1
|
Sinha R, Raina R, Bag M, Rupa B. Empowering gynaecologists with Artificial Intelligence: Tailoring surgical solutions for fibroids. Eur J Obstet Gynecol Reprod Biol 2024; 299:72-77. [PMID: 38838389 DOI: 10.1016/j.ejogrb.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND In recent years, the integration ofArtificial intelligence (AI) into various fields of medicine including Gynaecology, has shown promising potential. Surgical treatment of fibroid is myomectomy if uterine preservation and fertility are the primary aims. AI usage begins with the involvement of LLM (Large Language Model) from the point when a patient visits a gynecologist, from identifying signs and symptoms to reaching a diagnosis, providing treatment plans, and patient counseling. OBJECTIVE Use of AI (ChatGPT versus Google Bard) in the surgical management of fibroid. STUDY DESIGN Identifyingthe patient's problems using LLMs like ChatGPT and Google Bard and giving a treatment optionin 8 clinical scenarios of fibroid. Data entry was done using M.S. Excel and was statistically analyzed using Statistical Package for Social Sciences (SPSS Version 26) for M.S. Windows 2010. All results were presented in tabular form. Data were analyzed using nonparametric tests Chi-square tests or Fisher exact test.pvalues < 0.05 were considered statistically significant. The sensitivity of both techniques was calculated. We have used Cohen's Kappa to know the degree of agreement. RESULTS We found that on the first attempt, ChatGPT gave general answers in 62.5 % of cases and specific answers in 37.5 % of cases. ChatGPT showed improved sensitivity on successive prompts 37.5 % to 62.5 % on the third prompt. Google Bard could not identify the clinical question in 50 % of cases and gave incorrect answers in 12.5 % of cases (p = 0.04). Google Bard showed the same sensitivity of 25 % on all prompts. CONCLUSION AI helps to reduce the time to diagnose and plan a treatment strategy for fibroid and acts as a powerful tool in the hands of a gynecologist. However, the usage of AI by patients for self-treatment is to be avoided and should be used only for education and counseling about fibroids.
Collapse
Affiliation(s)
- Rooma Sinha
- Department of Obstetrics and Gynaecology, Apollo Health City, Jubilee Hills, Hyderabad 500033, India
| | - Rohit Raina
- Department of Obstetrics and Gynaecology, Apollo Health City, Jubilee Hills, Hyderabad 500033, India.
| | - Moumita Bag
- Department of Obstetrics and Gynaecology, Apollo Health City, Jubilee Hills, Hyderabad 500033, India
| | - Bana Rupa
- Department of Obstetrics and Gynaecology, Apollo Health City, Jubilee Hills, Hyderabad 500033, India
| |
Collapse
|
2
|
Soares FM, da Rocha Carvalho Rosa LO, Cecatti JG, Luz AG, Awe OD, Esmi EL, de Carvalho Pacagnella R. Design, construction, and validation of obstetric risk classification systems to predict intensive care unit admission. Int J Gynaecol Obstet 2024. [PMID: 39041284 DOI: 10.1002/ijgo.15782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION To develop and validate a support tool for healthcare providers, enabling them to make precise and critical decisions regarding intensive care unit (ICU) admissions for high-risk pregnant women, thus enhancing maternal outcomes. METHODS This retrospective study involves secondary data analysis of information gathered from 9550 pregnant women, who had severe maternal morbidity (any unexpected complication during labor and delivery that leads to substantial short-term or long-term health issues for the mother), collected between 2009 and 2010 from the Brazilian Network for Surveillance of Severe Maternal Morbidity, encompassing 27 obstetric reference centers in Brazil. Machine-learning models, including decision trees, Random Forest, Gradient Boosting Machine (GBM), and Extreme Gradient Boosting (XGBoost), were employed to create a risk prediction tool for ICU admission. Subsequently, sensitivity analysis was conducted to compare the accuracy, predictive power, sensitivity, and specificity of these models, with differences analyzed using the Wilcoxon test. RESULTS The XGBoost algorithm demonstrated superior efficiency, achieving an accuracy rate of 85%, sensitivity of 42%, specificity of 97%, and an area under the receiver operating characteristic curve of 86.7%. Notably, the estimated prevalence of ICU utilization by the model (11.6%) differed from the prevalence of ICU use from the study (21.52%). CONCLUSION The developed risk engine yielded positive results, emphasizing the need to optimize intensive care bed utilization and objectively identify high-risk pregnant women requiring these services. This approach promises to enhance the effective and efficient management of pregnant women, particularly in resource-constrained regions worldwide. By streamlining ICU admissions for high-risk cases, healthcare providers can better allocate critical resources, ultimately contributing to improved maternal health outcomes.
