1
|
Sajanti A, Hellström S, Bennett C, Srinath A, Jhaveri A, Cao Y, Takala R, Frantzén J, Koskimäki F, Falter J, Lyne SB, Rantamäki T, Posti JP, Roine S, Jänkälä M, Puolitaival J, Kolehmainen S, Girard R, Rahi M, Rinne J, Castrén E, Koskimäki J. Soluble Urokinase-Type Plasminogen Activator Receptor and Inflammatory Biomarker Response with Prognostic Significance after Acute Neuronal Injury - a Prospective Cohort Study. Inflammation 2024:10.1007/s10753-024-02185-1. [PMID: 39540961 DOI: 10.1007/s10753-024-02185-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH), ischemic stroke (IS), and traumatic brain injury (TBI) are severe conditions impacting individuals and society. Identifying reliable prognostic biomarkers for predicting survival or recovery remains a challenge. Soluble urokinase type plasminogen activator receptor (suPAR) has gained attention as a potential prognostic biomarker in acute sepsis. This study evaluates suPAR and related neuroinflammatory biomarkers in serum for brain injury prognosis. This prospective study included 31 aSAH, 30 IS, 13 TBI, and three healthy controls (n = 77). Serum samples were collected on average 5.9 days post-injury, analyzing suPAR, IL-1β, cyclophilin A, and TNFα levels using ELISA. Outcomes were assessed 90 days post-injury with the modified Rankin Scale (mRS), categorized as favorable (mRS 0-2) or unfavorable (mRS 3-6). Statistical analyses included 2-tailed t-tests, Pearson's correlations, and machine learning linear discriminant analysis (LDA) for biomarker combinations. Elevated suPAR levels were found in brain injury patients compared to controls (p = 0.017). Increased suPAR correlated with unfavorable outcomes (p = 0.0018) and showed prognostic value (AUC = 0.66, p = 0.03). IL-1β levels were higher in the unfavorable group (p = 0.0015). LDA combinatory analysis resulted a fair prognostic accuracy with canonical equation = 0.775[suPAR] + 0.667[IL1-β] (AUC = 0.77, OR 0.296, sensitivity 93.1%, specificity 53.1%, p = 0.0007). No correlation was found between suPAR and CRP or infection status. Elevated suPAR levels in acute brain injury patients were associated with poorer outcomes, highlighting suPAR's potential as a prognostic biomarker across different brain injury types. Combining IL-1β with suPAR improved prognostic accuracy, supporting a multimodal biomarker approach for predicting outcomes.
Collapse
Affiliation(s)
- Antti Sajanti
- Neurocenter, Department of Neurosurgery, Turku University Hospital and University of Turku, P.O. Box 52, Hämeentie 11, FI-20521, Turku, Finland
| | - Santtu Hellström
- Neurocenter, Department of Neurosurgery, Turku University Hospital and University of Turku, P.O. Box 52, Hämeentie 11, FI-20521, Turku, Finland
| | - Carolyn Bennett
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, Chicago, IL, 60637, USA
| | - Abhinav Srinath
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, Chicago, IL, 60637, USA
| | - Aditya Jhaveri
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, Chicago, IL, 60637, USA
| | - Ying Cao
- Department of Radiation Oncology, Kansas University Medical Center, Kansas City, KS, 66160, USA
| | - Riikka Takala
- Perioperative Services, Intensive Care and Pain Medicine, Turku University Hospital and University of Turku, POB 52, 20521, Turku, Finland
| | - Janek Frantzén
- Neurocenter, Department of Neurosurgery, Turku University Hospital and University of Turku, P.O. Box 52, Hämeentie 11, FI-20521, Turku, Finland
| | - Fredrika Koskimäki
- Neurocenter, Acute Stroke Unit, Turku University Hospital, P.O. Box 52, FI-20521, Turku, Finland
| | - Johannes Falter
- Department of Neurosurgery, University Medical Center of Regensburg, Regensburg, Germany
