1
|
Wang D, Shimamura N, Miwa N, Xiao L. Combined use of hydrogen-rich water and enzyme-digested edible bird's nest improves PMA/LPS-impaired wound healing in human inflammatory gingival tissue equivalents. Hum Cell 2024; 37:997-1007. [PMID: 38679666 DOI: 10.1007/s13577-024-01065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024]
Abstract
Gingival wound healing plays a critical role in maintaining oral health. However, this process can be delayed by oxidative stress and excessive inflammatory responses. In this study, we established a human inflammatory gingival tissue equivalent (iGTE) to investigate the inhibitory effects of hydrogen-rich water (HW), enzyme-digested edible bird's nest (EBND) and sialic acid (SA) on PMA (an inducer of oxidative free radicals)- and LPS (an inflammatory stimulus)-impaired wound healing. The iGTE was constructed by human gingival fibroblasts (hGFs), keratinocytes and macrophages under three-dimensional conditions. Wounds in the iGTE and hGF/keratinocyte monolayers were created by mechanical injury. Tissues and cells were pretreated with HW, EBND, and SA, and then exposed to the inflammatory and oxidative environment induced by PMA (10 ng/mL) and LPS (250 ng/mL). The inflammatory cytokines IL-6 and IL-8 were quantitatively analyzed by ELISA. Histopathological image analysis was performed by HE and immunofluorescence staining. In the iGTE, PMA/LPS significantly reduced the epithelial thickness while causing a decrease in K8/18, E-cadherin, laminin and elastin expression and an increase in COX-2 expression along with ulcer-like lesions. In mechanically scratched hGFs and keratinocyte monolayers, PMA/LPS significantly impaired wound healing, and promoted the secretion of IL-6 and IL-8. Pretreatment of HW, EBND, and SA significantly suppressed PMA/LPS-induced wound healing delay and inflammatory responses in cell monolayers, as well as in the iGTE. Remarkably, the combined use of HW and EBND exhibited particularly robust results. Combined use of HW and EBND may be applied for the prevention and treatment of wound healing delay.
Collapse
Affiliation(s)
- Dongliang Wang
- Hebei Edible Bird's Nest Fresh Stew Technology Innovation Center, Bazhou Economic Development Zone, Langfang, 065700, China
| | - Naohiro Shimamura
- Department of Dental Anesthesiology, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan
| | - Nobuhiko Miwa
- Prefectural University of Hiroshima, Faculty of Life Sciences, Hiroshima, 727-0023, Japan
- Incorporated Association Hydrogen Medical Institute, Minatojima Minamicho 1-6-4, ChuOh-Ku, Kobe, 650-0047, Japan
| | - Li Xiao
- Department of Physiology, School of Life Dentistry at Tokyo, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-Ku, Tokyo, 102-8159, Japan.
| |
Collapse
|
2
|
Higashi H, Oyabu T, Nagano C, Kitamura H, Kawanami S, Saito M, Horie S. Measuring the effects of respiratory protective equipment and other protectors in preventing the scattering of vocalization droplets. INDUSTRIAL HEALTH 2023; 61:432-445. [PMID: 36631085 PMCID: PMC10731419 DOI: 10.2486/indhealth.2022-0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
This study was conducted to quantitatively examine the effects of respiratory protective equipment (respirators) and various other types of protectors in preventing the scattering of vocalization droplets. Each of 12 adult male volunteers was asked to vocalize intermittently for 1 min at a target intensity of approximately 100 dBA in an experimental room adjusted to a humidity of approximately 60-70%. The subjects vocalized while wearing respirators, other types of protectors, or no protectors at all. The droplet concentration in a particle size range of 0.3 to 10 μm was measured under each experimental condition, and the transmitted particle concentration and penetration were calculated. The concentration and penetration of particles transmitted from the respirators were lower than those transmitted from the other protectors examined. The probability of infection reduction through the use of the protectors was estimated from the data obtained on the effectiveness of the protectors in preventing the scattering of droplets. We concluded that there is no need for additional droplet scattering prevention in various work settings when appropriate respirators are used under optimal conditions.