Collapse
Affiliation(s)
- Fabiano Miguel Soares
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, State University of Campinas, Campinas, SP, Brazil
| | - Lívia Ohana da Rocha Carvalho Rosa
- Department of Applied and Computational Mathematics, Institute of Mathematics, Statistics and Scientific Computing, State University of Campinas, Campinas, SP, Brazil
| | - José Guilherme Cecatti
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, State University of Campinas, Campinas, SP, Brazil
| | - Adriana Gomes Luz
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, State University of Campinas, Campinas, SP, Brazil
| | - Oluwafunmilola Deborah Awe
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, State University of Campinas, Campinas, SP, Brazil
| | - Estevão Laureano Esmi
- Department of Applied and Computational Mathematics, Institute of Mathematics, Statistics and Scientific Computing, State University of Campinas, Campinas, SP, Brazil
| | - Rodolfo de Carvalho Pacagnella
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, State University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
3
|
Yaseen I, Rather RA. A Theoretical Exploration of Artificial Intelligence's Impact on Feto-Maternal Health from Conception to Delivery. Int J Womens Health 2024; 16:903-915. [PMID: 38800118 PMCID: PMC11128252 DOI: 10.2147/ijwh.s454127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
The implementation of Artificial Intelligence (AI) in healthcare is enhancing diagnostic accuracy in clinical setups. The use of AI in healthcare is steadily increasing with advancing technology, extending beyond disease diagnosis to encompass roles in feto-maternal health. AI harnesses Machine Learning (ML), Natural Language Processing (NLP), Artificial Neural Networks (ANN), and computer vision to analyze data and draw conclusions. Considering maternal health, ML analyzes vast datasets to predict maternal and fetal health outcomes, while NLP interprets medical texts and patient records to assist in diagnosis and treatment decisions. ANN models identify patterns in complex feto-maternal medical data, aiding in risk assessment and intervention planning whereas, computer vision enables the analysis of medical images for early detection of feto-maternal complications. AI facilitates early pregnancy detection, genetic screening, and continuous monitoring of maternal health parameters, providing real-time alerts for deviations, while also playing a crucial role in the early detection of fetal abnormalities through enhanced ultrasound imaging, contributing to informed decision-making. This review investigates into the application of AI, particularly through predictive models, in addressing the monitoring of feto-maternal health. Additionally, it examines potential future directions and challenges associated with these applications.
Collapse
Affiliation(s)
- Ishfaq Yaseen
- Department of Computer and Self Development, Preparatory Year Deanship, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Riyaz Ahmad Rather
- Department of Biotechnology, College of Natural and Computational Science, Wachemo University, Hossana, Ethiopia
| |
Collapse
|
4
|
Zhang W, Tang Z, Shao H, Sun C, He X, Zhang J, Wang T, Yang X, Wang Y, Bin Y, Zhao L, Zhang S, Liang D, Wang J, Zhong D, Li Q. Intelligent classification of cardiotocography based on a support vector machine and convolutional neural network: Multiscene research. Int J Gynaecol Obstet 2024; 165:737-745. [PMID: 38009598 DOI: 10.1002/ijgo.15236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 09/20/2023] [Accepted: 10/24/2023] [Indexed: 11/29/2023]
Abstract
OBJECTIVE To propose a computerized system utilizing multiscene analysis based on a support vector machine (SVM) and convolutional neural network (CNN) to assess cardiotocography (CTG) intelligently. METHODS We retrospectively collected 2542 CTG records of singleton pregnancies delivered at the maternity ward of the First Affiliated Hospital of Xi'an Jiaotong University from October 10, 2020, to August 7, 2021. CTG records were divided into five categories (baseline, variability, acceleration, deceleration, and normality). Apart from the category of normality, the other four different categories of abnormal data correspond to four scenes. Each scene was divided into training and testing sets at 9:1 or 7:3. We used three computer algorithms (dynamic threshold, SVM, and CNN) to learn and optimize the system. Accuracy, sensitivity, and specificity were performed to evaluate performance. RESULTS The global accuracy, sensitivity, and specificity of the system were 93.88%, 93.06%, and 94.33%, respectively. In acceleration and deceleration scenes, when the convolution kernel was 3, the test data set reached the highest performance. CONCLUSION The multiscene research model using SVM and CNN is a potential effective tool to assist obstetricians in classifying CTG intelligently.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zixiang Tang
- Wuhan Second Ship Design and Research Institute, Wuhan, Hubei, China
| | - Huikai Shao
- School of Automation Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chao Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xin He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiahui Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tiantian Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaowei Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yiran Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yadi Bin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lanbo Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Siyi Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Dongxin Liang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jianliu Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| | - Dexing Zhong
- School of Automation Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Pazhou Lab, Guangzhou, China
| | - Qiling Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Zhou T, Gu S, Shao F, Li P, Wu Y, Xiong J, Wang B, Zhou C, Gao P, Hua X. Prediction of preeclampsia from retinal fundus images via deep learning in singleton pregnancies: a prospective cohort study. J Hypertens 2024; 42:701-710. [PMID: 38230614 PMCID: PMC10906188 DOI: 10.1097/hjh.0000000000003658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/01/2023] [Accepted: 12/30/2023] [Indexed: 01/18/2024]
Abstract
INTRODUCTION Early prediction of preeclampsia (PE) is of universal importance in controlling the disease process. Our study aimed to assess the feasibility of using retinal fundus images to predict preeclampsia via deep learning in singleton pregnancies. METHODS This prospective cohort study was conducted at Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine. Eligible participants included singleton pregnancies who presented for prenatal visits before 14 weeks of gestation from September 1, 2020, to February 1, 2022. Retinal fundus images were obtained using a nonmydriatic digital retinal camera during their initial prenatal visit upon admission before 20 weeks of gestation. In addition, we generated fundus scores, which indicated the predictive value of hypertension, using a hypertension detection model. To evaluate the predictive value of the retinal fundus image-based deep learning algorithm for preeclampsia, we conducted stratified analyses and measured the area under the curve (AUC), sensitivity, and specificity. We then conducted sensitivity analyses for validation. RESULTS Our study analyzed a total of 1138 women, 92 pregnancies developed into hypertension disorders of pregnancy (HDP), including 26 cases of gestational hypertension and 66 cases of preeclampsia. The adjusted odds ratio (aOR) of the fundus scores was 2.582 (95% CI, 1.883-3.616; P < 0.001). Otherwise, in the categories of prepregnancy BMI less than 28.0 and at least 28.0, the aORs were 3.073 (95%CI, 2.265-4.244; P < 0.001) and 5.866 (95% CI, 3.292-11.531; P < 0.001). In the categories of maternal age less than 35.0 and at least 35.0, the aORs were 2.845 (95% CI, 1.854-4.463; P < 0.001) and 2.884 (95% CI, 1.794-4.942; P < 0.001). The AUC of the fundus score combined with risk factors was 0.883 (sensitivity, 0.722; specificity, 0.934; 95% CI, 0.834-0.932) for predicting preeclampsia. CONCLUSION Our study demonstrates that the use of deep learning algorithm-based retinal fundus images offers promising predictive value for the early detection of preeclampsia.