| | - Seán B Lyne
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tomi Rantamäki
- Laboratory of Neurotherapeutics, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences and Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jussi P Posti
- Neurocenter, Department of Neurosurgery, Turku University Hospital and University of Turku, P.O. Box 52, Hämeentie 11, FI-20521, Turku, Finland
| | - Susanna Roine
- Neurocenter, Acute Stroke Unit, Turku University Hospital, P.O. Box 52, FI-20521, Turku, Finland
| | - Miro Jänkälä
- Department of Neurosurgery, Oulu University Hospital, Box 25, 90029 OYS, Oulu, Finland
| | - Jukka Puolitaival
- Department of Neurosurgery, Oulu University Hospital, Box 25, 90029 OYS, Oulu, Finland
| | - Sulo Kolehmainen
- Neuroscience Center, HiLIFE, University of Helsinki, Box 63, 00014, Helsinki, Finland
| | - Romuald Girard
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, Chicago, IL, 60637, USA
| | - Melissa Rahi
- Neurocenter, Department of Neurosurgery, Turku University Hospital and University of Turku, P.O. Box 52, Hämeentie 11, FI-20521, Turku, Finland
| | - Jaakko Rinne
- Neurocenter, Department of Neurosurgery, Turku University Hospital and University of Turku, P.O. Box 52, Hämeentie 11, FI-20521, Turku, Finland
| | - Eero Castrén
- Neuroscience Center, HiLIFE, University of Helsinki, Box 63, 00014, Helsinki, Finland
| | - Janne Koskimäki
- Neurocenter, Department of Neurosurgery, Turku University Hospital and University of Turku, P.O. Box 52, Hämeentie 11, FI-20521, Turku, Finland.
- Department of Neurosurgery, Oulu University Hospital, Box 25, 90029 OYS, Oulu, Finland.
- Neuroscience Center, HiLIFE, University of Helsinki, Box 63, 00014, Helsinki, Finland.
| |
Collapse
|
2
|
Chen Y, Gue Y, McDowell G, Gorog DA, Lip GYH. Impaired endogenous fibrinolysis status: a potential prognostic predictor in ischemic stroke. Minerva Med 2024; 115:364-379. [PMID: 38727704 DOI: 10.23736/s0026-4806.24.09133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Stroke confers a severe global healthcare burden, hence exploring risk factors for stroke occurrence and prognosis is important for stroke prevention and post-stroke management strategies. Endogenous fibrinolysis is a spontaneous physiological protective mechanism that dissolves thrombus to maintain vascular patency. Recently, impaired endogenous fibrinolysis has been considered as a potential novel cardiovascular risk factor, but its link with ischaemic stroke in the past has been underappreciated. In this review, we summarize the latest mechanisms of endogenous fibrinolysis, review the current evidence and data on endogenous fibrinolysis in ischemic stroke. It includes the structure of thrombus in ischemic stroke patients, the effect of fibrin structure on the endogenous fibrinolytic efficiency, and the association between intravenous thrombolytic therapy and endogenous fibrinolysis in ischemic stroke. It also includes the single factors (tissue plasminogen activator, urokinase plasminogen activator, plasminogen activator inhibitor-1, thrombin activatable fibrinolysis inhibitor, complement component 3, complement component 5, alpha-2-antiplasmin, plasmin-alpha-2-antiplasmin complex, and lipoprotein[a]), and the global assessments of endogenous fibrinolysis status (thromboelastography, rotational thromboelastometry, and global thrombosis test), and their potential as predictors to identify occurrence or unfavorable functional outcomes of ischemic stroke. All of these assessments present advantages and limitations, and we suggest that the global thrombosis test may be more appropriate for detecting impaired endogenous fibrinolysis status in ischemic stroke patients.