Collapse
Affiliation(s)
- Hidenori Higashi
- Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan
| | - Takako Oyabu
- Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan
| | - Chikage Nagano
- Department of Health Policy and Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan
| | - Hiroko Kitamura
- Occupational Health Training Center, University of Occupational and Environmental Health, Japan
| | - Shoko Kawanami
- Occupational Health Training Center, University of Occupational and Environmental Health, Japan
| | - Mitsumasa Saito
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Japan
| | - Seichi Horie
- Department of Health Policy and Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan
| |
Collapse
|
3
|
Xiao L, Mochizuki M, Wang D, Shimamura N, Sunada K, Nakahara T. Types of cell culture inserts affect cell crosstalk between co-cultured macrophages and adipocytes. Biochem Biophys Res Commun 2023; 658:10-17. [PMID: 37011478 DOI: 10.1016/j.bbrc.2023.03.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023]
Abstract
Cell culture inserts offer an in vivo-like microenvironment to investigate cell-cell interactions between co-cultivated cells. However, it is unclear if types of inserts affect cell crosstalk. Here, we developed an environment-friendly cell culture insert, XL-insert, which can reduce plastic waste with lower cost. We compared XL insert with two types of commercial disposable culture inserts, Koken® insert with atelocollagen membrane (Col-inserts) and Falcon® inserts with plastic membrane (PET-inserts) on cell-cell interactions in co-cultivated THP-1 macrophages and OP9 adipocytes. Scanning electron microscope, immunoassay and imaging analysis showed that among three types of inserts, XL-inserts allowed cytokines from co-cultivated macrophages and adipocytes to diffuse freely and offered preferable in vivo-like microenvironment for cell-cell interactions. PET-inserts showed limitations for intercellular communication due to some pores being blocked by somas on the membrane that caused much lower permeability for cytokines passing through. Col-inserts blocked large sized cytokines but allowed small sized molecules to permeate resulting in improved lipid accumulation and adiponectin secretion in OP9 adipocytes. Taken together, our data demonstrated that membrane type and pore size on the membrane affect the cross-talk between co-cultivated cells very differently. Some previous co-culture studies might have different results if the inserts were changed.
Collapse
Affiliation(s)
- Li Xiao
- Department of Pharmacology, School of Life Dentistry at Tokyo, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan.
| | - Mai Mochizuki
- Department of Life Science Dentistry, The Nippon Dental University, Tokyo, Japan; Department of Developmental and Regenerative Dentistry, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan.
| | - Dongliang Wang
- Beijing Xiaoxiandun Biotechnology Co., Ltd., No. 150, Guanzhuang Road, Changying Town, Chaoyang District, Beijing, 100020, China; Hebei Edible Bird's Nest Fresh Stew Technology Innovation Center, Bazhou Economic Development Zone, Langfang, 065700, China.
| | - Naohiro Shimamura
- Department of Dental Anesthesiology, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan.
| | - Katsuhisa Sunada
- Department of Dental Anesthesiology, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan.
| | - Taka Nakahara
- Department of Developmental and Regenerative Dentistry, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan.
| |
Collapse
|
4
|
Enzyme-Digested Edible Bird’s Nest (EBND) Prevents UV and arid Environment-Induced Cellular Oxidative Stress, Cell Death and DNA Damage in Human Skin Keratinocytes and Three-Dimensional Epithelium Equivalents. Antioxidants (Basel) 2023; 12:antiox12030609. [PMID: 36978856 PMCID: PMC10045731 DOI: 10.3390/antiox12030609] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
The aim of this study is to investigate the repressive effects of enzyme-digested edible bird’s nest (EBND) on the combination of arid environment and UV-induced intracellular oxidative stress, cell death, DNA double-strand breaks (DSBs) and inflammatory responses in human HaCaT keratinocytes and three-dimensional (3D) epithelium equivalents. An oxygen radical antioxidant capacity assay showed that EBND exhibited excellent peroxyl radical scavenging activity and significantly increased cellular antioxidant capacity in HaCaT cells. When EBND was administered to HaCaT cells and 3D epitheliums, it exhibited significant preventive effects on air-drying and UVA (Dry-UVA)-induced cell death and apoptosis. Dry-UVA markedly induced intracellular reactive oxygen species (ROS) generation in HaCaT cells and 3D epitheliums as quantified by CellROX® Green/Orange reagents. Once HaCaT cells and 3D epitheliums were pretreated with EBND, Dry-UVA-induced intracellular ROS were significantly reduced. The results from anti-γ-H2A.X antibody-based immunostaining showed that EBND significantly inhibited Dry-UVA-induced DSBs in HaCaT keratinocytes. Compared with sialic acid, EBND showed significantly better protection for both keratinocytes and 3D epitheliums against Dry-UVA-induced injuries. ELISA showed that EBND significantly suppressed UVB-induced IL-6 and TNF-α secretion. In conclusion, EBND could decrease arid environments and UV-induced harmful effects and inflammatory responses in human keratinocytes and 3D epithelium equivalents partially through its antioxidant capacity.
