.A.P.C.); (G.C.)
| | - Pietro Pisciotta
- National Laboratory of South, National Institute for Nuclear Physics (LNS-INFN), 95123 Catania, Italy; (P.P.); (F.T.); (G.P.); (G.A.P.C.); (G.C.)
- Department of Radiation Oncology, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Marco Calvaruso
- Institute of Molecular Bioimaging and Physiology (IBFM-CNR), 90015 Cefalù (Palermo), Italy; (F.P.C.); (G.I.F.); (L.M.); (M.C.); (G.R.)
- National Laboratory of South, National Institute for Nuclear Physics (LNS-INFN), 95123 Catania, Italy; (P.P.); (F.T.); (G.P.); (G.A.P.C.); (G.C.)
| | - Roberta Tringali
- Department of Drug Science, Section of Biochemistry, University of Catania, 95125 Catania, Italy; (R.T.); (B.T.); (R.A.)
| | - Barbara Tomasello
- Department of Drug Science, Section of Biochemistry, University of Catania, 95125 Catania, Italy; (R.T.); (B.T.); (R.A.)
| | - Filippo Torrisi
- National Laboratory of South, National Institute for Nuclear Physics (LNS-INFN), 95123 Catania, Italy; (P.P.); (F.T.); (G.P.); (G.A.P.C.); (G.C.)
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95124 Catania, Italy
| | - Giada Petringa
- National Laboratory of South, National Institute for Nuclear Physics (LNS-INFN), 95123 Catania, Italy; (P.P.); (F.T.); (G.P.); (G.A.P.C.); (G.C.)
| | - Giuseppe A. P. Cirrone
- National Laboratory of South, National Institute for Nuclear Physics (LNS-INFN), 95123 Catania, Italy; (P.P.); (F.T.); (G.P.); (G.A.P.C.); (G.C.)
| | - Giacomo Cuttone
- National Laboratory of South, National Institute for Nuclear Physics (LNS-INFN), 95123 Catania, Italy; (P.P.); (F.T.); (G.P.); (G.A.P.C.); (G.C.)
| | - Rosaria Acquaviva
- Department of Drug Science, Section of Biochemistry, University of Catania, 95125 Catania, Italy; (R.T.); (B.T.); (R.A.)
| | - Rosario Caltabiano
- Department of Medical, Surgical and Advanced Technological Sciences “Gian Filippo Ingrassia”, Section of Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (R.C.)
| | - Giorgio Russo
- Institute of Molecular Bioimaging and Physiology (IBFM-CNR), 90015 Cefalù (Palermo), Italy; (F.P.C.); (G.I.F.); (L.M.); (M.C.); (G.R.)
- National Laboratory of South, National Institute for Nuclear Physics (LNS-INFN), 95123 Catania, Italy; (P.P.); (F.T.); (G.P.); (G.A.P.C.); (G.C.)
| |
Collapse
|