2
|
Mahran YF, Al-Kharashi LA, Atawia RT, Alanazi RT, Dhahi AMB, Alsubaie R, Badr AM. Radioprotective Effects of Carvacrol and/or Thymol against Gamma Irradiation-Induced Acute Nephropathy: In Silico and In Vivo Evidence of the Involvement of Insulin-like Growth Factor-1 (IGF-1) and Calcitonin Gene-Related Peptide. Biomedicines 2023; 11:2521. [PMID: 37760962 PMCID: PMC10526293 DOI: 10.3390/biomedicines11092521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Radiotherapy (RT) is an effective curative cancer treatment. However, RT can seriously damage kidney tissues resulting in radiotherapy nephropathy (RN) where oxidative stress, inflammation, and apoptosis are among the common pathomechanisms. Carvacrol and thymol are known for their antioxidative, anti-inflammatory, and radioprotective activities. Therefore, this study investigated the nephroprotective potentials of carvacrol and/or thymol against gamma (γ) irradiation-induced nephrotoxicity in rats along with the nephroprotection mechanisms, particularly the involvement of insulin-like growth factor-1 (IGF-1) and calcitonin gene-related peptide (CGRP). Methods: Male rats were injected with carvacrol and/or thymol (80 and 50 mg/kg BW in the vehicle, respectively) for five days and exposed to a single dose of irradiation (6 Gy). Then, nephrotoxicity indices, oxidative stress, inflammatory, apoptotic biomarkers, and the histopathological examination were assessed. Also, IGF-1 and CGRP renal expressions were measured. Results: Carvacrol and/or thymol protected kidneys against γ-irradiation-induced acute RN which might be attributed to their antioxidative, anti-inflammatory, and antiapoptotic activities. Moreover, both reserved the γ -irradiation-induced downregulation of CGRP- TNF-α loop in acute RN that might be involved in the pathomechanisms of acute RN. Additionally, in Silico molecular docking simulation of carvacrol and thymol demonstrated promising fitting and binding with CGRP, IGF-1, TNF-α and NF-κB through the formation of hydrogen, hydrophobic and alkyl bonds with binding sites of target proteins which supports the reno-protective properties of carvacrol and thymol. Collectively, our findings open a new avenue for using carvacrol and/or thymol to improve the therapeutic index of γ-irradiation.
Collapse
Affiliation(s)
- Yasmen F. Mahran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; (R.T.A.); (A.M.B.)
| | - Layla A. Al-Kharashi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11211, Saudi Arabia;
| | - Reem T. Atawia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; (R.T.A.); (A.M.B.)
- Department of Pharmaceutical Sciences, College of Pharmacy, Southwestern Oklahoma State University, Weatherford, OK 73096, USA
| | - Rawan Turki Alanazi
- Student, Pharmacy College, King Saud University, Riyadh 11211, Saudi Arabia; (R.T.A.); (A.M.B.D.); (R.A.)
| | - Amal M. Bin Dhahi
- Student, Pharmacy College, King Saud University, Riyadh 11211, Saudi Arabia; (R.T.A.); (A.M.B.D.); (R.A.)
| | - Rawd Alsubaie
- Student, Pharmacy College, King Saud University, Riyadh 11211, Saudi Arabia; (R.T.A.); (A.M.B.D.); (R.A.)
| | - Amira M. Badr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; (R.T.A.); (A.M.B.)