Collapse
|
5
|
Bahrami F, Batt T, Schudel S, Annaheim S, He W, Wang J, Rossi RM, Defraeye T. How long and effective does a mask protect you from an infected person who emits virus-laden particles: By implementing one-dimensional physics-based modeling. Front Public Health 2022; 10:991455. [PMID: 36311564 PMCID: PMC9614280 DOI: 10.3389/fpubh.2022.991455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/27/2022] [Indexed: 01/26/2023] Open
Abstract
SARS-CoV-2 spreads via droplets, aerosols, and smear infection. From the beginning of the COVID-19 pandemic, using a facemask in different locations was recommended to slow down the spread of the virus. To evaluate facemasks' performance, masks' filtration efficiency is tested for a range of particle sizes. Although such tests quantify the blockage of the mask for a range of particle sizes, the test does not quantify the cumulative amount of virus-laden particles inhaled or exhaled by its wearer. In this study, we quantify the accumulated viruses that the healthy person inhales as a function of time, activity level, type of mask, and room condition using a physics-based model. We considered different types of masks, such as surgical masks and filtering facepieces (FFPs), and different characteristics of public places such as office rooms, buses, trains, and airplanes. To do such quantification, we implemented a physics-based model of the mask. Our results confirm the importance of both people wearing a mask compared to when only one wears the mask. The protection time for light activity in an office room decreases from 7.8 to 1.4 h with surgical mask IIR. The protection time is further reduced by 85 and 99% if the infected person starts to cough or increases the activity level, respectively. Results show the leakage of the mask can considerably affect the performance of the mask. For the surgical mask, the apparent filtration efficiency reduces by 75% with such a leakage, which cannot provide sufficient protection despite the high filtration efficiency of the mask. The facemask model presented provides key input in order to evaluate the protection of masks for different conditions in public places. The physics-based model of the facemask is provided as an online application.
Collapse
Affiliation(s)
- Flora Bahrami
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland,ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Till Batt
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Seraina Schudel
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Simon Annaheim
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Weidong He
- Institute of Environmental Engineering, ETH Zurich, Zürich, Switzerland,Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zurich, Zürich, Switzerland,Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - René M. Rossi
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Thijs Defraeye
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland,*Correspondence: Thijs Defraeye
| |
Collapse
|
6
|
Enzyme-digested Colla Corii Asini (E'jiao) suppresses lipopolysaccharide-induced inflammatory changes in THP-1 macrophages and OP9 adipocytes. Hum Cell 2022; 35:885-895. [PMID: 35359251 DOI: 10.1007/s13577-022-00694-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/23/2022] [Indexed: 01/23/2023]
Abstract
Gut microbial lipopolysaccharides (LPS)-induced inflammatory responses in adipose tissue are associated with the dysfunction of adipocytes, insulin resistance and the development of metabolic syndrome. The aim of this study is to investigate (1) the effects of LPS on the differentiation and inflammatory responses of THP-1 monocytes and OP9 preadipocytes under serum free conditions and (2) the repressive effects of enzyme-digested Colla Corii Asini (CCAD) and fish gelatin (FGD) on LPS-induced inflammatory responses in THP-1 macrophages and OP9 adipocytes. Immunofluorescence and oil red O staining showed that a serum free medium supplied with phorbol 12-myristate 13-acetate (PMA) could induce differentiation and lipid accumulation in THP-1 cells as well as OP9 cells. ELISA showed that LPS significantly increased interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) secretions in PMA-differentiated THP-1 macrophages in a dose-dependent manner. LPS significantly suppressed lipid accumulation and adiponectin secretions, and enhanced IL-6 secretions in OP9 adipocytes. Both CCAD and FGD significantly reduced the levels of both macrophages- and adipocytes-derived inflammatory cytokines and increased the level of OP9-secreted adiponectin. In conclusion, LPS could induce inflammatory responses in both THP-1 and OP9 cells and cause dysfunction of OP9 adipocytes under the serum free conditions. CCAD and FGD can repress LPS-induced inflammatory responses in both THP-1 macrophages and OP9 adipocytes, and increase the secretion of adiponectin in OP9 adipocytes. They could be used as health care supplements for improving metabolic syndrome.