Collapse
Affiliation(s)
- Yang Chen
- Liverpool Center for Cardiovascular Science at University of Liverpool, Liverpool John Moores University, Liverpool Heart and Chest Hospital, Liverpool, UK
| | - Ying Gue
- Liverpool Center for Cardiovascular Science at University of Liverpool, Liverpool John Moores University, Liverpool Heart and Chest Hospital, Liverpool, UK -
| | - Garry McDowell
- Liverpool Center for Cardiovascular Science at University of Liverpool, Liverpool John Moores University, Liverpool Heart and Chest Hospital, Liverpool, UK
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Diana A Gorog
- School of Life and Medical Sciences, Postgraduate Medical School, University of Hertfordshire, Hatfield, UK
- Faculty of Medicine, National Heart and Lung Institute, Imperial College, London, UK
| | - Gregory Y H Lip
- Liverpool Center for Cardiovascular Science at University of Liverpool, Liverpool John Moores University, Liverpool Heart and Chest Hospital, Liverpool, UK
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
3
|
Schmidt TP, Albanna W, Weiss M, Veldeman M, Conzen C, Nikoubashman O, Blume C, Kluger DS, Clusmann H, Loosen SH, Schubert GA. The Role of Soluble Urokinase Plasminogen Activator Receptor (suPAR) in the Context of Aneurysmal Subarachnoid Hemorrhage (aSAH)—A Prospective Observational Study. Front Neurol 2022; 13:841024. [PMID: 35359651 PMCID: PMC8960720 DOI: 10.3389/fneur.2022.841024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/31/2022] [Indexed: 01/04/2023] Open
Abstract
Objective Outcome after aneurysmal subarachnoid hemorrhage (aSAH) is highly variable and largely determined by early brain injury and delayed cerebral ischemia (DCI). Soluble urokinase plasminogen activator receptor (suPAR) represents a promising inflammatory marker which has previously been associated with outcome in traumatic brain injury and stroke patients. However, its relevance in the context of inflammatory changes after aSAH is unclear. Here, we aimed to characterize the role of circulating suPAR in both serum and cerebrospinal fluid (CSF) as a novel biomarker for aSAH patients. Methods A total of 36 aSAH patients, 10 control patients with unruptured abdominal aneurysm and 32 healthy volunteers were included for analysis. suPAR was analyzed on the day of admission in all patients. In aSAH patients, suPAR was also determined on the day of DCI and the respective time frame in asymptomatic patients. One- and two-sample t-tests were used for simple difference comparisons within and between groups. Regression analysis was used to assess the influence of suPAR levels on outcome in terms of modified Rankin score. Results Significantly elevated suPAR serum levels (suPAR-SL) on admission were found for aSAH patients compared to healthy controls, but not compared to vascular control patients. Disease severity as documented according to Hunt and Hess grade and modified Fisher grade was associated with higher suPAR CSF levels (suPAR-CSFL). In aSAH patients, suPAR-SL increased daily by 4%, while suPAR-CSFL showed a significantly faster daily increase by an average of 22.5% per day. Each increase of the suPAR-SL by 1 ng/ml more than tripled the odds of developing DCI (OR = 3.06). While admission suPAR-CSFL was not predictive of DCI, we observed a significant correlation with modified Rankin's degree of disability at discharge. Conclusion Elevated suPAR serum level on admission as a biomarker for early inflammation after aSAH is associated with an increased risk of DCI. Elevated suPAR-CSFL levels correlate with a higher degree of disability at discharge. These distinct relations and the observation of a continuous increase over time affirm the role of inflammation in aSAH and require further study.
Collapse
Affiliation(s)
- Tobias P. Schmidt
- Department of Neurosurgery, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Hospital, Aachen, Germany
- *Correspondence: Tobias P. Schmidt
| | - Walid Albanna
- Department of Neurosurgery, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Hospital, Aachen, Germany
| | - Miriam Weiss
- Department of Neurosurgery, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Hospital, Aachen, Germany
| | - Michael Veldeman
- Department of Neurosurgery, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Hospital, Aachen, Germany
| | - Catharina Conzen
- Department of Neurosurgery, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Hospital, Aachen, Germany
| | - Omid Nikoubashman
- Clinic for Diagnostic and Interventional Neuroradiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Christian Blume
- Department of Neurosurgery, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Hospital, Aachen, Germany
| | - Daniel S. Kluger
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany
| | - Hans Clusmann
- Department of Neurosurgery, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Hospital, Aachen, Germany
| | - Sven H. Loosen
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gerrit A. Schubert
