1
|
Muntean R, Brîndușoiu M, Buzdugan D, Nemeș NS, Kellenberger A, Uțu ID. Characteristics of Hydroxyapatite-Modified Coatings Based on TiO 2 Obtained by Plasma Electrolytic Oxidation and Electrophoretic Deposition. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16041410. [PMID: 36837041 PMCID: PMC9965645 DOI: 10.3390/ma16041410] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 06/12/2023]
Abstract
In order to modify the surface of light metals and alloys, plasma electrolytic oxidation (PEO) is a useful electrochemical technique. During the oxidation process, by applying a positive high voltage greater than the dielectric breakdown value of the oxide layer, the formation of a ceramic film onto the substrate material is enabled. The resulting surface presents hardness, chemical stability, biocompatibility, and increased corrosion wear resistance. The current study aims to investigate the corrosion resistance and tribological properties of PEO-modified coatings on titanium substrates produced by applying either direct or pulsed current in a silicate-alkaline electrolyte. In this way, a uniform TiO2 layer is formed, and subsequently, electrophoretic deposition of hydroxyapatite particles (HAP) is performed. The morpho-structural characteristics and chemical composition of the resulting coatings are investigated using scanning electron microscopy combined with energy dispersive spectroscopy analysis and X-ray diffraction. Dry sliding wear testing of the TiO2 and HAP-modified TiO2 coatings were carried out using a ball-on-disc configuration, while the corrosion resistance was electrochemically evaluated at 37 °C in a Ringer's solution. The corrosion rates of the investigated samples decreased significantly, up to two orders of magnitude, when the PEO treatment was applied, while the wear rate was 50% lower compared to the untreated titanium substrate.
Collapse
Affiliation(s)
- Roxana Muntean
- Department of Materials and Manufacturing Engineering, Politehnica University Timișoara, Piața Victoriei 2, 300006 Timișoara, Romania
| | - Mihai Brîndușoiu
- Department of Materials and Manufacturing Engineering, Politehnica University Timișoara, Piața Victoriei 2, 300006 Timișoara, Romania
| | - Dragoș Buzdugan
- Department of Materials and Manufacturing Engineering, Politehnica University Timișoara, Piața Victoriei 2, 300006 Timișoara, Romania
| | - Nicoleta Sorina Nemeș
- Research Institute for Renewable Energy—ICER, Politehnica University Timișoara, Piața Victoriei 2, 300006 Timișoara, Romania
| | - Andrea Kellenberger
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timișoara, Piața Victoriei No. 2, 300006 Timișoara, Romania
| | - Ion Dragoș Uțu
- Department of Materials and Manufacturing Engineering, Politehnica University Timișoara, Piața Victoriei 2, 300006 Timișoara, Romania
| |
Collapse
|
2
|
Karlova P, Serdechnova M, Blawert C, Lu X, Mohedano M, Tolnai D, Zeller-Plumhoff B, Zheludkevich ML. Comparison of 2D and 3D Plasma Electrolytic Oxidation (PEO)-Based Coating Porosity Data Obtained by X-ray Tomography Rendering and a Classical Metallographic Approach. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6315. [PMID: 36143626 PMCID: PMC9502706 DOI: 10.3390/ma15186315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
In this work, the porosity of plasma electrolytic oxidation (PEO)-based coatings on Al- and Mg-based substrates was studied by two imaging techniques-namely, SEM and computer microtomography. Two approaches for porosity determination were chosen; relatively simple and fast SEM surface and cross-sectional imaging was compared with X-ray micro computed tomography (microCT) rendering. Differences between 2D and 3D porosity were demonstrated and explained. A more compact PEO coating was found on the Al substrate, with a lower porosity compared to Mg substrates under the same processing parameters. Furthermore, huge pore clusters were detected with microCT. Overall, 2D surface porosity calculations did not show sufficient accuracy for them to become the recommended method for the exact evaluation of the porosity of PEO coatings; microCT is a more appropriate method for porosity evaluation compared to SEM imaging. Moreover, the advantage of 3D microCT images clearly lies in the detection of closed and open porosity, which are important for coating properties.