Collapse
|
7
|
Hydrogen-Rich Water Prevents Dehydration-Induced Cellular Oxidative Stress and Cell Death in Human Skin Keratinocytes. HYDROGEN 2022. [DOI: 10.3390/hydrogen3010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hypohydration is linked to increased risk of a variety of diseases and can be life-threatening, especially in elderly populations. Dehydration induces cellular damage partially through the production of reactive oxygen species (ROS) in cells, tissues and organs. Hydrogen molecules are known to convert ROS to harmless water. Therefore, theoretically hydrogen-rich water (HW) might eliminate dehydration-induced ROS and reverse its harmful effects in cells. In this in vitro study, we demonstrated that air-drying for 5 min could induce ROS generation in both nucleus and cytoplasm of human keratinocytes HaCaT as quantified by CellROX® Green/Orange reagents (Thermo Fisher Scientific, Waltham, Massachusetts, U.S.), respectively. Conversely, when the air-drying time was increased to 10 and 20 min, HaCaT cells lost the ability to produce ROS. Scanning electron microscopic (SEM) images showed that 10 min air-drying could induce severe membrane damage in HaCaT cells. PrestoBlue assay showed that, when HaCaT cells were air-dried for 20 min, cell viability was decreased to 27.6% of the control cells 48 h later. However, once HaCaT cells were pretreated with HW-prepared media, dehydration-induced intracellular ROS, cell membrane damage and cell death were significantly reduced as compared with double distilled water (DDW) under the same conditions. In conclusion, our data suggested that HW can decrease dehydration-induced harmful effects in human cells partially through its antioxidant capacity.
Collapse
|
8
|
Ataei M, Shirazi FM, Nakhaee S, Abdollahi M, Mehrpour O. Assessment of cloth masks ability to limit Covid-19 particles spread: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1645-1676. [PMID: 34689269 PMCID: PMC8541808 DOI: 10.1007/s11356-021-16847-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/28/2021] [Indexed: 05/10/2023]
Abstract
After the spread of Covid 19 worldwide, the use of cloth masks increased significantly due to a shortage of medical masks. Meanwhile, there were different opinions about the effectiveness of these masks and, so far, no study has been done to find the best fabric masks. This study reviews and summarizes all studies related to fabric masks' effectiveness and various fabrics against coronavirus. This systematic review is based on PRISMA rules. Two researchers separately examined three databases: PubMed, Scopus, and Web of Science. Laboratory and clinical studies were included. After extracting the articles, their quality was assessed with the Joanna Briggs Institute (JBI) tool. In addition to efficacy, other factors, including the penetration of masks, pressure drop, and quality factor, were examined to select the best fabrics. Of the 42 studies selected, 39 were laboratory studies, and 3 were clinical studies. Among the various fabrics examined, cotton quilt 120 thread per inch (TPI), copy paper (bonded), hybrid of cotton with chiffon/ silk, and flannel filtration were found to have over 90% effectiveness in the particle size range of Covid-19. The results and comparison of different factors (pressure drop, filtration efficacy, penetration, filtration quality, and fit factor have been evaluated) showed that among different fabrics, hybrid masks, 2-layered cotton quilt, 2-layered 100% cotton, cotton flannel, and hairy tea towel + fleece sweater had the best performance. Clinical studies have not explicitly examined cloth masks' effectiveness in Covid-19, so the effectiveness of these types of masks for Covid 19 is questionable, and more studies are needed.