Collapse
Affiliation(s)
- Tianfan Zhou
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University
| | - Shengyi Gu
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University
| | - Feixue Shao
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University
| | - Ping Li
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University
| | - Yuelin Wu
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University
| | | | - Bin Wang
- Beijing Airdoc Technology Co., Ltd., Beijing, China
| | - Chenchen Zhou
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University
| | - Peng Gao
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University
| | - Xiaolin Hua
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University
| |
Collapse
|
6
|
Garg R, Munshi A. Revolutionizing Menopause Management: Harnessing the Potential of Artificial Intelligence. J Midlife Health 2024; 15:53-54. [PMID: 39145262 PMCID: PMC11321517 DOI: 10.4103/jmh.jmh_104_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 08/16/2024] Open
Affiliation(s)
- Ruchika Garg
- Editor in Chief Journal of Midlife Health, SN Medical College, Agra, Uttar Pradesh, India E-mail:
- Department of Obstetrics and Gynaecology, SN Medical College, Agra, Uttar Pradesh, India
- Executive Editor Journal of SAFOG, Munshi Group of Hospitals, Ahmedabad, Gujarat, India
| | - Atul Munshi
- Editor in Chief Journal of Midlife Health, SN Medical College, Agra, Uttar Pradesh, India E-mail:
- Consultant, Munshi Group of Hospitals, Ahmedabad, Gujarat, India
- Former Professor and HOD, GCS and NHL Medical College, Ahmedabad, Gujarat, India
| |
Collapse
|
7
|
Medjedovic E, Stanojevic M, Jonuzovic-Prosic S, Ribic E, Begic Z, Cerovac A, Badnjevic A. Artificial intelligence as a new answer to old challenges in maternal-fetal medicine and obstetrics. Technol Health Care 2024; 32:1273-1287. [PMID: 38073356 DOI: 10.3233/thc-231482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
BACKGROUND Following the latest trends in the development of artificial intelligence (AI), the possibility of processing an immense amount of data has created a breakthrough in the medical field. Practitioners can now utilize AI tools to advance diagnostic protocols and improve patient care. OBJECTIVE The aim of this article is to present the importance and modalities of AI in maternal-fetal medicine and obstetrics and its usefulness in daily clinical work and decision-making process. METHODS A comprehensive literature review was performed by searching PubMed for articles published from inception up until August 2023, including the search terms "artificial intelligence in obstetrics", "maternal-fetal medicine", and "machine learning" combined through Boolean operators. In addition, references lists of identified articles were further reviewed for inclusion. RESULTS According to recent research, AI has demonstrated remarkable potential in improving the accuracy and timeliness of diagnoses in maternal-fetal medicine and obstetrics, e.g., advancing perinatal ultrasound technique, monitoring fetal heart rate during labor, or predicting mode of delivery. The combination of AI and obstetric ultrasound can help optimize fetal ultrasound assessment by reducing examination time and improving diagnostic accuracy while reducing physician workload. CONCLUSION The integration of AI in maternal-fetal medicine and obstetrics has the potential to significantly improve patient outcomes, enhance healthcare efficiency, and individualized care plans. As technology evolves, AI algorithms are likely to become even more sophisticated. However, the successful implementation of AI in maternal-fetal medicine and obstetrics needs to address challenges related to interpretability and reliability.
Collapse
Affiliation(s)
- Edin Medjedovic
- Clinic of Gynecology and Obstetrics, Clinical Center University of Sarajevo, Sarajevo, Bosnia and Herzegovina
- Department of Gynecology, Obstetrics and Reproductive Medicine, School of Medicine, Sarajevo School of Science and Technology, Sarajevo, Bosnia and Herzegovina
| | - Milan Stanojevic
- Department of Obstetrics and Gynecology, University Hospital "Sveti Duh", Zagreb, Croatia
| | - Sabaheta Jonuzovic-Prosic
- Clinic of Gynecology and Obstetrics, Clinical Center University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Emina Ribic
- Public Institution Department for Health Care of Women and Maternity of Sarajevo Canton, Sarajevo, Bosnia and Herzegovina
| | - Zijo Begic
- Department of Cardiology, Pediatric Clinic, Clinical Center University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Anis Cerovac
- Department of Gynecology and Obstetrics Tesanj, General Hospital Tesanj, Bosnia and Herzegovina
| | - Almir Badnjevic
- International Burch University, Sarajevo, Bosnia and Herzegovina
- Genetics and Bioengineering Department, Faculty of Engineering and Natural Sciences, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
8
|
Daykan Y, O'Reilly BA. The role of artificial intelligence in the future of urogynecology. Int Urogynecol J 2023; 34:1663-1666. [PMID: 37486359 DOI: 10.1007/s00192-023-05612-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/08/2023] [Indexed: 07/25/2023]
Abstract
Artificial intelligence (AI) in medicine is a rapidly growing field aimed at using machine learning models to improve health outcomes and patient experiences. Many new platforms have become accessible and therefore it seems inevitable that we consider how to implement them in our day-to-day practice. Currently, the specialty of urogynecology faces new challenges as the population grows, life expectancy increases, and quality of life expectation is much improved. As AI has a lot of potential to promote the discipline of urogynecology, we aim to explore its abilities and possible use in the future. Challenges and risks are associated with using AI, and a responsible use of such resources is required.
