1
|
Raboni S, Faggiano S, Bettati S, Mozzarelli A. Methionine gamma lyase: Structure-activity relationships and therapeutic applications. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140991. [PMID: 38147934 DOI: 10.1016/j.bbapap.2023.140991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
Methionine gamma lyase (MGL) is a bacterial and plant enzyme that catalyzes the conversion of methionine in methanthiol, 2-oxobutanoate and ammonia. The enzyme belongs to fold type I of the pyridoxal 5'-dependent family. The catalytic mechanism and the structure of wild type MGL and variants were determined in the presence of the natural substrate as well as of many sulfur-containing derivatives. Structure-function relationship studies were pivotal for MGL exploitation in the treatment of cancer, bacterial infections, and other diseases. MGL administration to cancer cells leads to methionine starvation, thus decreasing cells viability and increasing their vulnerability towards other drugs. In antibiotic therapy, MGL acts by transforming prodrugs in powerful drugs. Numerous strategies have been pursued for the delivering of MGL in vivo to prolong its bioavailability and decrease its immunogenicity. These include conjugation with polyethylene glycol and encapsulation in synthetic or natural vesicles, eventually decorated with tumor targeting molecules, such as the natural phytoestrogens daidzein and genistein. The scientific achievements in studying MGL structure, function and perspective therapeutic applications came from the efforts of many talented scientists, among which late Tatyana Demidkina to whom we dedicate this review.
Collapse
Affiliation(s)
- Samanta Raboni
- Department of Food and Drug, University of Parma, Parma, Italy; Institute of Biophysics, National Research Council, Pisa, Italy.
| | - Serena Faggiano
- Department of Food and Drug, University of Parma, Parma, Italy; Institute of Biophysics, National Research Council, Pisa, Italy
| | - Stefano Bettati
- Institute of Biophysics, National Research Council, Pisa, Italy; National Institute of Biostructures and Biosystems (INBB), Rome, Italy; Department of Medicine, University of Parma, Parma, Italy
| | - Andrea Mozzarelli
- Department of Food and Drug, University of Parma, Parma, Italy; Institute of Biophysics, National Research Council, Pisa, Italy
| |
Collapse
|
2
|
Kubota Y, Han Q, Reynoso J, Aoki Y, Masaki N, Obara K, Hamada K, Bouvet M, Tsunoda T, Hoffman RM. Old-age-induced obesity reversed by a methionine-deficient diet or oral administration of recombinant methioninase-producing Escherichia coli in C57BL/6 mice. Aging (Albany NY) 2023; 15:204783. [PMID: 37301544 DOI: 10.18632/aging.204783] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023]
Abstract
Obesity increases with aging. Methionine restriction affects lipid metabolism and can prevent obesity in mice. In the present study we observed C57BL/6 mice to double their body weight from 4 to 48 weeks of age and become obese. We evaluated the efficacy of oral administration of recombinant-methioninase (rMETase)-producing E. coli (E. coli JM109-rMETase) or a methionine-deficient diet to reverse old-age-induced obesity in C57BL/6 mice. Fifteen C57BL/6 male mice aged 12-18 months with old-age-induced obesity were divided into three groups. Group 1 was given a normal diet supplemented with non-recombinant E. coli JM109 cells orally by gavage twice daily; Group 2 was given a normal diet supplemented with recombinant E. coli JM109-rMETase cells by gavage twice daily; and Group 3 was given a methionine-deficient diet without treatment. The administration of E. coli JM109-rMETase or a methionine-deficient diet reduced the blood methionine level and reversed old-age-induced obesity with significant weight loss by 14 days. There was a negative correlation between methionine levels and negative body weight change. Although the degree of efficacy was higher in the methionine-deficient diet group than in the E. coli JM109-rMETase group, the present findings suggested that oral administration of E. coli JM109-rMETase, as well as a methionine-deficient diet, are effective in reversing old-age-induced obesity. In conclusion, the present study provides evidence that restricting methionine by either a low-methionine diet or E. coli JM109-rMETase has clinical potential to treat old-age-induced obesity.
