1
|
Rojas-López JA, Cabrera-Santiago A, García-Andino AA, Olivares-Jiménez LA, Alfonso R. Experimental small fields output factors determination for an MR-linac according to the measuring position and orientation of the detector. Biomed Phys Eng Express 2024; 11:015043. [PMID: 39680998 DOI: 10.1088/2057-1976/ad9f67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/16/2024] [Indexed: 12/18/2024]
Abstract
Purpose. To investigate the effect of the position and orientation of the detector and its influence on the determination of output factors (OF) for small fields for a linear accelerator (MR-linac) integrated with 1.5 T magnetic resonance following the TRS-483 formalism.Methods. OF were measured for small fields in the central axis following the recommendations of the manufacturer and at the dose maximum following the TRS-483 formalism. OF were determined using a microDiamond (MD), a Semiflex (SF) 31021 ionization chamber, Gafchromic EBT3 film and were calculated in Monaco treatment planning system (TPS). Additionally, the orientation response of SF was evaluated, placing it in parallel and perpendicular direction to the radiation beam. The values were compared taking film measurements as reference. The corrected factors,ΩQclinical,msrfclinical,msr, required the use of output correction factorkQclinical,msrfclinical,msrtaken from previous reports. Finally, there are proposed experimentalkQclinical,msrfclinical,msrfor SF and MD, following the measured values in this work.Results. In fields smaller than 4 cm, the positioning of the SF and MD in the central axis or at the point of dose maximum affects the reading significantly with differences of up to 6% and 4%, respectively. For the data calculated in the TPS, the maximum difference of the OF between MD and TPS for fields greater than 2 cm was 0.6% and below this field size the TPS underestimates the OF up to 10.6%. The orientation (parallel or perpendicular) of the SF regarding the radiation beam has a considerable impact on the OF for fields smaller than 3 cm, showing a variation up to 10% for the field of 0.5 cm.Conclusion. This study provides valuable information on the challenges and limitations of measuring output factors in small fields. The outcomes have important implications for the practice of radiosurgery, underscoring the need for accuracy in detector placement and orientation, as well as the importance of using more advanced technologies and more robust measurement methods.
Collapse
Affiliation(s)
- José Alejandro Rojas-López
- Hospital Angeles Puebla, Av. Kepler 2143, Reserva Territorial Atlixcáyotl, 72190, Puebla, Mexico
- Facultad de Astronomía, Matemáticas, Física y Computación, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Alexis Cabrera-Santiago
- Hospital Almater, Av. Alvaro Obregon 1100, Segunda, 21100 Mexicali, Baja California, Mexico
- Unidad de Especialidades Médicas de Oncología, Av Claridad, Plutarco Elías Calles, 21376, Mexicali, Baja California, Mexico
| | - Albin Ariel García-Andino
- PTW Latin America, Av. Evandro Lins e Silva, 840 Sala 2018, Barra da Tijuca, RJ 22631-470 Rio de Janeiro, Brazil
| | - Luis Alfonso Olivares-Jiménez
- Centro Estatal de Oncología 'Dr. Rubén Cardoza Macias', Av. de los Deportistas 5115, Antiguo Aeródromo Militar, 23085, La Paz, Baja California Sur, Mexico
| | - Rodolfo Alfonso
- Medical Physics Consultant, INTECNUS Foundation, RP82 8400, San Carlos de Bariloche, Río Negro, Argentina
| |
Collapse
|
2
|
Rostami A, Barzegar M, Usman M, Paloor SP, Mkanna AY, Al‐Sabahi AF, Hammoud RW. Technical Note: Investigating of dosimetric leaf gap and leaf transmission factor variations across gantry and collimator angles in volumetric modulation arc therapy. J Appl Clin Med Phys 2024; 25:e14523. [PMID: 39258581 PMCID: PMC11633804 DOI: 10.1002/acm2.14523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024] Open
Abstract