Collapse
Affiliation(s)
- Yair Daykan
- Department of Urogynaecology, Cork University Maternity Hospital, Cork, Ireland.
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel.
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Barry A O'Reilly
- Department of Urogynaecology, Cork University Maternity Hospital, Cork, Ireland
| |
Collapse
|
9
|
Fischer A, Rietveld A, Teunissen P, Bakker P, Hoogendoorn M. End-to-end learning with interpretation on electrohysterography data to predict preterm birth. Comput Biol Med 2023; 158:106846. [PMID: 37019011 DOI: 10.1016/j.compbiomed.2023.106846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/03/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Prediction of preterm birth is a difficult task for clinicians. By examining an electrohysterogram, electrical activity of the uterus that can lead to preterm birth can be detected. Since signals associated with uterine activity are difficult to interpret for clinicians without a background in signal processing, machine learning may be a viable solution. We are the first to employ Deep Learning models, a long-short term memory and temporal convolutional network model, on electrohysterography data using the Term-Preterm Electrohysterogram database. We show that end-to-end learning achieves an AUC score of 0.58, which is comparable to machine learning models that use handcrafted features. Moreover, we evaluate the effect of adding clinical data to the model and conclude that adding the available clinical data to electrohysterography data does not result in a gain in performance. Also, we propose an interpretability framework for time series classification that is well-suited to use in case of limited data, as opposed to existing methods that require large amounts of data. Clinicians with extensive work experience as gynaecologist used our framework to provide insights on how to link our results to clinical practice and stress that in order to decrease the number of false positives, a dataset with patients at high risk of preterm birth should be collected. All code is made publicly available.
Collapse
|
10
|
Malani SN, Shrivastava D, Raka MS. A Comprehensive Review of the Role of Artificial Intelligence in Obstetrics and Gynecology. Cureus 2023; 15:e34891. [PMID: 36925982 PMCID: PMC10013256 DOI: 10.7759/cureus.34891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/12/2023] [Indexed: 03/18/2023] Open
Abstract
The exponential growth of artificial intelligence (AI) has fascinated its application in various fields and so in the field of healthcare. Technological advancements in theories and learning algorithms and the availability of processing through huge datasets have created a breakthrough in the medical field with computing systems. AI can potentially drive clinicians and practitioners with appropriate decisions in managing cases and reaching a diagnosis, so its application is extensively spread in the medical field. Thus, computerized algorithms have made predictions so simple and accurate. This is because AI can proffer information accurately even to many patients. Furthermore, the subsets of AI, namely, machine learning (ML) and deep learning (DL) methods, have aided in detecting complex patterns from huge datasets and using such patterns in making predictions. Despite numerous challenges, AI implementation in obstetrics and gynecology is found to have a spellbound development. Therefore, this review propounds exploring the implementation of AI in obstetrics and gynecology to improve the outcomes and clinical experience. In that context, the evolution and progress of AI, the role of AI in ultrasound diagnosis in distinct phases of pregnancy, clinical benefits, preterm birth postpartum period, and applications of AI in gynecology are elucidated in this review with future recommendations.
Collapse
Affiliation(s)
- Sagar N Malani
- Department of Obstetrics and Gynecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Deepti Shrivastava
- Department of Obstetrics and Gynecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Mayur S Raka
- Department of Obstetrics and Gynecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
11
|
Erdemoglu E, Serel TA, Karacan E, Köksal OK, Turan İ, Öztürk V, Bozkurt KK. Artificial intelligence for prediction of endometrial intraepithelial neoplasia and endometrial cancer risks in pre- and postmenopausal women. AJOG GLOBAL REPORTS 2023; 3:100154. [PMID: 36691400 PMCID: PMC9860482 DOI: 10.1016/j.xagr.2022.100154] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The current approach to endometrial cancer screening requires that all patients be able to recognize symptoms, report them, and carry out appropriate interventions. The current approach to endometrial cancer screening could become a problem in the future, especially for Black women and women from minority groups, and could lead to disparities in receiving proper care. Moreover, there is a lack of literature on artificial intelligence in the prediction and diagnosis of endometrial intraepithelial neoplasia and endometrial cancer. OBJECTIVE This study analyzed different artificial intelligence methods to help in clinical decision-making and the prediction of endometrial intraepithelial neoplasia and endometrial cancer risks in pre- and postmenopausal women. This study aimed to investigate whether artificial intelligence may help to overcome the challenges that statistical and diagnostic tests could not. STUDY DESIGN This study included 564 patients. The features that were collected included age, menopause status, premenopausal abnormal bleeding and postmenopausal bleeding, obesity, hypertension, diabetes mellitus, smoking, endometrial thickness, and history of breast cancer. Endometrial sampling was performed on all women with postmenopausal bleeding and asymptomatic postmenopausal women with an endometrial thickness of at least 3 mm. Endometrial biopsy was performed on premenopausal women with abnormal uterine bleeding and asymptomatic premenopausal women with suspected endometrial lesions. Python was used to model machine learning algorithms. Random forest, logistic regression, multilayer perceptron, Catboost, Xgboost, and Naive Bayes methods were used for classification. The synthetic minority oversampling technique was used to correct the class imbalance in the training sets. In addition, tuning and boosting were used to increase the performance of the models with a 5-fold cross-validation approach using a training set. Accuracy, sensitivity, specificity, positive predictive value, and F1 score were calculated. RESULTS The prevalence of endometrial or preuterine cancer was 7.9%. Data from 451 patients were randomly assigned to the training group, and data from another 113 patients were used for internal validation. Of note, 3 of 9 features were selected by the Boruta algorithm for use in the final modeling. Age, body mass index, and endometrial thickness were all associated with a high risk of developing precancerous and cancerous diseases, after fine-tuning for the multilayer computer to have the highest area below the receiver operating characteristic curve (area under the curve, 0.938) to predict a precancerous disease. The accuracy was 0.94 for predicting a precancerous disease. Precision, recall, and F1 scores for the test group were 0.71, 0.50, and 0.59, respectively. CONCLUSION Our study found that artificial intelligence can be used to identify women at risk of endometrial intraepithelial neoplasia and endometrial cancer. The model is not contingent on menopausal status or symptoms. This may be an advantage over the traditional methodology because many women, especially Black women and women from minority groups, could not recognize them. We have proposed to include patients to provide age and body mass index, and measurement of endometrial thickness by either sonography or artificial intelligence may help improve healthcare for women in rural or minority communities.