Collapse
Affiliation(s)
- Polina Karlova
- Institute of Surface Science, Helmholtz-Zentrum Hereon, Max-Planck Strasse 1, 21502 Geesthacht, Germany
| | - Maria Serdechnova
- Institute of Surface Science, Helmholtz-Zentrum Hereon, Max-Planck Strasse 1, 21502 Geesthacht, Germany
| | - Carsten Blawert
- Institute of Surface Science, Helmholtz-Zentrum Hereon, Max-Planck Strasse 1, 21502 Geesthacht, Germany
| | - Xiaopeng Lu
- Shenyang National Laboratory for Materials Science, Northeastern University, 3-11 Wenhua Road, Shenyang 110819, China
| | - Marta Mohedano
- Departamento de Ingeniería Química y de Materiales, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Domonkos Tolnai
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck Strasse 1, 21502 Geesthacht, Germany
| | - Berit Zeller-Plumhoff
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck Strasse 1, 21502 Geesthacht, Germany
| | - Mikhail L. Zheludkevich
- Institute of Surface Science, Helmholtz-Zentrum Hereon, Max-Planck Strasse 1, 21502 Geesthacht, Germany
- Institute of Materials Science, Faculty of Engineering, Kiel University, Kaiserstrasse 2, 24143 Kiel, Germany
| |
Collapse
|
3
|
Senoo M, Hasuike A, Yamamoto T, Ozawa Y, Watanabe N, Furuhata M, Sato S. Comparison of Macro-and Micro-porosity of a Titanium Mesh for Guided Bone Regeneration: An In Vivo Experimental Study. In Vivo 2022; 36:76-85. [PMID: 34972702 DOI: 10.21873/invivo.12678] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/09/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIM Guided bone regeneration (GBR) is one of the surgical methods used for vertical ridge augmentation prior to dental implant placements. Titanium meshes have been used for osteogenic space maintenance in GBR sites by clinicians. We aimed to compare the influence of micropores and macropores in a titanium mesh on bone regeneration in a rat calvarial vertical GBR model. MATERIALS AND METHODS The calvaria of nine rats were exposed, and plastic cylinders were set bilaterally. Eighteen surgical sites were randomly allocated into three groups according to the materials of titanium lid and bone substitutes: microporous titanium lid+deproteinized bovine bone mineral (DBBM), macroporous titanium lid +DBBM, microporous titanium lid+carbonate apatite. Newly generated bone inside the cylinders was evaluated using micro-computed tomography (micro-CT). Furthermore, bone regeneration and angiogenesis were evaluated histologically at 12 weeks. RESULTS Quantitative volumetric analyses using micro-CT showed a gradual increase in bone volume inside the cylinders in all three groups. Histological observation confirmed vigorous bone regeneration in the microporous groups compared to that in the macroporous group. In the upper part of the cylinders, soft tissue invaded the GBR site by passing through the pores of the macroporous mesh. The blood vessels in the upper part of the cylinders were smaller in the microporous groups than in the macroporous group. There was no difference in bone formation between cylinders filled with DBBM or carbonate apatite. CONCLUSION Microvasculature penetrates 50-μm diameter micropores and accelerates bone formation inside the cylinder, which was set on rat calvaria. The microporous titanium mesh can facilitate angiogenesis from both the dura mater and periosteal in vertical ridge augmentation. Our data showed superiority of microporous titanium vascular permeability and osteoconductivity, supporting bone growth.