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11211, Saudi Arabia;
| |
Collapse
|
3
|
Yu SQ, Ma S, Wang DH. Activation of TRPV1-Expressing Renal Sensory Nerves of Rats with N-Oleoyldopamine Attenuates High-Fat-Diet-Induced Impairment of Renal Function. Int J Mol Sci 2023; 24:ijms24076207. [PMID: 37047183 PMCID: PMC10094377 DOI: 10.3390/ijms24076207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Enhanced renal sympathetic nerve activity (RSNA) contributes to obesity-induced renal disease, while the role of afferent renal nerve activity (ARNA) is not fully understood. The present study tested the hypothesis that activating the transient receptor potential vanilloid 1 (TRPV1) channel in afferent renal nerves suppresses RSNA and prevents renal dysfunction and hypertension in obese rats. N-oleoyldopamine (OLDA, 1 ng/kg, daily) was administrated intrathecally (T8-L3) via an indwelled catheter to chronically activate, TRPV1-positive afferent renal nerves in rats fed a chow diet or high-fat diet (HFD) for 8 weeks. HFD intake significantly increased the body weight, impaired glucose and insulin tolerance, decreased creatinine clearance, and elevated systolic blood pressure in rats compared with the levels of the chow-fed rats (all p < 0.05). An intrathecal OLDA treatment for 8 weeks did not affect the fasting glucose level, glucose tolerance, and insulin tolerance in rats fed either chow or HFD. As expected, the chronic OLDA treatment significantly increased the levels of plasma calcitonin gene-related peptide and substance P and ARNA in the HFD-fed rats (all p < 0.05). Interestingly, the OLDA treatment decreased the urinary norepinephrine level and RSNA in rats fed HFD (both p < 0.05). Importantly, the OLDA treatment attenuated HFD-induced decreases in creatinine clearance and urinary Na+ excretion and increases in the plasma urea level, urinary albumin level, and systolic blood pressure at the end of an 8-week treatment (all p < 0.05). Taken together, the intrathecal administration of OLDA ameliorates the enhancement of RSNA, renal dysfunction, and hypertension in obese rats. These findings shed light on the roles of TRPV1-positive renal afferent nerves in obesity-related renal dysfunction and hypertension.
Collapse
Affiliation(s)
- Shuang-Quan Yu
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University, East Lansing, MI 48824, USA; (S.-Q.Y.); (S.M.)
| | - Shuangtao Ma
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University, East Lansing, MI 48824, USA; (S.-Q.Y.); (S.M.)
| | - Donna H. Wang
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University, East Lansing, MI 48824, USA; (S.-Q.Y.); (S.M.)
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
- Cell & Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA
- Correspondence:
| |
Collapse
|
4
|
He S, Zambelli VO, Sinharoy P, Brabenec L, Bian Y, Rwere F, Hell RC, Stein Neto B, Hung B, Yu X, Zhao M, Luo Z, Wu C, Xu L, Svensson KJ, McAllister SL, Stary CM, Wagner NM, Zhang Y, Gross ER. A human TRPV1 genetic variant within the channel gating domain regulates pain sensitivity in rodents. J Clin Invest 2023; 133:163735. [PMID: 36472910 PMCID: PMC9888391 DOI: 10.1172/jci163735] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Pain signals are relayed to the brain via a nociceptive system, and in rare cases, this nociceptive system contains genetic variants that can limit the pain response. Here, we questioned whether a human transient receptor potential vanilloid 1 (TRPV1) missense variant causes a resistance to noxious stimuli and, further, whether we could target this region with a cell-permeable peptide as a pain therapeutic. Initially using a computational approach, we identified a human K710N TRPV1 missense variant in an otherwise highly conserved region of mammalian TRPV1. After generating a TRPV1K710N-knockin mouse using CRISPR/Cas9, we discovered that the K710N variant reduced capsaicin-induced calcium influx in dorsal root ganglion neurons. The TRPV1K710N rodents also had less acute behavioral responses to noxious chemical stimuli and less hypersensitivity to nerve injury, while their response to noxious heat remained intact. Furthermore, blocking this K710 region in WT rodents using a cell-penetrating peptide limited acute behavioral responses to noxious stimuli and returned pain hypersensitivity induced by nerve injury to baseline levels. These findings identify K710 TRPV1 as a discrete site that is crucial for the control of nociception and provide insights into how to leverage rare genetic variants in humans to uncover fresh strategies for developing pain therapeutics.