Collapse
Affiliation(s)
- Evrim Erdemoglu
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Suleyman Demirel University, Isparta, Turkey (Drs Erdemoglu, Turan, and Öztürk),Corresponding author: Evrim Erdemoglu, MD.
| | | | | | | | - İlyas Turan
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Suleyman Demirel University, Isparta, Turkey (Drs Erdemoglu, Turan, and Öztürk)
| | - Volkan Öztürk
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Suleyman Demirel University, Isparta, Turkey (Drs Erdemoglu, Turan, and Öztürk)
| | | |
Collapse
|
12
|
Shazly SA, Borah BJ, Ngufor CG, Torbenson VE, Theiler RN, Famuyide AO. Impact of labor characteristics on maternal and neonatal outcomes of labor: A machine-learning model. PLoS One 2022; 17:e0273178. [PMID: 35994474 PMCID: PMC9394788 DOI: 10.1371/journal.pone.0273178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction
Since Friedman’s seminal publication on laboring women, numerous publications have sought to define normal labor progress. However, there is paucity of data on contemporary labor cervicometry incorporating both maternal and neonatal outcomes. The objective of this study is to establish intrapartum prediction models of unfavorable labor outcomes using machine-learning algorithms.
Materials and methods
Consortium on Safe Labor is a large database consisting of pregnancy and labor characteristics from 12 medical centers in the United States. Outcomes, including maternal and neonatal outcomes, were retrospectively collected. We defined primary outcome as the composite of following unfavorable outcomes: cesarean delivery in active labor, postpartum hemorrhage, intra-amniotic infection, shoulder dystocia, neonatal morbidity, and mortality. Clinical and obstetric parameters at admission and during labor progression were used to build machine-learning risk-prediction models based on the gradient boosting algorithm.
Results
Of 228,438 delivery episodes, 66,586 were eligible for this study. Mean maternal age was 26.95 ± 6.48 years, mean parity was 0.92 ± 1.23, and mean gestational age was 39.35 ± 1.13 weeks. Unfavorable labor outcome was reported in 14,439 (21.68%) deliveries. Starting at a cervical dilation of 4 cm, the area under receiver operating characteristics curve (AUC) of prediction models increased from 0.75 (95% confidence interval, 0.75–0.75) to 0.89 (95% confidence interval, 0.89–0.90) at a dilation of 10 cm. Baseline labor risk score was above 35% in patients with unfavorable outcomes compared to women with favorable outcomes, whose score was below 25%.
Conclusion
Labor risk score is a machine-learning–based score that provides individualized and dynamic alternatives to conventional labor charts. It predicts composite of adverse birth, maternal, and neonatal outcomes as labor progresses. Therefore, it can be deployed in clinical practice to monitor labor progress in real time and support clinical decisions.
Collapse
Affiliation(s)
- Sherif A. Shazly
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota
| | - Bijan J. Borah
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota
- Division of Health Care Delivery Research, Mayo Clinic, Rochester, Minnesota
- The Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, Minnesota
| | - Che G. Ngufor
- The Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, Minnesota
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, Minnesota
| | | | - Regan N. Theiler
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota
| | - Abimbola O. Famuyide
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota
- * E-mail:
| |
Collapse
|
13
|
Evans MI, Britt DW, Evans SM, Devoe LD. Changing Perspectives of Electronic Fetal Monitoring. Reprod Sci 2022; 29:1874-1894. [PMID: 34664218 PMCID: PMC8522858 DOI: 10.1007/s43032-021-00749-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/24/2021] [Indexed: 12/26/2022]
Abstract
The delivery of healthy babies is the primary goal of obstetric care. Many technologies have been developed to reduce both maternal and fetal risks for poor outcomes. For 50 years, electronic fetal monitoring (EFM) has been used extensively in labor attempting to prevent a large proportion of neonatal encephalopathy and cerebral palsy. However, even key opinion leaders admit that EFM has mostly failed to achieve this goal. We believe this situation emanates from a fundamental misunderstanding of differences between screening and diagnostic tests, considerable subjectivity and inter-observer variability in EFM interpretation, failure to address the pathophysiology of fetal compromise, and a tunnel vision focus. To address these suboptimal results, several iterations of increasingly sophisticated analyses have intended to improve the situation. We believe that part of the continuing problem is that the focus of EFM has been too narrow ignoring important contextual issues such as maternal, fetal, and obstetrical risk factors, and increased uterine contraction frequency. All of these can significantly impact the application of EFM to intrapartum care. We have recently developed a new clinical approach, the Fetal Reserve Index (FRI), contextualizing EFM interpretation. Our data suggest the FRI is capable of providing higher accuracy and earlier detection of emerging fetal compromise. Over time, artificial intelligence/machine learning approaches will likely improve measurements and interpretation of FHR characteristics and other relevant variables. Such future developments will allow us to develop more comprehensive models that increase the interpretability and utility of interfaces for clinical decision making during the intrapartum period.