Collapse
Affiliation(s)
- Motoki Senoo
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry, Tokyo, Japan.,Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan
| | - Akira Hasuike
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan; .,Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Takanobu Yamamoto
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan
| | - Yasumasa Ozawa
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan
| | - Norihisa Watanabe
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan
| | - Mitsuaki Furuhata
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry, Tokyo, Japan.,Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan
| | - Shuichi Sato
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan.,Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
4
|
Multifunctional natural polymer-based metallic implant surface modifications. Biointerphases 2021; 16:020803. [PMID: 33906356 DOI: 10.1116/6.0000876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
High energy traumas could cause critical damage to bone, which will require permanent implants to recover while functionally integrating with the host bone. Critical sized bone defects necessitate the use of bioactive metallic implants. Because of bioinertness, various methods involving surface modifications such as surface treatments, the development of novel alloys, bioceramic/bioglass coatings, and biofunctional molecule grafting have been utilized to effectively integrate metallic implants with a living bone. However, the applications of these methods demonstrated a need for an interphase layer improving bone-making to overcome two major risk factors: aseptic loosening and peri-implantitis. To accomplish a biologically functional bridge with the host to prevent loosening, regenerative cues, osteoimmunomodulatory modifications, and electrochemically resistant layers against corrosion appeared as imperative reinforcements. In addition, interphases carrying antibacterial cargo were proven to be successful against peri-implantitis. In the literature, metallic implant coatings employing natural polymers as the main matrix were presented as bioactive interphases, enabling rapid, robust, and functional osseointegration with the host bone. However, a comprehensive review of natural polymer coatings, bridging and grafting on metallic implants, and their activities has not been reported. In this review, state-of-the-art studies on multifunctional natural polymer-based implant coatings effectively utilized as a bone tissue engineering (BTE) modality are depicted. Protein-based, polysaccharide-based coatings and their combinations to achieve better osseointegration via the formation of an extracellular matrix-like (ECM-like) interphase with gap filling and corrosion resistance abilities are discussed in detail. The hypotheses and results of these studies are examined and criticized, and the potential future prospects of multifunctional coatings are also proposed as final remarks.
Collapse
|
5
|
Exploring the Biomaterial-Induced Secretome: Physical Bone Substitute Characteristics Influence the Cytokine Expression of Macrophages. Int J Mol Sci 2021; 22:ijms22094442. [PMID: 33923149 PMCID: PMC8123010 DOI: 10.3390/ijms22094442] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
In addition to their chemical composition various physical properties of synthetic bone substitute materials have been shown to influence their regenerative potential and to influence the expression of cytokines produced by monocytes, the key cell-type responsible for tissue reaction to biomaterials in vivo. In the present study both the regenerative potential and the inflammatory response to five bone substitute materials all based on β-tricalcium phosphate (β-TCP), but which differed in their physical characteristics (i.e., granule size, granule shape and porosity) were analyzed for their effects on monocyte cytokine expression. To determine the effects of the physical characteristics of the different materials, the proliferation of primary human osteoblasts growing on the materials was analyzed. To determine the immunogenic effects of the different materials on human peripheral blood monocytes, cells cultured on the materials were evaluated for the expression of 14 pro- and anti-inflammatory cytokines, i.e., IL-6, IL-10, IL-1β, VEGF, RANTES, IL-12p40, I-CAM, IL-4, V-CAM, TNF-α, GM-CSF, MIP-1α, Il-8 and MCP-1 using a Bio-Plex® Multiplex System. The granular shape of bone substitutes showed a significant influence on the osteoblast proliferation. Moreover, smaller pore sizes, round granular shape and larger granule size increased the expression of GM-CSF, RANTES, IL-10 and IL-12 by monocytes, while polygonal shape and the larger pore sizes increased the expression of V-CAM. The physical characteristics of a bone biomaterial can influence the proliferation rate of osteoblasts and has an influence on the cytokine gene expression of monocytes in vitro. These results indicate that the physical structure of a biomaterial has a significant effect of how cells interact with the material. Thus, specific characteristics of a material may strongly affect the regenerative potential in vivo.