Collapse
Affiliation(s)
- Yutaro Kubota
- AntiCancer Inc., San Diego, CA 92111, USA
- Department of Surgery, University of California, San Diego, CA 92111, USA
- Department of Medical Oncology, Division of Internal Medicine, Showa University School of Medicine, Tokyo, Japan
| | | | | | - Yusuke Aoki
- AntiCancer Inc., San Diego, CA 92111, USA
- Department of Surgery, University of California, San Diego, CA 92111, USA
| | - Noriyuki Masaki
- AntiCancer Inc., San Diego, CA 92111, USA
- Department of Surgery, University of California, San Diego, CA 92111, USA
| | - Koya Obara
- AntiCancer Inc., San Diego, CA 92111, USA
- Department of Surgery, University of California, San Diego, CA 92111, USA
| | - Kazuyuki Hamada
- AntiCancer Inc., San Diego, CA 92111, USA
- Department of Surgery, University of California, San Diego, CA 92111, USA
- Department of Medical Oncology, Division of Internal Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, CA 92111, USA
| | - Takuya Tsunoda
- Department of Medical Oncology, Division of Internal Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Robert M Hoffman
- AntiCancer Inc., San Diego, CA 92111, USA
- Department of Surgery, University of California, San Diego, CA 92111, USA
| |
Collapse
|
3
|
Lee LMY, Lin ZQ, Zheng LX, Tu YF, So YH, Zheng XH, Feng TJ, Wang XY, Wong WT, Leung YC. Lysine Deprivation Suppresses Adipogenesis in 3T3-L1 Cells: A Transcriptome Analysis. Int J Mol Sci 2023; 24:ijms24119402. [PMID: 37298352 DOI: 10.3390/ijms24119402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Growing evidence proves that amino acid restriction can reverse obesity by reducing adipose tissue mass. Amino acids are not only the building blocks of proteins but also serve as signaling molecules in multiple biological pathways. The study of adipocytes' response to amino acid level changes is crucial. It has been reported that a low concentration of lysine suppresses lipid accumulation and transcription of several adipogenic genes in 3T3-L1 preadipocytes. However, the detailed lysine-deprivation-induced cellular transcriptomic changes and the altered pathways have yet to be fully studied. Here, using 3T3-L1 cells, we performed RNA sequencing on undifferentiated and differentiated cells, and differentiated cells under a lysine-free environment, and the data were subjected to KEGG enrichment. We found that the differentiation process of 3T3-L1 cells to adipocytes required the large-scale upregulation of metabolic pathways, mainly on the mitochondrial TCA cycle, oxidative phosphorylation, and downregulation of the lysosomal pathway. Single amino acid lysine depletion suppressed differentiation dose dependently. It disrupted the metabolism of cellular amino acids, which could be partially reflected in the changes in amino acid levels in the culture medium. It inhibited the mitochondria respiratory chain and upregulated the lysosomal pathway, which are essential for adipocyte differentiation. We also noticed that cellular interleukin 6 (IL6) expression and medium IL6 level were dramatically increased, which was one of the targets for suppressing adipogenesis induced by lysine depletion. Moreover, we showed that the depletion of some essential amino acids such as methionine and cystine could induce similar phenomena. This suggests that individual amino acid deprivation may share some common pathways. This descriptive study dissects the pathways for adipogenesis and how the cellular transcriptome was altered under lysine depletion.
Collapse
Affiliation(s)
- Leo Man-Yuen Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong, China
| | - Zhi-Qiang Lin
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong, China
| | - Lu-Xi Zheng
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong, China
| | - Yi-Fan Tu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Department of Obstetrics and Gynecology, The Chinese University of Hong Kong, New Territory, Hong Kong, China
| | - Yik-Hing So
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xiu-Hua Zheng
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong, China
| | - Tie-Jun Feng
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong, China
| | - Xi-Yue Wang
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518000, China
| | - Wai-Ting Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yun-Chung Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
4
|
Zhang R, Sun X, Huang Z, Pan Y, Westbrook A, Li S, Bazzano L, Chen W, He J, Kelly T, Li C. Examination of serum metabolome altered by cigarette smoking identifies novel metabolites mediating smoking-BMI association. Obesity (Silver Spring) 2022; 30:943-952. [PMID: 35258150 PMCID: PMC8957487 DOI: 10.1002/oby.23386] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/25/2021] [Accepted: 01/03/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The authors hypothesize that an untargeted metabolomics study will identify novel mechanisms underlying smoking-associated weight loss. METHODS This study performed cross-sectional analyses among 1,252 participants in the Bogalusa Heart Study and assessed 1,202 plasma metabolites for mediation effects on smoking-BMI associations. Significant metabolites were tested for associations with smoking genetic risk scores among a subset of participants (n = 654) with available genomic data, followed by direction dependence analysis to investigate causal relationships between the metabolites and smoking and BMI. All analyses controlled for age, sex, race, education, alcohol drinking, and physical activity. RESULTS Compared with never smokers, current and former smokers had a 3.31-kg/m2 and 1.77-kg/m2 lower BMI after adjusting for all covariables, respectively. A total of 22 xenobiotics and 94 endogenous metabolites were significantly associated with current smoking. Eight xenobiotics were also associated with former smoking. Forty metabolites mediated the smoking-BMI associations, and five showed causal relationships with both smoking and BMI. These metabolites, including 1-oleoyl-GPE (18:1), 1-linoleoyl-GPE (18:2), 1-stearoyl-2-arachidonoyl-GPE (18:0/20:4), α-ketobutyrate, and 1-palmitoyl-GPE (16:0), mediated 26.0% of the association between current smoking and BMI. CONCLUSIONS This study cataloged plasma metabolites altered by cigarette smoking and identified five metabolites that partially mediated the association between current smoking and BMI.