Collapse
Affiliation(s)
- Mark I Evans
- Fetal Medicine Foundation of America, New York, NY, USA.
- Comprehensive Genetics, PLLC, New York, NY, USA.
- Department of Obstetrics & Gynecology, Icahn School of Medicine at Mt. Sinai, New York, NY, USA.
| | - David W Britt
- Fetal Medicine Foundation of America, New York, NY, USA
| | - Shara M Evans
- Department of Maternal Child Health, Gillings School of Public Health, University of North Carolina, Chapel Hill, USA
| | - Lawrence D Devoe
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
14
|
Reporting on the Value of Artificial Intelligence in Predicting the Optimal Embryo for Transfer: A Systematic Review including Data Synthesis. Biomedicines 2022; 10:biomedicines10030697. [PMID: 35327499 PMCID: PMC8945147 DOI: 10.3390/biomedicines10030697] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 12/04/2022] Open
Abstract
Artificial intelligence (AI) has been gaining support in the field of in vitro fertilization (IVF). Despite the promising existing data, AI cannot yet claim gold-standard status, which serves as the rationale for this study. This systematic review and data synthesis aims to evaluate and report on the predictive capabilities of AI-based prediction models regarding IVF outcome. The study has been registered in PROSPERO (CRD42021242097). Following a systematic search of the literature in Pubmed/Medline, Embase, and Cochrane Central Library, 18 studies were identified as eligible for inclusion. Regarding live-birth, the Area Under the Curve (AUC) of the Summary Receiver Operating Characteristics (SROC) was 0.905, while the partial AUC (pAUC) was 0.755. The Observed: Expected ratio was 1.12 (95%CI: 0.26–2.37; 95%PI: 0.02–6.54). Regarding clinical pregnancy with fetal heartbeat, the AUC of the SROC was 0.722, while the pAUC was 0.774. The O:E ratio was 0.77 (95%CI: 0.54–1.05; 95%PI: 0.21–1.62). According to this data synthesis, the majority of the AI-based prediction models are successful in accurately predicting the IVF outcome regarding live birth, clinical pregnancy, clinical pregnancy with fetal heartbeat, and ploidy status. This review attempted to compare between AI and human prediction capabilities, and although studies do not allow for a meta-analysis, this systematic review indicates that the AI-based prediction models perform rather similarly to the embryologists’ evaluations. While AI models appear marginally more effective, they still have some way to go before they can claim to significantly surpass the clinical embryologists’ predictive competence.
Collapse
|
15
|
Riemma G, Vitale SG, Manchanda R, Rathore A, Török P, De Angelis C, Urman B, Sareri MI, La Verde M, Carugno J, De Franciscis P, Tesarik J. The role of hysteroscopy in reproductive surgery: today and tomorrow. J Gynecol Obstet Hum Reprod 2022; 51:102350. [DOI: 10.1016/j.jogoh.2022.102350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 01/16/2023]
|
16
|
Davids J, Ashrafian H. AIM and mHealth, Smartphones and Apps. Artif Intell Med 2022. [DOI: 10.1007/978-3-030-64573-1_242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Esteban-Escaño J, Castán B, Castán S, Chóliz-Ezquerro M, Asensio C, Laliena AR, Sanz-Enguita G, Sanz G, Esteban LM, Savirón R. Machine Learning Algorithm to Predict Acidemia Using Electronic Fetal Monitoring Recording Parameters. ENTROPY 2021; 24:e24010068. [PMID: 35052094 PMCID: PMC8775221 DOI: 10.3390/e24010068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/18/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022]
Abstract
Background: Electronic fetal monitoring (EFM) is the universal method for the surveillance of fetal well-being in intrapartum. Our objective was to predict acidemia from fetal heart signal features using machine learning algorithms. Methods: A case–control 1:2 study was carried out compromising 378 infants, born in the Miguel Servet University Hospital, Spain. Neonatal acidemia was defined as pH < 7.10. Using EFM recording logistic regression, random forest and neural networks models were built to predict acidemia. Validation of models was performed by means of discrimination, calibration, and clinical utility. Results: Best performance was attained using a random forest model built with 100 trees. The discrimination ability was good, with an area under the Receiver Operating Characteristic curve (AUC) of 0.865. The calibration showed a slight overestimation of acidemia occurrence for probabilities above 0.4. The clinical utility showed that for 33% cutoff point, missing 5% of acidotic cases, 46% of unnecessary cesarean sections could be prevented. Logistic regression and neural networks showed similar discrimination ability but with worse calibration and clinical utility. Conclusions: The combination of the variables extracted from EFM recording provided a predictive model of acidemia that showed good accuracy and provides a practical tool to prevent unnecessary cesarean sections.