Collapse
|
6
|
López-Valverde N, Macedo-de-Sousa B, López-Valverde A, Ramírez JM. Effectiveness of Antibacterial Surfaces in Osseointegration of Titanium Dental Implants: A Systematic Review. Antibiotics (Basel) 2021; 10:antibiotics10040360. [PMID: 33800702 PMCID: PMC8066819 DOI: 10.3390/antibiotics10040360] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/15/2022] Open
Abstract
Titanium (Ti) dental implant failure as a result of infection has been established at 40%, being regarded as one of the most habitual and untreatable problems. Current research is focused on the design of new surfaces that can generate long-lasting, infection-free osseointegration. The purpose of our study was to assess studies on Ti implants coated with different antibacterial surfaces, assessing their osseointegration. The PubMed, Web of Science and Scopus databases were electronically searched for in vivo studies up to December 2020, selecting six studies that met the inclusion criteria. The quality of the selected studies was assessed using the ARRIVE (Animal Research: Reporting of In Vivo Experiments) criteria and Systematic Review Center for Laboratory animal Experimentation's (SYRCLE's) risk of bias tool. Although all the included studies, proved greater osseointegration capacity of the different antibacterial surfaces studied, the methodological quality and experimental models used in some of them make it difficult to draw predictable conclusions. Because of the foregoing, we recommend caution when interpreting the results obtained.
Collapse
Affiliation(s)
- Nansi López-Valverde
- Department of Surgery, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain;
| | - Bruno Macedo-de-Sousa
- Institute for Occlusion and Orofacial Pain, Faculty of Medicine, University of Coimbra, Polo I-Edifício Central Rua Larga, 3004-504 Coimbra, Portugal;
| | - Antonio López-Valverde
- Department of Surgery, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain;
- Correspondence:
| | - Juan Manuel Ramírez
- Department of Morphological Sciences, University of Cordoba, Avenida Menéndez Pidal S/N, 14071 Cordoba, Spain;
| |
Collapse
|
7
|
Hartjen P, Wegner N, Ahmadi P, Matthies L, Nada O, Fuest S, Yan M, Knipfer C, Gosau M, Walther F, Smeets R. Toward Tailoring the Degradation Rate of Magnesium-Based Biomaterials for Various Medical Applications: Assessing Corrosion, Cytocompatibility and Immunological Effects. Int J Mol Sci 2021; 22:ijms22020971. [PMID: 33478090 PMCID: PMC7835942 DOI: 10.3390/ijms22020971] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
Magnesium (Mg)-based biomaterials hold considerable promise for applications in regenerative medicine. However, the degradation of Mg needs to be reduced to control toxicity caused by its rapid natural corrosion. In the process of developing new Mg alloys with various surface modifications, an efficient assessment of the relevant properties is essential. In the present study, a WE43 Mg alloy with a plasma electrolytic oxidation (PEO)-generated surface was investigated. Surface microstructure, hydrogen gas evolution in immersion tests and cytocompatibility were assessed. In addition, a novel in vitro immunological test using primary human lymphocytes was introduced. On PEO-treated WE43, a larger number of pores and microcracks, as well as increased roughness, were observed compared to untreated WE43. Hydrogen gas evolution after two weeks was reduced by 40.7% through PEO treatment, indicating a significantly reduced corrosion rate. In contrast to untreated WE43, PEO-treated WE43 exhibited excellent cytocompatibility. After incubation for three days, untreated WE43 killed over 90% of lymphocytes while more than 80% of the cells were still vital after incubation with the PEO-treated WE43. PEO-treated WE43 slightly stimulated the activation, proliferation and toxin (perforin and granzyme B) expression of CD8+ T cells. This study demonstrates that the combined assessment of corrosion, cytocompatibility and immunological effects on primary human lymphocytes provide a comprehensive and effective procedure for characterizing Mg variants with tailorable degradation and other features. PEO-treated WE43 is a promising candidate for further development as a degradable biomaterial.