PURPOSE This study investigates the influence of gantry and collimator angles on the dosimetric leaf gap (DLG) and leaf transmission factor (LTF) in a Varian LINAC equipped with rounded-end multi-leaf collimators (MLCs). While Varian guidelines recommend DLG measurements at zero degrees for both gantry and collimator, this research aims to address the knowledge gap by assessing DLG and LTF variations at different gantry and collimator angles. METHODS Measurements were conducted using a Varian TrueBeam LINAC with a Millennium 120-leaf MLC and Eclipse TPS version 16.1. The beams utilized in this study had energies of 6 MV, 10 MV, 6 FFF, and 10 FFF. LTF and DLG were determined using ionization chambers in solid water phantoms at various gantry angles (0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°). For each gantry angle, measurements were also taken at various collimator angles (0°, 45°, 90°, and 315°). Dosimetric impacts were evaluated through VMAT Picket Fence tests and patient-specific verification using portal dosimetry for 10 clinical VMAT plans. RESULTS LTF values showed no significant variation across gantry and collimator angles. However, DLG values exhibited notable differences depending on the gantry angle and were independent of the collimator angle. The highest DLG value was observed at a gantry angle of 270 degrees, while the lowest was at 90 degrees. The AXB DLGAverage (averaging seven measurements of DLGs at different gantry angles) model demonstrated the best agreement between measured and calculated dose distributions, indicating the importance of considering averaged DLG values across multiple gantry angles for accurate dose calculations. CONCLUSION Our study highlights the variability of DLG with gantry angle alterations, contrary to Varian guidelines recommending DLG measurements at zero gantry angle only. We advocate for utilizing an averaged DLG value from measurements across multiple gantry angles, as outlined in our methodology.
Collapse
Affiliation(s)
- Aram Rostami
- Radiation Oncology DepartmentNational Center for Cancer Care and ResearchDohaQatar
| | - Mojtaba Barzegar
- Radiation Oncology DepartmentNational Center for Cancer Care and ResearchDohaQatar
- Society for Brain Mapping and TherapeuticLos AnglesCaliforniaUSA
- Intelligent Quantitative Bio‐Medical Imaging (IQBMI)TehranIran
| | - Muhammad Usman
- Radiation Oncology DepartmentNational Center for Cancer Care and ResearchDohaQatar
| | | | - Abbass Yousef Mkanna
- Radiation Oncology DepartmentNational Center for Cancer Care and ResearchDohaQatar
| | - Alla Fuad Al‐Sabahi
- Radiation Oncology DepartmentNational Center for Cancer Care and ResearchDohaQatar
| | - Rabih Wafiq Hammoud
- Radiation Oncology DepartmentNational Center for Cancer Care and ResearchDohaQatar
| |
Collapse
|
3
|
Makrani DS, Nedaei HA, Geraily G, Khorami-Moghaddam A, Banaee N, Jassim H. Monte Carlo Simulation for the Radixact™ Tomotherapy Linac Using EGSnrc. J Med Phys 2024; 49:379-386. [PMID: 39526159 PMCID: PMC11548081 DOI: 10.4103/jmp.jmp_29_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/02/2024] [Accepted: 04/14/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose When exact information regarding the treatment head and initial electron beam is available, the Monte Carlo (MC) approach can properly simulate any linear accelerator. However, manufacturers seldom offer information such as the incident electron beam's energy, radial intensity (spot size), or angular spread. This research aims to forecast these features and verify an MC-simulated linear accelerator model using measurements. Materials and Methods The BEAMnrc code simulated a 6 MV photon beam from a Radixact™ Tomotherapy Linac. Percentage depth dose and beam profile calculations were conducted using DOSYXZnrc by various electron energies and spot sizes and compared to measurements using a Gamma index with two distinct criterion sets. Furthermore, the fine-tuned electron energy and spot size profiles were created to minimize any disparities using distinct angle spreads. Finally, the output factors (OFs) for various field sizes were compared. Results The MC model's fine-tuned electron energy was determined to be 5.8 MeV, with 88.6% of the calculation points passing the 1%/1 mm γ test. A circular radial intensity of 1.4 mm best represented the 6 MV photon beam regarding spot size. Furthermore, a mean angular spread of 0.05 reduced the disparity in cross-field profile between computation and measurement. The most considerable disparities between the MC model OFs and observations were 1.5%. Conclusion Using the BEAMnrc code, a reliable MC model of the Radixact™ Tomotherapy Linac can be created, as shown in this paper. This model can be used to compute dose distributions with confidence.