- Department of Neurosurgery, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Hospital, Aachen, Germany
- Department of Neurosurgery, Kantonsspital Aarau, Aarau, Switzerland
- Gerrit A. Schubert
| |
Collapse
|
4
|
Różański D, Szlufik S, Tomasiuk R, Milanowski Ł, Figura M, Saramak K, Myrcha P, Koziorowski D. Soluble Urokinase Plasminogen Activator Receptor Levels Correlation with Other Inflammatory Factors in Prognosis of Disability and Death in Patients with Ischemic Stroke. Brain Sci 2021; 12:39. [PMID: 35053782 PMCID: PMC8774014 DOI: 10.3390/brainsci12010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/18/2021] [Accepted: 12/24/2021] [Indexed: 12/03/2022] Open
Abstract
Soluble urokinase plasminogen activator receptor (suPAR) is an inflammatory biomarker elevated in cardiovascular diseases. The aim of this 3-year follow-up prospective study was to evaluate suPAR levels in patients with a first ischemic stroke in correlation with CRP, PCT, NT-proCNP and endothelin 1-21 and to investigate the impact of suPAR on the outcome. Fifty-one patients (mean age 73.7+ = 11.9 years, 26 female and 25 male) were included. Samples were collected on the first (suPAR 1), third (suPAR 3) and seventh days after stroke onset (suPAR 7). Plasma samples were analyzed using ELISA. A phone interview was conducted to collect follow-up information after 24 and 36 months (modified Rankin Scale, mRS). A positive correlation between suPAR levels and other inflammatory biomarkers (except endothelin 3) was observed. A positive correlation between suPAR 3 and mRS score at 24 months was observed (p = 0.042). The logistic regression model revealed no significant effect of suPAR on death occurrence in the first 24 months: suPAR 1 (p = 0.8794), suPAR 3 (p = 0.2757), and suPAR 7 (p = 0.3652). The suPAR level is a potential inflammatory marker in ischemic stroke, and there is a correlation with other markers. There is no major impact on mortality. However, the suPAR level is associated with a degree of disability or dependence in daily activities 2 years after a stroke.
Collapse
Affiliation(s)
- Dorota Różański
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, 02-091 Warsaw, Poland; (Ł.M.); (M.F.); (K.S.); (D.K.)
| | - Stanisław Szlufik
- Faculty of Medical Sciences and Health Sciences, Kazimierz Pulaski University of Technology and Humanities, 26-600 Radom, Poland; (S.S.); (R.T.)
| | - Ryszard Tomasiuk
- Faculty of Medical Sciences and Health Sciences, Kazimierz Pulaski University of Technology and Humanities, 26-600 Radom, Poland; (S.S.); (R.T.)
| | - Łukasz Milanowski
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, 02-091 Warsaw, Poland; (Ł.M.); (M.F.); (K.S.); (D.K.)
| | - Monika Figura
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, 02-091 Warsaw, Poland; (Ł.M.); (M.F.); (K.S.); (D.K.)
| | - Kamila Saramak
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, 02-091 Warsaw, Poland; (Ł.M.); (M.F.); (K.S.); (D.K.)
| | - Piotr Myrcha
- Department of General and Vascular Surgery, Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Department of General, Vascular and Oncological Surgery, Masovian Brodnowski Hospital, 03-242 Warsaw, Poland
| | - Dariusz Koziorowski
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, 02-091 Warsaw, Poland; (Ł.M.); (M.F.); (K.S.); (D.K.)
| |
Collapse
|
5
|
Bao H, Gao HR, Pan ML, Zhao L, Sun HB. Comparative study on the efficacy and safety of alteplase and urokinase in the treatment of acute cerebral infarction. Technol Health Care 2021; 29:85-90. [PMID: 32925123 DOI: 10.3233/thc-202382] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Acute cerebral infarction (ACI) is a common cerebrovascular disease in clinical practice. OBJECTIVE The present study aims to investigate the efficacy and safety of alteplase and urokinase in treating ACI. METHODS A total of 96 patients with ACI, who were treated with alteplase and urokinase, were selected as the main subjects. Among these patients, 45 patients with ultra-early acute cerebral infarction, who received intravenous thrombolysis with RT-PA (alteplase), were included in the treatment group, while 51 patients with acute cerebral infarction, who were treated with urokinase in the same time period, were included in the control group. RESULTS The National Institute of Health Stroke Scale (NIHSS) scores were significantly lower in the treatment group and control group (P< 0.05) at two hours, seven days and 14 days after thrombolysis, when compared to those before thrombolysis. The bleeding rate was significantly lower in the control group, when compared to the treatment group (P< 0.05). CONCLUSION The intravenous thrombolysis with urokinase or alteplase in the ultra-early stage of acute cerebral infarction can reduce the neurological injury symptoms and effectively improve the prognosis of patients with stroke. Urokinase is lower in risk of bleeding, but better in safety, when compared to alteplase.