Collapse
Affiliation(s)
- Philip Hartjen
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany; (L.M.); (M.Y.); (C.K.); (M.G.); (R.S.)
- Correspondence:
| | - Nils Wegner
- Department of Materials Test Engineering (WPT), TU Dortmund University, Baroper Str. 303, D-44227 Dortmund, Germany; (N.W.); (F.W.)
| | - Parimah Ahmadi
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany;
| | - Levi Matthies
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany; (L.M.); (M.Y.); (C.K.); (M.G.); (R.S.)
| | - Ola Nada
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, D-20246 Hamburg, Germany; (O.N.); (S.F.)
| | - Sandra Fuest
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, D-20246 Hamburg, Germany; (O.N.); (S.F.)
| | - Ming Yan
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany; (L.M.); (M.Y.); (C.K.); (M.G.); (R.S.)
| | - Christian Knipfer
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany; (L.M.); (M.Y.); (C.K.); (M.G.); (R.S.)
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany; (L.M.); (M.Y.); (C.K.); (M.G.); (R.S.)
| | - Frank Walther
- Department of Materials Test Engineering (WPT), TU Dortmund University, Baroper Str. 303, D-44227 Dortmund, Germany; (N.W.); (F.W.)
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany; (L.M.); (M.Y.); (C.K.); (M.G.); (R.S.)
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, D-20246 Hamburg, Germany; (O.N.); (S.F.)
| |
Collapse
|
8
|
Kopp A, Smeets R, Gosau M, Friedrich RE, Fuest S, Behbahani M, Barbeck M, Rutkowski R, Burg S, Kluwe L, Henningsen A. Production and Characterization of Porous Fibroin Scaffolds for Regenerative Medical Application. In Vivo 2019; 33:757-762. [PMID: 31028194 PMCID: PMC6559917 DOI: 10.21873/invivo.11536] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIM Silk is a natural biomaterial with several superior features for applications in regenerative medicine. In the present study an optimized process for manufacturing porous scaffolds out of the silk protein fibroin was developed. MATERIALS AND METHODS The silk protein fibroin was dissolved in Ajisawa's reagent and the resulting fibroin solution was used to produce scaffolds by means of freeze-thawing cycling. Porosity, pressure and stab resistance as well as degradation behavior were assessed in order to characterize the physical properties of the resulting scaffolds. RESULTS The resulting sponge-like fibroin scaffolds were highly porous while the porosity correlated inversely with the concentration of the starting fibroin solution. Increased initial fibroin concentrations of the scaffolds resulted in increased compressive and cannulation resistance. The majority of the fibroin scaffolds were digested by 1 mg/ml protease XIV in 3 weeks, indicating their biodegradability. CONCLUSION The production of scaffolds made of varying fibroin concentrations by means of freeze-thawing, following dissolution using Ajisawa's reagent, provides a simple and straightforward strategy for adjusting the physical and chemical properties of fibroin scaffolds for various medical applications.