Collapse
Affiliation(s)
- Shufang He
- Department of Anesthesiology and Perioperative Medicine, the Second Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China.,Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA
| | - Vanessa O. Zambelli
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA.,Laboratory of Pain and Signaling, Butantan Institute, Sāo Paulo, Brazil
| | - Pritam Sinharoy
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA
| | - Laura Brabenec
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Yang Bian
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA
| | - Freeborn Rwere
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA
| | - Rafaela C.R. Hell
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA
| | - Beatriz Stein Neto
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA.,Laboratory of Pain and Signaling, Butantan Institute, Sāo Paulo, Brazil
| | - Barbara Hung
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA
| | - Xuan Yu
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA
| | - Meng Zhao
- Department of Pathology, ,Stanford Diabetes Research Center, and,Stanford Cardiovascular Institute, School of Medicine, Stanford University, Stanford, California, USA
| | - Zhaofei Luo
- Department of Anesthesiology and Perioperative Medicine, the Second Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Chao Wu
- Department of Anesthesiology and Perioperative Medicine, the Second Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Lijun Xu
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA
| | - Katrin J. Svensson
- Department of Pathology, ,Stanford Diabetes Research Center, and,Stanford Cardiovascular Institute, School of Medicine, Stanford University, Stanford, California, USA
| | - Stacy L. McAllister
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA.,Department of Obstetrics and Gynecology, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Creed M. Stary
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA
| | - Nana-Maria Wagner
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, the Second Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Eric R. Gross
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA.,Stanford Diabetes Research Center, and,Stanford Cardiovascular Institute, School of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
6
|
Capsaicin Prevents Contrast-Associated Acute Kidney Injury through Activation of Nrf2 in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1763922. [PMID: 35615576 PMCID: PMC9126664 DOI: 10.1155/2022/1763922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022]
Abstract
Capsaicin, a transient receptor potential vanilloid 1 channel agonist, possesses antioxidative properties through activating nuclear factor-erythroid 2-related factor 2 (Nrf2). As oxidative stress is a major contributor to the development of contrast-associated acute kidney injury (CA-AKI), we investigated the protective effect of capsaicin against CA-AKI via Nrf2. C57BL/6J mice were treated with dehydration and iodixanol to establish the model of CA-AKI. For pretreatment, capsaicin (0.3 mg/kg) was given via intraperitoneal injection one hour before iodixanol injection. Nrf2-specific siRNA was given through the tail vein to knock down Nrf2. The CA-AKI mouse model had remarkable mitochondrial fragmentation and dysfunction and apoptosis of tubular cells, overproduction of superoxide in renal tubules, increased renal malondialdehyde, tubular epithelial cell injury, and renal dysfunction. Importantly, pretreatment with capsaicin significantly ameliorated tubular cell injury and renal dysfunction with decreased superoxide, renal malondialdehyde, and apoptotic tubular cells and improved mitochondrial morphology and function in the CA-AKI mouse model. The expression of Nrf2 was increased in the kidney from the CA-AKI mouse model and was further enhanced by capsaicin. Administration of siRNA through the tail vein successfully decreased Nrf2 expression in the kidney, and knockdown of Nrf2 by siRNA abolished the beneficial effects of capsaicin on CA-AKI. The present study demonstrated a protective effect of capsaicin pretreatment against CA-AKI via Nrf2.