Collapse
Affiliation(s)
- Ruiyuan Zhang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, US
| | - Xiao Sun
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, US
| | - Zhijie Huang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, US
| | - Yang Pan
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, US
| | - Adrianna Westbrook
- Pediatric Biostatistics Core, Department of Pediatrics, Emory University
| | - Shengxu Li
- Children’s Minnesota Research Institute, Children’s Hospitals and Clinics of Minnesota, Minneapolis, MN, US
| | - Lydia Bazzano
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, US
| | - Wei Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, US
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, US
| | - Tanika Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, US
| | - Changwei Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, US
| |
Collapse
|
5
|
Abstract
In this paper, the extraction of polyphenols from amaranth seed using a Box–Benhken design using four factors—ultra-turrax speed, solid-to-liquid ratio (RSL), methanol concentration and extraction time—were studied. There were two responses studied for the model: total phenolic content (TPC) and total flavonoid content (TFC). The factors which influenced the most the extraction of the TPC and TFC were the RSL, methanol concentration and ultra-turrax speed. Twelve phenolic acids (rosmarinic acid, p-coumaric acid, chlorogenic acid, vanillic acid, caffeic acid, p-hydroxybenzoic acid, protocatechuic acid and gallic acid) and flavonoids (kaempferol, quercetin, luteolin and myricetin) were studied, and the most abundant one was kaempferol followed by myricetin. The amaranth seed is a valuable source of fatty acids, and 16.54% of the total fatty acids determined were saturated fatty acids, while 83.45% of the fatty acids were unsaturated ones. Amaranth seed is a valuable source of amino acids, with 9 essential amino acids being reported: histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan and valine.
Collapse
|
6
|
Yang Y, Qian J, Li B, Lu M, Le G, Xie Y. Metabolomics Based on 1H-NMR Reveal the Regulatory Mechanisms of Dietary Methionine Restriction on Splenic Metabolic Dysfunction in Obese Mice. Foods 2021; 10:foods10102439. [PMID: 34681487 PMCID: PMC8535630 DOI: 10.3390/foods10102439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Methionine restriction (MR) has been reported to have many beneficial health effects, including stress resistance enhancement and lifespan extension. However, the effects of MR on the splenic metabolic dysfunction induced by obesity in mice remain unknown. This study aimed to investigate the scientific problem and clarify its possible mechanisms. C57BL/6J mice in the control group were fed a control diet (0.86% methionine, 4.2% fat) for 34 weeks, and others were fed a high-fat diet (0.86% methionine, 24% fat) for 10 weeks to establish diet-induced obese (DIO) mouse models. Then, the obtained DIO mice were randomly divided into two groups: the DIO group (DIO diet), the DIO + MR group (0.17% methionine, 24% fat) for 24 weeks. Our results indicated that MR decreased spleen weight, and spleen and plasma lipid profiles, promoted lipid catabolism and fatty acid oxidation, glycolysis and tricarboxylic acid cycle metabolism, and improved mitochondrial function and ATP generation in the spleen. Moreover, MR normalized the splenic redox state and inflammation-related metabolite levels, and increased plasma levels of immunoglobulins. Furthermore, MR increased percent lean mass and splenic crude protein levels, activated the autophagy pathway and elevated nucleotide synthesis to maintain protein synthesis in the spleen. These findings indicate that MR can ameliorate metabolic dysfunction by reducing lipid accumulation, oxidative stress, and inflammation in the spleen, and the mechanism may be the activation of autophagy pathway.