Collapse
Affiliation(s)
- Javier Esteban-Escaño
- Department of Electronic Engineering and Communications, Escuela Universitaria Politécnica de La Almunia, Universidad de Zaragoza, Calle Mayor 5, 50100 La Almunia de Doña Godina, Spain;
| | - Berta Castán
- Department of Obstetrics and Gynecology, San Pedro Hospital, Calle Piqueras 98, 26006 Logroño, Spain;
| | - Sergio Castán
- Department of Obstetrics and Gynecology, Miguel Servet University Hospital, Paseo Isabel La Católica 3, 50009 Zaragoza, Spain
- Correspondence: (S.C.); (L.M.E.)
| | - Marta Chóliz-Ezquerro
- Department of Obstetrics, Dexeus University Hospital, Gran Via de Carles III 71-75, 08028 Barcelona, Spain;
| | - César Asensio
- Department of Applied Mathematics, Escuela Universitaria Politécnica de La Almunia, Universidad de Zaragoza, Calle Mayor 5, 50100 La Almunia de Doña Godina, Spain; (C.A.); (A.R.L.)
| | - Antonio R. Laliena
- Department of Applied Mathematics, Escuela Universitaria Politécnica de La Almunia, Universidad de Zaragoza, Calle Mayor 5, 50100 La Almunia de Doña Godina, Spain; (C.A.); (A.R.L.)
| | - Gerardo Sanz-Enguita
- Department of Applied Physics, Escuela Universitaria Politécnica de La Almunia, Universidad de Zaragoza, Calle Mayor 5, 50100 La Almunia de Doña Godina, Spain;
| | - Gerardo Sanz
- Department of Statistical Methods and Institute for Biocomputation and Physics of Complex Systems-BIFI, University of Zaragoza, Calle Pedro Cerbuna 12, 50009 Zaragoza, Spain;
| | - Luis Mariano Esteban
- Department of Applied Mathematics, Escuela Universitaria Politécnica de La Almunia, Universidad de Zaragoza, Calle Mayor 5, 50100 La Almunia de Doña Godina, Spain; (C.A.); (A.R.L.)
- Correspondence: (S.C.); (L.M.E.)
| | - Ricardo Savirón
- Department of Obstetrics and Gynecology, Hospital Clínico San Carlos and Instituto de Investigación Sanitaria San Carlos (IdISSC), Universidad Complutense, Calle del Prof Martín Lagos s/n, 28040 Madrid, Spain;
| |
Collapse
|
18
|
Sonntag D. [Artificial intelligence in medicine and gynecology-the wrong track or promise of cure?]. GYNAKOLOGE 2021; 54:476-482. [PMID: 33972805 PMCID: PMC8100931 DOI: 10.1007/s00129-021-04808-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 01/21/2023]
Abstract
Artificial intelligence (AI) has attained a new level of maturity in recent years and is becoming the driver of digitalization in all areas of life. AI is a cross-sectional technology with great importance for all areas of medicine employing image data, text data and bio-data. There is no medical field that will remain unaffected by AI, with AI-assisted clinical decision-making assuming a particularly important role. AI methods are becoming established in medical workflow management and for prediction of treatment success or treatment outcome. AI systems are already able to lend support to imaging-based diagnosis and patient management, but cannot suggest critical decisions. The corresponding preventive or therapeutic measures can be more rationally assessed with the help of AI, although the number of diseases covered is currently too low to create robust systems for routine clinical use. Prerequisite for the widespread use of AI systems is appropriate training to enable physicians to decide when computer-assisted decision-making can be relied upon.
Collapse
Affiliation(s)
- Daniel Sonntag
- Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI), Universität Oldenburg, Marie-Curie-Str. 1, 26129 Oldenburg, Deutschland
| |
Collapse
|
19
|
Guerriero S, Pascual M, Ajossa S, Neri M, Musa E, Graupera B, Rodriguez I, Alcazar JL. Artificial intelligence (AI) in the detection of rectosigmoid deep endometriosis. Eur J Obstet Gynecol Reprod Biol 2021; 261:29-33. [PMID: 33873085 DOI: 10.1016/j.ejogrb.2021.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/06/2021] [Accepted: 04/11/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The aim of this study was to compare the accuracy of seven classical Machine Learning (ML) models trained with ultrasound (US) soft markers to raise suspicion of endometriotic bowel involvement. MATERIALS AND METHODS Input data to the models was retrieved from a database of a previously published study on bowel endometriosis performed on 333 patients. The following models have been tested: k-nearest neighbors algorithm (k-NN), Naive Bayes, Neural Networks (NNET-neuralnet), Support Vector Machine (SVM), Decision Tree, Random Forest, and Logistic Regression. The data driven strategy has been to split randomly the complete dataset in two different datasets. The training dataset and the test dataset with a 67 % and 33 % of the original cases respectively. All models were trained on the training dataset and the predictions have been evaluated using the test dataset. The best model was chosen based on the accuracy demonstrated on the test dataset. The information used in all the models were: age; presence of US signs of uterine adenomyosis; presence of an endometrioma; adhesions of the ovary to the uterus; presence of "kissing ovaries"; absence of sliding sign. All models have been trained using CARET package in R with ten repeated 10-fold cross-validation. Accuracy, Sensitivity, Specificity, positive (PPV) and negative (NPV) predictive value were calculated using a 50 % threshold. Presence of intestinal involvement was defined in all cases in the test dataset with an estimated probability greater than 0.5. RESULTS In our previous study from where the inputs were retrieved, 106 women had a final expert US diagnosis of rectosigmoid endometriosis. In term of diagnostic accuracy the best model was the Neural Net (Accuracy, 0.73; sensitivity, 0.72; specificity 0.73; PPV 0.52; and NPV 0.86) but without significant difference with the others. CONCLUSIONS The accuracy of ultrasound soft markers in raising suspicion of rectosigmoid endometriosis using Artificial Intelligence (AI) models showed similar results to the logistic model.