Collapse
Affiliation(s)
- Mahshid Ataei
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Farshad M Shirazi
- Arizona Poison & Drug Information Center, University of Arizona, College of Pharmacy and University of Arizona College of Medicine, Tucson, AZ, USA
| | - Samaneh Nakhaee
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Omid Mehrpour
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran.
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
9
|
Ipaki B, Merrikhpour Z, Taheri Rizi MS, Torkashvand S. A study on usability and design parameters in face mask: Concept design of UVW face mask for COVID-19 protection. HUMAN FACTORS AND ERGONOMICS IN MANUFACTURING 2021; 31:664-678. [PMID: 34898977 PMCID: PMC8653001 DOI: 10.1002/hfm.20934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 05/24/2021] [Accepted: 08/06/2021] [Indexed: 06/14/2023]
Abstract
The aim of this study is to investigate the usability of conventional masks to prevent the transmission of coronavirus 2019 (COVID-19) and subsequently design the proposed concept of the mask to reduce leakage and increase efficiency. Acute respiratory syndrome COVID-19 is spreading around the world and can be transmitted from one person with COVID-19 to another through personal contact and breathing. Improper design of current masks can lead to virus transmission. One hundred fifteen users participated in the study using a simple random sampling method in which N95-FFP2 face mask and surgery face mask usability tests were chosen as the most widely used face masks in Iranian people with an online usability questionnaire. Data were analyzed by SPSS. The results showed that the usability of the N95-FFP2 face mask with a total average of 4.46 and a surgical mask with a total average of 3.35 cannot be considered acceptable. Anthropometric and formal changes in people's faces and improper design of the face masks used make it necessary to review the mask redesign measures to increase the prevention of pathogens. In this study, new parameters for face mask design are proposed. Thirty different types of jaws have been considered with the help of CorelDRAW software, along with ideas for optimal mask design with UVW mask concept to be accessed by manufacturers around the world.
Collapse
Affiliation(s)
- Bahram Ipaki
- Faculty of DesignTabriz Islamic Art UniversityTabrizIran
| | - Zahra Merrikhpour
- Industrial Design Department, Art and Architecture FacultyBu‐Ali Sina UniversityHamadanIran
| | | | | |
Collapse
|
10
|
Ogbuoji EA, Zaky AM, Escobar IC. Advanced Research and Development of Face Masks and Respirators Pre and Post the Coronavirus Disease 2019 (COVID-19) Pandemic: A Critical Review. Polymers (Basel) 2021; 13:1998. [PMID: 34207184 PMCID: PMC8235328 DOI: 10.3390/polym13121998] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/05/2022] Open
Abstract
The outbreak of the COVID-19 pandemic, in 2020, has accelerated the need for personal protective equipment (PPE) masks as one of the methods to reduce and/or eliminate transmission of the coronavirus across communities. Despite the availability of different coronavirus vaccines, it is still recommended by the Center of Disease Control and Prevention (CDC), World Health Organization (WHO), and local authorities to apply public safety measures including maintaining social distancing and wearing face masks. This includes individuals who have been fully vaccinated. Remarkable increase in scientific studies, along with manufacturing-related research and development investigations, have been performed in an attempt to provide better PPE solutions during the pandemic. Recent literature has estimated the filtration efficiency (FE) of face masks and respirators shedding the light on specific targeted parameters that investigators can measure, detect, evaluate, and provide reliable data with consistent results. This review showed the variability in testing protocols and FE evaluation methods of different face mask materials and/or brands. In addition to the safety requirements needed to perform aerosol viral filtration tests, one of the main challenges researchers currently face is the inability to simulate or mimic true aerosol filtration scenarios via laboratory experiments, field tests, and in vitro/in vivo investigations. Moreover, the FE through the mask can be influenced by different filtration mechanisms, environmental parameters, filtration material properties, number of layers used, packing density, fiber charge density, fiber diameter, aerosol type and particle size, aerosol face velocity and concentration loadings, and infectious concentrations generated due to different human activities. These parameters are not fully understood and constrain the design, production, efficacy, and efficiency of face masks.