Collapse
Affiliation(s)
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Reinhard E Friedrich
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Mehdi Behbahani
- University of Applied Sciences Aachen, Campus Jülich, Jülich, Germany
| | - Mike Barbeck
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rico Rutkowski
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon Burg
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lan Kluwe
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anders Henningsen
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Oral and Maxillofacial Surgery, German Armed Forces Hospital, Hamburg, Germany
| |
Collapse
|
9
|
Jung O, Becker JP, Smeets R, Gosau M, Becker G, Kahl-Nieke B, Jung AK, Heiland M, Kopp A, Barbeck M, Koehne T. Surface Characteristics of Esthetic Nickel⁻Titanium and Beta-Titanium Orthodontic Archwires Produced by Plasma Electrolytic Oxidation (PEO)-Primary Results. MATERIALS 2019; 12:ma12091403. [PMID: 31052150 PMCID: PMC6539843 DOI: 10.3390/ma12091403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 11/21/2022]
Abstract
Background/Aim: There is continuing interest in engineering esthetic labial archwires. The aim of this study was to coat nickel–titanium (NiTi) and beta-titanium (β-Ti), also known as titanium molybdenum (TMA), archwires by plasma electrolytic oxidation (PEO) and to analyze the characteristics of the PEO-surfaces. Materials and Methods: PEO-coatings were generated on 0.014-inch NiTi and 0.19 × 0.25-inch β-Ti archwires. The surfaces were analyzed by scanning electron microscopy and stereomicroscopy. Cytocompatibility testing was performed with ceramized and untreated samples according to EN ISO 10993-5 in XTT-, BrdU- and LDH-assays. The direct cell impact was analyzed using LIVE-/DEAD-staining. In addition, the archwires were inserted in an orthodontic model and photographs were taken before and after insertion. Results: The PEO coatings were 15 to 20 µm thick with a whitish appearance. The cytocompatibility analysis revealed good cytocompatibility results for both ceramized NiTi and β-Ti archwires. In the direct cell tests, the ceramized samples showed improved compatibility as compared to those of uncoated samples. However, bending of the archwires resulted in loss of the PEO-surfaces. Nevertheless, it was possible to insert the β-Ti PEO-coated archwire in an orthodontic model without loss of the PEO-ceramic. Conclusion: PEO is a promising technique for the generation of esthetic orthodontic archwires. Since the PEO-coating does not resist bending, its clinical use seems to be limited so far to orthodontic techniques using straight or pre-bent archwires.
Collapse
Affiliation(s)
- Ole Jung
- Division of Regenerative Orofacial Medicine, Research Group Biomaterials/Surfaces, Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Jean-Philippe Becker
- Division of Regenerative Orofacial Medicine, Research Group Biomaterials/Surfaces, Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Ralf Smeets
- Division of Regenerative Orofacial Medicine, Research Group Biomaterials/Surfaces, Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Germain Becker
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Bärbel Kahl-Nieke
- Department of Orthodontics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Anne-Kathrin Jung
- Division of Regenerative Orofacial Medicine, Research Group Biomaterials/Surfaces, Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Max Heiland
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, 12200 Berlin, Germany.
| | | | - Mike Barbeck
- Division of Regenerative Orofacial Medicine, Research Group Biomaterials/Surfaces, Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Till Koehne
- Department of Orthodontics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
10
|
Improved In Vitro Test Procedure for Full Assessment of the Cytocompatibility of Degradable Magnesium Based on ISO 10993-5/-12. Int J Mol Sci 2019; 20:ijms20020255. [PMID: 30634646 PMCID: PMC6359522 DOI: 10.3390/ijms20020255] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/22/2018] [Accepted: 12/30/2018] [Indexed: 12/04/2022] Open
Abstract
Magnesium (Mg)-based biomaterials are promising candidates for bone and tissue regeneration. Alloying and surface modifications provide effective strategies for optimizing and tailoring their degradation kinetics. Nevertheless, biocompatibility analyses of Mg-based materials are challenging due to its special degradation mechanism with continuous hydrogen release. In this context, the hydrogen release and the related (micro-) milieu conditions pretend to strictly follow in vitro standards based on ISO 10993-5/-12. Thus, special adaptions for the testing of Mg materials are necessary, which have been described in a previous study from our group. Based on these adaptions, further developments of a test procedure allowing rapid and effective in vitro cytocompatibility analyses of Mg-based materials based on ISO 10993-5/-12 are necessary. The following study introduces a new two-step test scheme for rapid and effective testing of Mg. Specimens with different surface characteristics were produced by means of plasma electrolytic oxidation (PEO) using silicate-based and phosphate-based electrolytes. The test samples were evaluated for corrosion behavior, cytocompatibility and their mechanical and osteogenic properties. Thereby, two PEO ceramics could be identified for further in vivo evaluations.
Collapse
|