Collapse
Affiliation(s)
- Stefano Guerriero
- Centro Integrato di Procreazione Medicalmente Assistita (PMA) e Diagnostica Ostetrico-Ginecologica, Policlinico Universitario Duilio Casula, Monserrato, Cagliari, Italy; University of Cagliari, Cagliari, Italy.
| | - MariaAngela Pascual
- Department of Obstetrics, Gynecology, and Reproduction, Hospital Universitari Dexeus, Spain
| | - Silvia Ajossa
- Department of Obstetrics and Gynecology, University of Cagliari, Policlinico Universitario Duilio Casula, Monserrato, Cagliari, Italy
| | - Manuela Neri
- Department of Obstetrics and Gynecology, University of Cagliari, Policlinico Universitario Duilio Casula, Monserrato, Cagliari, Italy
| | - Eleonora Musa
- Department of Obstetrics and Gynecology, University of Cagliari, Policlinico Universitario Duilio Casula, Monserrato, Cagliari, Italy
| | - Betlem Graupera
- Department of Obstetrics, Gynecology, and Reproduction, Hospital Universitari Dexeus, Spain
| | - Ignacio Rodriguez
- Unidad Epidemiología y Estadística, Departamento de Obstetricia, Ginecología y Reproducción, Hospital Universitario Quirón Dexeus, Barcelona, Spain
| | - Juan Luis Alcazar
- Department of Obstetrics and Gynecology, Clínica Universidad de Navarra, School of Medicine, University of Navarra, Pamplona, Spain
| |
Collapse
|
20
|
Davids J, Ashrafian H. AIM and mHealth, Smartphones and Apps. Artif Intell Med 2021. [DOI: 10.1007/978-3-030-58080-3_242-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Zhou J, Zeng ZY, Li L. Progress of Artificial Intelligence in Gynecological Malignant Tumors. Cancer Manag Res 2020; 12:12823-12840. [PMID: 33364831 PMCID: PMC7751777 DOI: 10.2147/cmar.s279990] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Artificial intelligence (AI) is a sort of new technical science which can simulate, extend and expand human intelligence by developing theories, methods and application systems. In the last five years, the application of AI in medical research has become a hot topic in modern science and technology. Gynecological malignant tumors involves a wide range of knowledge, and AI can play an important part in these aspects, such as medical image recognition, auxiliary diagnosis, drug research and development, treatment scheme formulation and other fields. The purpose of this paper is to describe the progress of AI in gynecological malignant tumors and discuss some problems in its application. It is believed that AI improves the efficiency of diagnosis, reduces the burden of clinicians, and improves the effect of treatment and prognosis. AI will play an irreplaceable role in the field of gynecological malignant oncology and will promote the development of medicine and further promote the transformation from traditional medicine to precision medicine and preventive medicine. However, there are also some problems in the application of AI in gynecologic malignant tumors. For example, AI, inseparable from human participation, still needs to be more “humanized”, and needs to further protect patients’ privacy and health, improve legal and insurance protection, and further improve according to local ethnic conditions and national conditions. However, it is believed that with the continuous development of AI, especially ensemble classifier, and deep learning will have a profound influence on the future of medical technology, which is a powerful driving force for future medical innovation and reform.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning 530021, Guangxi, People's Republic of China.,Department of Gynecology, The Second Affiliated Hospital, University of South China, Hengyang 421001, Hunan, People's Republic of China
| | - Zhi Ying Zeng
- Department of Anesthesiology, The Second Affiliated Hospital, University of South China, Hengyang 421001, Hunan, People's Republic of China
| | - Li Li
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning 530021, Guangxi, People's Republic of China
| |
Collapse
|
22
|
Early lung cancer diagnostic biomarker discovery by machine learning methods. Transl Oncol 2020; 14:100907. [PMID: 33217646 PMCID: PMC7683339 DOI: 10.1016/j.tranon.2020.100907] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/21/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Early diagnosis could improve lung cancer survival rate. The availability of blood-based screening could increase lung cancer patient uptake. An interdisciplinary mechanism combines metabolomics and machine learning methods. Metabolic biomarkers could be potential screening biomarkers for early detection of lung cancer. Naïve Bayes is recommended as an exploitable tool for early lung tumor prediction.
Early diagnosis has been proved to improve survival rate of lung cancer patients. The availability of blood-based screening could increase early lung cancer patient uptake. Our present study attempted to discover Chinese patients’ plasma metabolites as diagnostic biomarkers for lung cancer. In this work, we use a pioneering interdisciplinary mechanism, which is firstly applied to lung cancer, to detect early lung cancer diagnostic biomarkers by combining metabolomics and machine learning methods. We collected total 110 lung cancer patients and 43 healthy individuals in our study. Levels of 61 plasma metabolites were from targeted metabolomic study using LC-MS/MS. A specific combination of six metabolic biomarkers note-worthily enabling the discrimination between stage I lung cancer patients and healthy individuals (AUC = 0.989, Sensitivity = 98.1%, Specificity = 100.0%). And the top 5 relative importance metabolic biomarkers developed by FCBF algorithm also could be potential screening biomarkers for early detection of lung cancer. Naïve Bayes is recommended as an exploitable tool for early lung tumor prediction. This research will provide strong support for the feasibility of blood-based screening, and bring a more accurate, quick and integrated application tool for early lung cancer diagnostic. The proposed interdisciplinary method could be adapted to other cancer beyond lung cancer.
Collapse
|
23
|
Bentaleb J, Larouche M. Innovative use of artificial intelligence in urogynecology. Int Urogynecol J 2020; 31:1287-1288. [PMID: 32055869 DOI: 10.1007/s00192-020-04243-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Jouhayna Bentaleb
- Department of Obstetrics and Gynecology, University of Montreal, Montreal, QC, Canada
| | - Maryse Larouche
- St. Mary's Research Centre, Montreal, QC, Canada.
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
24
|
Artificial intelligence and radiomics in nuclear medicine: potentials and challenges. Eur J Nucl Med Mol Imaging 2019; 46:2731-2736. [DOI: 10.1007/s00259-019-04593-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|