Collapse
Affiliation(s)
- Ebuka A. Ogbuoji
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA;
| | - Amr M. Zaky
- BioMicrobics Inc., 16002 West 110th Street, Lenexa, KS 66219, USA;
| | - Isabel C. Escobar
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA;
| |
Collapse
|
11
|
Bhattacharjee S, Bahl P, de Silva C, Doolan C, Chughtai AA, Heslop D, MacIntyre CR. Experimental Evidence for the Optimal Design of a High-Performing Cloth Mask. ACS Biomater Sci Eng 2021; 7:2791-2802. [PMID: 34019389 PMCID: PMC8171220 DOI: 10.1021/acsbiomaterials.1c00368] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/11/2021] [Indexed: 11/29/2022]
Abstract
Cloth masks can be an alternative to medical masks during pandemics. Recent studies have examined the performance of fabrics under various conditions; however, the performance against violent respiratory events such as human sneezes is yet to be explored. Accordingly, we present a comprehensive experimental study using sneezes by a healthy adult and a tailored image-based flow measurement diagnostic system evaluating all dimensions of protection of commonly available fabrics and their layered combinations: the respiratory droplet blocking efficiency, water resistance, and breathing resistance. Our results reveal that a well-designed cloth mask can outperform a three-layered surgical mask for such violent respiratory events. Specifically, increasing the number of layers significantly increases the droplet blocking efficiency, on average by ∼20 times per additional fabric layer. A minimum of three layers is necessary to resemble the droplet blocking performance of surgical masks, and a combination of cotton/linen (hydrophilic inner layer)-blends (middle layer)-polyester/nylon (hydrophobic outer layer) exhibited the best performance among overall indicators tested. In an optimum three-layered design, the average thread count should be greater than 200, and the porosity should be less than 2%. Furthermore, machine washing at 60 °C did not significantly impact the performance of cloth masks. These findings inform the design of high-performing homemade cloth masks.
Collapse
Affiliation(s)
- Shovon Bhattacharjee
- Biosecurity Program, The Kirby Institute, Faculty of
Medicine, University of New South Wales, Sydney, NSW 2052,
Australia
| | - Prateek Bahl
- School of Mechanical & Manufacturing Engineering,
University of New South Wales, Sydney, NSW 2052,
Australia
| | - Charitha de Silva
- School of Mechanical & Manufacturing Engineering,
University of New South Wales, Sydney, NSW 2052,
Australia
| | - Con Doolan
- School of Mechanical & Manufacturing Engineering,
University of New South Wales, Sydney, NSW 2052,
Australia
| | - Abrar Ahmad Chughtai
- School of Population Health, University of
New South Wales, Sydney, NSW 2052, Australia
| | - David Heslop
- School of Population Health, University of
New South Wales, Sydney, NSW 2052, Australia
| | - Chandini Raina MacIntyre
- Biosecurity Program, The Kirby Institute, Faculty of
Medicine, University of New South Wales, Sydney, NSW 2052,
Australia
- College of Public Service and Community Solutions and
College of Health Solutions, Arizona State University, Tempe,
Arizona 85287, United States
| |
Collapse
|
12
|