Collapse
Affiliation(s)
- Yuhui Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.Y.); (J.Q.); (M.L.)
| | - Jing Qian
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.Y.); (J.Q.); (M.L.)
| | - Bowen Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.L.); (G.L.)
| | - Manman Lu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.Y.); (J.Q.); (M.L.)
| | - Guowei Le
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.L.); (G.L.)
| | - Yanli Xie
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.Y.); (J.Q.); (M.L.)
- Correspondence: ; Tel.: +86-371-6775-8022
| |
Collapse
|
7
|
Tashiro Y, Han Q, Tan Y, Sugisawa N, Yamamoto J, Nishino H, Inubushi S, Sun YU, Lim H, Aoki T, Murakami M, Takahashi Y, Bouvet M, Hoffman RM. Oral Recombinant Methioninase Prevents Nonalcoholic Fatty Liver Disease in Mice on a High Fat Diet. In Vivo 2021; 34:979-984. [PMID: 32354883 DOI: 10.21873/invivo.11866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIM We have recently shown that oral recombinant methionase (o-rMETase) prevents obesity and diabetes onset in mice on a high-fat (HF) diet. The present study aimed to determine if o-rMETase can inhibit the onset of nonalcoholic fatty liver disease (NAFLD) onset in mice on a high-fat diet. MATERIALS AND METHODS Male C57BL/6J mice in the control group were fed a normal-fat diet (NFD) (+6.5% fat), and other mice were fed a high-fat (HF) diet (+34.3% fat). Then, the mice on the HF diet were divided into two dietary groups: i) HF+phosphate buffered saline (PBS) group, and ii) HF+o-rMETase group. RESULT The fatty change score in the livers of mice treated with HF+PBS increased to an average of 2.6 during the experimental period of 8 weeks. In contrast, the fatty change in the livers of mice on the HF+o-rMETase group had an average score of 0.92 (p=0.04, HF+PBS vs HF+o-rMETase). CONCLUSION o-rMETase inhibited the onset of NAFLD as well as prevented obesity and the onset of diabetes on a high-fat diet, offering a possibility of a new paradigm to prevent liver cirrhosis or liver cancer via NAFLD.
Collapse
Affiliation(s)
- Yoshihiko Tashiro
- AntiCancer Inc, San Diego, CA, U.S.A.,Department of General and Gastroenterological Surgery, Showa University School of Medicine, Tokyo, Japan.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | | | | | - Norihiko Sugisawa
- AntiCancer Inc, San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Jun Yamamoto
- AntiCancer Inc, San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Hiroto Nishino
- AntiCancer Inc, San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Sachiko Inubushi
- AntiCancer Inc, San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Y U Sun
- AntiCancer Inc, San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Hyein Lim
- AntiCancer Inc, San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Takeshi Aoki
- Department of General and Gastroenterological Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Masahiko Murakami
- Department of General and Gastroenterological Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Yoshihisa Takahashi
- Department of Pathology, Graduate School of Medical Sciences, International University of Health and Welfare, Narita, Japan
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Robert M Hoffman
- AntiCancer Inc, San Diego, CA, U.S.A .,Department of Surgery, University of California, San Diego, CA, U.S.A
| |
Collapse
|
8
|
Tashiro Y, Han Q, Tan Y, Sugisawa N, Yamamoto J, Nishino H, Inubushi S, Sun YU, Zhu G, Lim H, Aoki T, Murakami M, Bouvet M, Hoffman RM. Oral Recombinant Methioninase Inhibits Diabetes Onset in Mice on a High-fat Diet. In Vivo 2021; 34:973-978. [PMID: 32354882 DOI: 10.21873/invivo.11865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND/AIM We have recently shown that oral recombinant methionase (o-rMETase) prevents obesity in mice on a high-fat (HF) diet. The present study aimed to determine if o-rMETase can inhibit the onset of diabetes in mice on a HF diet. MATERIALS AND METHODS The mice on a HF diet were divided into two groups: 1) HF+phosphate buffered saline (PBS) group; 2) HF+o-rMETase group. RESULTS The blood glucose level in the HF+PBS group increased to average of 201 mg/dl during the experimental period of 8 weeks. In contrast, the blood glucose level in the HF+o-rMETase group maintained an average of 126 mg/dl (p<0.01, HF+PBS vs. HF+o-rMETase). The glucose tolerance test showed a significant increase in tolerance in the HF+o-rMETase group at 120 min after glucose injection compared to the HF+PBS group (p=0.04). Visceral adipose tissue was significantly less in the HF+o-rMETase group than the HF+PBS group (p=0.05). There was no difference in insulin levels, cholesterol or triglycerides between the HF+PBS and HF+o-rMETase groups. CONCLUSION o-rMETase inhibited the onset of diabetes as well as prevented obesity on a high-fat diet, offering a possibility of a new and easy-to-use alternative to severe dieting or insulin injections.