Collapse
Affiliation(s)
- Hua Bao
- Department of Neurology, Hulun Buir People's Hospital, Hulun Buir, Inner Mongolia, China
| | - Hao-Ran Gao
- Department of Neurology, Hulun Buir People's Hospital, Hulun Buir, Inner Mongolia, China
| | - Min-Lu Pan
- Department of Neurology, Hulun Buir People's Hospital, Hulun Buir, Inner Mongolia, China
| | - Lei Zhao
- Department of Rehabilitation Medicine, Hulun Buir People's Hospital, Hulun Buir, Inner Mongolia, China
| | - Hai-Bin Sun
- Department of Rehabilitation Medicine, Hulun Buir People's Hospital, Hulun Buir, Inner Mongolia, China
| |
Collapse
|
6
|
Onatsu J, Vanninen R, JÄkÄlÄ P, Mustonen P, Pulkki K, Korhonen M, Hedman M, HÖglund K, Blennow K, Zetterberg H, Herukka SK, Taina M. Tau, S100B and NSE as Blood Biomarkers in Acute Cerebrovascular Events. In Vivo 2021; 34:2577-2586. [PMID: 32871787 DOI: 10.21873/invivo.12075] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM We aimed to analyze the diagnostic value of total tau (T-tau), S-100 calcium-binding protein B (S100B) and neuron-specific enolase (NSE) as blood-based biomarkers in acute ischemic stroke (AIS) or transient ischemic attack (TIA), and their correlation with symptom severity, infarct size, etiology and outcome. PATIENTS AND METHODS A total of 102 patients with stroke and 35 with TIA were analyzed. Subacute (63.8±50.1 h) plasma T-tau was measured with the single-molecule array (Simoa) method and NSE and S100B were evaluated for comparison. We evaluated biomarkers associations with: (i) diagnosis of AIS or TIA, (ii) cerebral infarction volume in the brain computed tomography, (iii) stroke etiology, (iv) clinical stroke severity and (iv) functional outcome after three months. RESULTS T-tau was higher in patients with stroke [1.0 pg/ml (IQR=0.3-2.2)] than with TIA [0.5 pg/ml (IQR=0.2-1.0), p=0.02]. The levels of S100B were also increased in stroke [0.082 μg/l (IQR=0.049-0.157)] patients compared to TIA patients [0.045 μg/l (IQR=0.03-0.073), p<0.001]. However, when the results were adjusted for confounders, significance was lost. Serum levels of NSE among patients with AIS [11.85 μg/l (IQR=9.30-16.14)] compared to those with TIA [10.96 μg/l (IQR=7.98-15.33), p=0.30] were equal. T-tau and S100B concentrations significantly correlated with cerebral infarction volume (r=0.412, p<0.001) and (r=0.597, p<0.001), also after corrections (p<0.001). mRS scores at three-month follow-up correlated with T-tau (r=0.248, p=0.016) and S100B concentrations (r=0.205, p=0.045). CONCLUSION For the diagnosis of TIA vs. AIS, blood T-tau and S100B concentrations discriminated only modestly. Additionally, groups were not separable after measuring of T-tau and S100B levels in the blood. T-tau and S100B concentrations correlated with the infarct size, but were not alone predictive for functional outcome at 3 months.