Xiao L, Miwa N. Hydrogen Nano-Bubble Water Suppresses ROS Generation, Adipogenesis, and Interleukin-6 Secretion in Hydrogen-Peroxide- or PMA-Stimulated Adipocytes and Three-Dimensional Subcutaneous Adipose Equivalents. Cells 2021; 10:cells10030626. [PMID: 33799840 PMCID: PMC7998368 DOI: 10.3390/cells10030626] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS)-induced oxidative stress in adipose tissue is associated with inflammation and the development of obesity-related metabolic disorders. The aim of this study is to investigate the effects of hydrogen nano-bubble water (HW) on ROS generation, adipogenesis, and interleukin-6 (IL-6) secretion in hydrogen peroxide (H2O2) or phorbol 12-myristate 13-acetate (PMA)-stimulated OP9 adipocytes, and three-dimensional (3D) subcutaneous adipose equivalents. Nanoparticle tracking analysis showed that fresh HW contains 1.17 × 108/mL of nano-sized hydrogen bubbles. Even after 8 to 13 months of storage, approximately half of the bubbles still remained in the water. CellROX® staining showed that HW could diminish H2O2- or PMA-induced intracellular ROS generation in human keratinocytes HaCaT and OP9 cells. We discovered that PMA could markedly increase lipid accumulation to 180% and IL-6 secretion 2.7-fold in OP9 adipocytes. Similarly, H2O2 (5 µM) also significantly stimulated lipid accumulation in OP9 cells and the 3D adipose equivalents. HW treatment significantly repressed H2O2- or PMA-induced lipid accumulation and IL-6 secretion in OP9 adipocytes and the 3D adipose equivalents. In conclusion, HW showed a possibility of repressing oxidative stress, inflammatory response, and adipogenesis at cellular/tissue levels. It can be used for preventing the development of metabolic disorders amongst obese people.
Collapse
Affiliation(s)
- Li Xiao
- Department of Pharmacology, School of Life Dentistry at Tokyo, Nippon Dental University, Tokyo 102-8159, Japan
- Correspondence: ; Tel.: +81-3-3261-8772
| | - Nobuhiko Miwa
- Faculty of Life Sciences, Prefectural University of Hiroshima, Hiroshima 727-0023, Japan;
| |
Collapse
|
13
|
Hydrogen-Generating Silica Material Prevents UVA-ray-Induced Cellular Oxidative Stress, Cell Death, Collagen Loss and Melanogenesis in Human Cells and 3D Skin Equivalents. Antioxidants (Basel) 2021; 10:antiox10010076. [PMID: 33430157 PMCID: PMC7827282 DOI: 10.3390/antiox10010076] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 12/22/2022] Open
Abstract
Ultraviolet-A (UVA) irradiation induces harmful effects on skin cells and accelerates skin aging through oxidative stress. In this study, the effects of a hydrogen-generating silica material named ULH-002 against UVA injuries in human cells and 3D skin equivalents were investigated. The oxygen radical absorption capacity (ORAC) assay showed that both freshly prepared ULH-002 solutions and 7-day-old solutions exhibited equal peroxyl radical (ROO·) scavenging activities concentration-dependently. CellROX® green/orange staining showed that ULH-002 could reduce UVA-induced oxidative stress in human keratinocytes HaCaT and human gingival fibroblasts (HGFs). ULH-002 significantly prevented UVA-induced apoptotic/necrotic cell death and cell-viability decline in HGFs and keratinocytes, as shown by Annexin V/PI apoptosis assay and PrestoBlue assay, respectively. Immunostaining showed that ULH-002 prevented the UVA-induced deterioration of expression of both type IV and I collagens in the 3D skin equivalents, and similarly in monolayer HGFs. UVA-enhanced melanogenesis was observed in human melanocytes HMV-II and HMV-II cell-containing 3D skin equivalents, but markedly prevented by ULH-002 as demonstrated by Fontana–Masson’s staining. In conclusion, our data suggested that ULH-002 could protect human keratinocytes and fibroblasts from UVA-induced injuries, prevent the loss of type IV and I collagens, as well as reduce melanogenesis. ULH-002 might be developed as a skin care reagent in the cosmetic industry.