Collapse
Affiliation(s)
- Yoshihiko Tashiro
- AntiCancer Inc, San Diego, CA, U.S.A.,Department of General and Gastroenterological Surgery, Showa University School of Medicine, Tokyo, Japan.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | | | | | - Norihiko Sugisawa
- AntiCancer Inc, San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Jun Yamamoto
- AntiCancer Inc, San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Hiroto Nishino
- AntiCancer Inc, San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Sachiko Inubushi
- AntiCancer Inc, San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Y U Sun
- AntiCancer Inc, San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Guangwei Zhu
- AntiCancer Inc, San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Hyein Lim
- Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Takeshi Aoki
- Department of General and Gastroenterological Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Masahiko Murakami
- Department of General and Gastroenterological Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Robert M Hoffman
- AntiCancer Inc, San Diego, CA, U.S.A. .,Department of Surgery, University of California, San Diego, CA, U.S.A
| |
Collapse
|
9
|
Abstract
Life expectancy in most developed countries has been rising over the past century. In the UK alone, there are about 12 million people over 65 years old and centenarians have increased by 85% in the past 15 years. As a result of the ageing population, which is due mainly to improvements in medical treatments, public health, improved housing and lifestyle choices, there is an associated increase in the prevalence of pathological conditions, such as metabolic disorders, type 2 diabetes, cardiovascular and neurodegenerative diseases, many types of cancer and others. Statistics suggest that nearly 54% of elderly people in the UK live with at least two chronic conditions, revealing the urgency for identifying interventions that can prevent and/or treat such disorders. Non-pharmacological, dietary interventions such as energetic restriction (ER) and methionine restriction (MR) have revealed promising outcomes in increasing longevity and preventing and/or reversing the development of ageing-associated disorders. In this review, we discuss the evidence and mechanisms that are involved in these processes. Fibroblast growth factor 1 and hydrogen sulphide are important molecules involved in the effects of ER and MR in the extension of life span. Their role is also associated with the prevention of metabolic and cognitive disorders, highlighting these interventions as promising modulators for improvement of health span.
Collapse
|
10
|
Hoffman RM, Han Q. Oral Methioninase for Covid-19 Methionine-restriction Therapy. In Vivo 2020; 34:1593-1596. [PMID: 32503816 PMCID: PMC8378026 DOI: 10.21873/invivo.11948] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/21/2020] [Accepted: 05/23/2020] [Indexed: 11/10/2022]
Abstract
The Covid-19 pandemic is a world-wide crisis without an effective therapy. While most approaches to therapy are using repurposed drugs that were developed for other diseases, it is thought that targeting the biology of the SARS-CoV-2 virus, which causes Covid-19, can result in an effective therapeutic treatment. The coronavirus RNA cap structure is methylated by two viral methyltransferases that transfer methyl groups from S-adenosylmethionine (SAM). The proper methylation of the virus depends on the level of methionine in the host to form SAM. Herein, we propose to restrict methionine availability by treating the patient with oral recombinant methioninase, aiming to treat Covid-19. By restricting methionine we not only interdict viral replication, which depends on the viral RNA cap methyaltion, but also inhibit the proliferation of the infected cells, which have an increased requirement for methionine. Most importantly, the virally-induced T-cell- and macrophage-mediated cytokine storm, which seems to be a significant cause for Covid-19 deaths, can also be inhibited by restricting methionine, since T-cell and macrophrage activation greatly increases the methionine requirement for these cells. The evidence reviewed here suggests that oral recombinant methioninase could be a promising treatment for coronavirus patients.
Collapse
|