Collapse
Affiliation(s)
- Juha Onatsu
- Department of Neurology, NeuroCenter, Kuopio University Hospital, Kuopio, Finland .,Unit of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Ritva Vanninen
- Department of Clinical Radiology, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland.,Department of Clinical Radiology, University of Eastern Finland, Kuopio, Finland
| | - Pekka JÄkÄlÄ
- Department of Neurology, NeuroCenter, Kuopio University Hospital, Kuopio, Finland.,Unit of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Pirjo Mustonen
- Department of Cardiology, Keski-Suomi Central Hospital, Jyväskylä, Finland
| | - Kari Pulkki
- Department of Clinical Chemistry, University of Eastern Finland, Kuopio, Finland.,Eastern Finland Laboratory Centre, Kuopio, Finland
| | - Miika Korhonen
- Department of Clinical Radiology, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - Marja Hedman
- Department of Clinical Radiology, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - Kina HÖglund
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, U.K.,UK Dementia Research Institute, London, U.K
| | - Sanna-Kaisa Herukka
- Department of Neurology, NeuroCenter, Kuopio University Hospital, Kuopio, Finland.,Unit of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mikko Taina
- Department of Clinical Radiology, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland.,Department of Clinical Radiology, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
7
|
Kadir RRA, Bayraktutan U. Urokinase Plasminogen Activator: A Potential Thrombolytic Agent for Ischaemic Stroke. Cell Mol Neurobiol 2020; 40:347-355. [PMID: 31552559 DOI: 10.1007/s10571-019-00737-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
Abstract
Stroke continues to be one of the leading causes of mortality and morbidity worldwide. Restoration of cerebral blood flow by recombinant plasminogen activator (rtPA) with or without mechanical thrombectomy is considered the most effective therapy for rescuing brain tissue from ischaemic damage, but this requires advanced facilities and highly skilled professionals, entailing high costs, thus in resource-limited contexts urokinase plasminogen activator (uPA) is commonly used as an alternative. This literature review summarises the existing studies relating to the potential clinical application of uPA in ischaemic stroke patients. In translational studies of ischaemic stroke, uPA has been shown to promote nerve regeneration and reduce infarct volume and neurological deficits. Clinical trials employing uPA as a thrombolytic agent have replicated these favourable outcomes and reported consistent increases in recanalisation, functional improvement and cerebral haemorrhage rates, similar to those observed with rtPA. Single-chain zymogen pro-urokinase (pro-uPA) and rtPA appear to be complementary and synergistic in their action, suggesting that their co-administration may improve the efficacy of thrombolysis without affecting the overall risk of haemorrhage. Large clinical trials examining the efficacy of uPA or the combination of pro-uPA and rtPA are desperately required to unravel whether either therapeutic approach may be a safe first-line treatment option for patients with ischaemic stroke. In light of the existing limited data, thrombolysis with uPA appears to be a potential alternative to rtPA-mediated reperfusive treatment due to its beneficial effects on the promotion of revascularisation and nerve regeneration.
Collapse
Affiliation(s)
- Rais Reskiawan A Kadir
- Stroke, Division of Clinical Neuroscience, School of Medicine, The University of Nottingham, Clinical Sciences Building, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Ulvi Bayraktutan
- Stroke, Division of Clinical Neuroscience, School of Medicine, The University of Nottingham, Clinical Sciences Building, Hucknall Road, Nottingham, NG5 1PB, UK.
| |
Collapse
|
8
|
Onatsu J, Vanninen R, Jäkälä P, Mustonen P, Pulkki K, Korhonen M, Hedman M, Zetterberg H, Blennow K, Höglund K, Herukka SK, Taina M. Serum Neurofilament Light Chain Concentration Correlates with Infarct Volume but Not Prognosis in Acute Ischemic Stroke. J Stroke Cerebrovasc Dis 2019; 28:2242-2249. [PMID: 31151840 DOI: 10.1016/j.jstrokecerebrovasdis.2019.05.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/22/2019] [Accepted: 05/06/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND AND PURPOSE We studied serum neurofilaments diagnostic value in patients with acute ischemic stroke (AIS) or TIA and evaluated any correlation with symptom severity, cerebral infarction volume, aetiology, and clinical outcome. METHODS One hundred and thirty-six patients (101 with AIS, and 35 with TIA) were included. Acute-phase serum neurofilament light chain (sNfL) was analyzed with a novel ultrasensitive single molecule array (Simoa). Cerebral infarction volume was measured from brain computed tomography in the subacute phase (>2 days). Stroke aetiology was defined by trial of ORG 10172 in acute stroke treatment classification, severity by National Institute of Health stroke scale (NIHSS) and the degree of disability by the Modified Rankin Scale (mRS) after 90 days. RESULTS sNfL was markedly higher in patients with AIS (89.5 pg/mL [IQR: 44.7-195.3]) than with TIA (25.2 pg/mL [IQR: 14.6-48.0]), P= <.001), also after adjusting for age, NIHSS, and stroke volume (P= .003). In receiver operating characteristic analysis, sNfL concentration greater than or equal to 49 pg/mL proved to be the best cut-off value to differentiate between patients with stroke and those with TIA (sensitivity of 73% and specificity of 80%). sNfL concentration significantly correlated with cerebral infarction volume (r = .413, P= <.001), this association remained significant after adjusting for established predictors (P= .019). Patients with AIS due to cardioembolism or large artery atherosclerosis had the highest sNfL concentrations. NIHSS on admission (r = .343, P = <.001) and mRS scores after 3 months (r = .306, P = .004) correlated with sNfL concentration, however functional outcome 3 months after stroke was not associated with sNfL after adjusting for potential confounders. CONCLUSIONS Cases with stroke were distinguishable from those with TIA following the determination of sNfL in the blood samples. The presence and amount of axonal damage estimated by sNfL correlated with the final cerebral infarction volume but was not predictive of degree of disability.