Collapse
|
7
|
Zhao S, Cui L, Zheng X, Ji Y, Yu C. Meloxicam Alleviates Sepsis-Induced Kidney Injury by Suppression of Inflammation and Apoptosis via Upregulating GPNMB. Appl Bionics Biomech 2022; 2022:1790104. [PMID: 35280124 PMCID: PMC8916883 DOI: 10.1155/2022/1790104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/21/2022] [Accepted: 02/08/2022] [Indexed: 02/02/2023] Open
Abstract
Objective At present, renal injury caused by sepsis seriously endangers the health of patients. Our paper proposed to study the protective effects of meloxicam (Mel) in sepsis-induced acute kidney injury (SAKI) and the underlying mechanisms. Methods The in vitro and in vivo models of SAKI were established using lipopolysaccharide (LPS). Mel was injected intraperitoneally at 60 mg/kg into male C57BL/6 mice 4 hours before LPS injection (10 mg/kg). The HK-2 cells were treated with LPS (1 μg/mL) and Mel (40 μM). The renal function and renal pathological changes as well as renal inflammation and apoptosis were detected in SAKI mice. The inflammation and apoptosis of HK-2 cells induced by LPS were also detected. Results The treatment of Mel significantly decreased the elevated levels of serum creatinine (Scr) and blood urea nitrogen (BUN) in SAKI mice. In addition, the results of HE staining suggested that Mel significantly reduced kidney damage in SAKI mice. Consistently, Mel reduced the expression of LPS-induced kidney injury markers (NGAL and KIM-1). Moreover, LPS induced the expression of inflammatory cytokines (IL-1β, IL-6, and TNF-α) in the kidney, which can be reduced by Mel. Furthermore, Mel effectively reduced the number of apoptotic cells and inhibited the expression of proapoptotic-related proteins (cleaved Caspase-3 and Bax) but increased the antiapoptotic-related protein (Bcl-2) in the kidneys of SAKI mice. Mechanistically, Mel inhibited the phosphorylation of P65 but induced the phosphorylation of AKT and the expression of glycoprotein B of nonmetastatic melanoma (GPNMB). However, knocking down GPNMB can eliminate the anti-inflammatory and antiapoptotic effects of Mel. Conclusion Mel alleviated sepsis-induced kidney injury by inhibiting kidney inflammation and apoptosis via upregulating GPNMB.
Collapse
Affiliation(s)
- Shilei Zhao
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lei Cui
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiufeng Zheng
- Department of Cardiology, Heilongjiang Province Hospital, Harbin, Heilongjiang, China
| | - Ying Ji
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chengyuan Yu
- Department of Gerontology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Gerontology, Shenzhen People's Hospital, Shenzhen, China
| |
Collapse
|
8
|
TRPV1 Contributes to Modulate the Nitric Oxide Pathway and Oxidative Stress in the Isolated and Perfused Rat Heart during Ischemia and Reperfusion. Molecules 2022; 27:molecules27031031. [PMID: 35164296 PMCID: PMC8839190 DOI: 10.3390/molecules27031031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
The transient vanilloid receptor potential type 1 (TRPV1) regulates neuronal and vascular functions mediated by nitric oxide (NO) and by the calcitonin gene-related peptide (CGRP). Here, we study the participation of TRPV1 in the regulation of myocardial injury caused by ischemia-reperfusion and in the control of NO, tetrahydrobiopterin (BH4), the cGMP pathway, CGRP, total antioxidant capacity (TAC), malondialdehyde (MDA) and phosphodiesterase-3 (PDE-3). Isolated hearts of Wistar rats perfused according to the Langendorff technique were used to study the effects of an agonist of TRPV1, capsaicin (CS), an antagonist, capsazepine (CZ), and their combination CZ+CS. The hearts were subjected to three conditions: (1) control, (2) ischemia and (3) ischemia-reperfusion. We determined cardiac mechanical activity and the levels of NO, cGMP, BH4, CGRP, TAC, MDA and PDE-3 in ventricular tissue after administration of CS, CZ and CZ+CS. Western blots were used to study the expressions of eNOS, iNOS and phosphorylated NOS (pNOS). Structural changes were determined by histological evaluation. CS prevented damage caused by ischemia-reperfusion by improving cardiac mechanical activity and elevating the levels of NO, cGMP, BH4, TAC and CGRP. TRPV1 and iNOS expression were increased under ischemic conditions, while eNOS and pNOS were not modified. We conclude that the activation of TRPV1 constitutes a therapeutic possibility to counteract the damage caused by ischemia and reperfusion by regulating the NO pathway through CGRP.
Collapse
|