Collapse
|
14
|
Kitamura H, Kawanami S, Saito M, Horie S. Literature review to integrate information to assist workers to select masks even at workplaces without occupational health personnel. J Occup Health 2021; 63:e12309. [PMID: 34957644 PMCID: PMC8710917 DOI: 10.1002/1348-9585.12309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/01/2021] [Accepted: 12/10/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND With the COVID-19 pandemic, the idea of universal mask wearing to prevent infecting others when one becomes infected has prevailed among people. In general, any workplace is not exempt and workers are required to wear a mask while working at the sites. OBJECTIVES This study aims to integrate information to assist workers to select effective protectors for the prevention of droplet infection even at workplaces without occupational health personnel. METHODS A total of 94 studies were included in this study: 91 studies were identified in MEDLINE, which was used for the literature search, and an additional three studies were identified from other information sources. The studies were checked to eliminate duplication and narrowed down to 31 based on the titles and abstracts. The contents of the 31 studies were read through and then 19 studies were extracted for careful reading. RESULTS AND CONCLUSIONS Regarding the protectors used at workplaces, it was suggested that (1) workers continue to use respiratory protectors as needed at sites where respiratory protectors such as an N95 respirator had to be used even before the spread of COVID-19 and (2) wear surgical masks, multi-layer cloth masks, or hybrid fabric masks made of several types of fabrics that are recommended in terms of preventing dissemination of droplets and protecting against inhalation of droplets, selected according to the working conditions, taking account of air permeability, breathability, and durability.
Collapse
Affiliation(s)
- Hiroko Kitamura
- Occupational Health Training CenterUniversity of Occupational and Environmental Health, JapanKitakyushuJapan
| | - Shoko Kawanami
- Occupational Health Training CenterUniversity of Occupational and Environmental Health, JapanKitakyushuJapan
| | - Mitsumasa Saito
- Department of MicrobiologyUniversity of Occupational and Environmental Health, JapanKitakyushuJapan
| | - Seichi Horie
- Department of Health Policy and Management, Institute of Industrial Ecological SciencesUniversity of Occupational and Environmental Health, JapanKitakyushuJapan
| |
Collapse
|
15
|
Xiao L, Liao F, Fan Y, Miwa N. Enzyme-digested Colla Corii Asini (E'jiao) accelerates wound healing and prevents ultraviolet A-induced collagen synthesis decline and wrinkle formation in three-dimensional skin equivalents. Hum Cell 2020; 33:1056-1067. [PMID: 32761322 DOI: 10.1007/s13577-020-00405-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/28/2020] [Indexed: 01/06/2023]
Abstract
Cutaneous wound healing delay, collagen synthesis decline and wrinkle formation are the common features of skin aging. The aim of this study is to investigate repressive effects of Colla Corii Asini (CCA) (a traditional Chinese medicine which has been used for anti-aging) on hydrogen peroxide (300 µM, 2 h) and ultraviolet A (UVA) (3.2 mJ/cm2)-induced skin aging in vitro. To simulate the in vivo condition of CCA, CCA was digested by gastrointestinal enzymes and added to human gingival fibroblasts (HGF) and three dimensional (3D) skin equivalents at different concentrations. Cell viability assay showed that the enzyme-digested CCA (CCAD) exhibited significant preventive effects on hydrogen peroxide- and UVA-induced cell death. The in vitro scratch assay showed that CCAD was able to prevent hydrogen peroxide-induced wound healing delay in HGF cell sheets. Immunostaining and imaging analysis showed that CCAD could suppress UVA-reduced expression of type IV collagen and elastin in both HGF cells and the 3D skin equivalents. Using a tissue stretching system, wrinkles were formed on UVA-irradiated 3D skin equivalents. Without CCAD-treatment, the wrinkles on the skin were deep, whereas CCAD markedly reduced the depth of wrinkles. In conclusion, CCAD could protect skin cells from oxidative stress and UVA-induced harmful effects, accelerate wound healing, promote synthesis of collagen and elastin, and reduce wrinkles formation. CCAD might be developed as an anti-skin aging reagent in the cosmetic industry.
Collapse
Affiliation(s)
- Li Xiao
- Department of Pharmacology, School of Life Dentistry at Tokyo, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-0071, Japan.
| | - Feng Liao
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Liao Cheng, Shandong Province, China
| | - Yumei Fan
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Liao Cheng, Shandong Province, China
| | - Nobuhiko Miwa
- Faculty of Life Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| |
Collapse
|