Collapse
Affiliation(s)
- Juha Onatsu
- Department of Neurology, NeuroCenter, Kuopio University Hospital, Kuopio, Finland.
| | - Ritva Vanninen
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland; Department of Clinical Radiology, University of Eastern Finland, Kuopio Finland
| | - Pekka Jäkälä
- Department of Neurology, NeuroCenter, Kuopio University Hospital, Kuopio, Finland; Unit of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Pirjo Mustonen
- Department of Cardiology, Keski-Suomi Central Hospital, Jyväskylä, Finland
| | - Kari Pulkki
- Department of Clinical Radiology and Clinical Chemistry, Kuopio, Finland; Eastern Finland Laboratory Center and Department of Clinical Chemistry, University of Eastern Finland, Kuopio, Finland
| | - Miika Korhonen
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Marja Hedman
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom; UK Dementia Research Institute, London, United Kingdom
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kina Höglund
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Sanna-Kaisa Herukka
- Department of Neurology, NeuroCenter, Kuopio University Hospital, Kuopio, Finland; Unit of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mikko Taina
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
9
|
Thiebaut AM, Gauberti M, Ali C, Martinez De Lizarrondo S, Vivien D, Yepes M, Roussel BD. The role of plasminogen activators in stroke treatment: fibrinolysis and beyond. Lancet Neurol 2018; 17:1121-1132. [PMID: 30507392 DOI: 10.1016/s1474-4422(18)30323-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/25/2018] [Accepted: 08/28/2018] [Indexed: 12/20/2022]
Abstract
Although recent technical advances in thrombectomy have revolutionised acute stroke treatment, prevalence of disability and death related to stroke remain high. Therefore, plasminogen activators-eukaryotic, bacterial, or engineered forms that can promote fibrinolysis by converting plasminogen into active plasmin and facilitate clot breakdown-are still commonly used in the acute treatment of ischaemic stroke. Hence, plasminogen activators have become a crucial area for clinical investigation for their ability to recanalise occluded arteries in ischaemic stroke and to accelerate haematoma clearance in haemorrhagic stroke. However, inconsistent results, insufficient evidence of efficacy, or reports of side-effects in trial settings might reduce the use of plasminogen activators in clinical practice. Additionally, the mechanism of action for plasminogen activators could extend beyond the vessel lumen and involve plasminogen-independent processes, which would suggest that plasminogen activators have also non-fibrinolytic roles. Understanding the complex mechanisms of action of plasminogen activators can guide future directions for therapeutic interventions in patients with stroke.
Collapse
Affiliation(s)
- Audrey M Thiebaut
- Normandie Université, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Cyceron, Caen, France
| | - Maxime Gauberti
- Normandie Université, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Cyceron, Caen, France
| | - Carine Ali
- Normandie Université, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Cyceron, Caen, France
| | - Sara Martinez De Lizarrondo
- Normandie Université, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Cyceron, Caen, France
| | - Denis Vivien
- Normandie Université, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Cyceron, Caen, France; Clinical Research Department, University Hospital Caen-Normandy, Caen, France
| | - Manuel Yepes
- Department of Neurology and Center for Neurodegenerative Disease, Emory University School of Medicine, Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, and Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA
| | - Benoit D Roussel
- Normandie Université, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Cyceron, Caen, France.
| |
Collapse
|