Collapse
Affiliation(s)
- Danial Seifi Makrani
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
- Radiation Oncology Research Centre, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Ali Nedaei
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
- Radiation Oncology Research Centre, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazale Geraily
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
- Radiation Oncology Research Centre, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Khorami-Moghaddam
- Department of Radiology, Faculty of Allied Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nooshin Banaee
- Medical Radiation Research Center, Central Tehran Branch, Islamic Azad University, Tehran
| | - Hussam Jassim
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
- Radiation Oncology Research Centre, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiotherapy, Euphrates Cancer Hospital, Kufa, Najaf, Iraq
| |
Collapse
|
4
|
Guo J, Zhu M, Zeng W, Wang H, Qin S, Li Z, Tang Y, Ying B, Sang J, Ji M, Meng K, Hui Z, Wang J, Zhou J, Zhou Y, Huan J. Multileaf Collimator Modeling and Commissioning for Complex Radiation Treatment Plans Using 2-Dimensional (2D) Diode Array MapCHECK2. Technol Cancer Res Treat 2024; 23:15330338231225864. [PMID: 38311933 PMCID: PMC10846010 DOI: 10.1177/15330338231225864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 09/27/2023] [Accepted: 12/17/2023] [Indexed: 02/06/2024] Open
Abstract
Purpose: This study aims to develop a data-collecting package ExpressMLC and investigate the applicability of MapCHECK2 for multileaf collimator (MLC) modeling and commissioning for complex radiation treatment plans. Materials and methods: The MLC model incorporates realistic parameters to account for sophisticated MLC features. A set of 8 single-beam plans, denoted by ExpressMLC, is created for the determination of parameters. For the commissioning of the MLC model, 4 intensity modulated radiation therapy (IMRT) plans specified by the AAPM TG 119 report were transferred to a computed tomography study of MapCHECK2, recalculated, and compared to measurements on a Varian accelerator. Both per-beam and composite-beam dose verification were conducted. Results: Through sufficient characterization of the MLC model, under 3%/2 mm and 2%/2 mm criteria, MapCHECK2 can be used to accurately verify per beam dose with gamma passing rate better than 90.9% and 89.3%, respectively, while the Gafchromic EBT3 films can achieve gamma passing rate better than 89.3% and 85.7%, respectively. Under the same criteria, MapCHECK2 can achieve composite beam dose verification with a gamma passing rate better than 95.9% and 90.3%, while the Gafchromic EBT3 films can achieve a gamma passing rate better than 96.1% and 91.8%; the p-value from the Mann Whitney test between gamma passing rates of the per beam dose verification using full MapCHECK2 package calibrated MLC model and film calibrated MLC model is .44 and .47, respectively; the p-value between those of the true composite beam dose verification is .62 and .36, respectively. Conclusion: It is confirmed that the 2-dimensional (2D) diode array MapCHECK2 can be used for data collection for MLC modeling with the combination of the ExpressMLC package of plans, whose doses are sufficient for the determination of MLC parameters. It could be a fitting alternative to films to boost the efficiency of MLC modeling and commissioning without sacrificing accuracy.
Collapse
Affiliation(s)
- Jian Guo
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Meng Zhu
- Qiusuo Health Technologies Inc., Suzhou, China
| | - Weijin Zeng
- Department of Radiation Oncology, Yihui Foundation Hospital, Shanwei, China
| | - He Wang
- Qiusuo Health Technologies Inc., Suzhou, China
| | - Songbing Qin
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhibin Li
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Tang
- Qiusuo Health Technologies Inc., Suzhou, China
| | - Binbin Ying
- Department of Stomatology, Ningbo First Hospital, Ningbo, China
| | - Jiugao Sang
- Department of Radiation Oncology, Rudong County Hospital, Nantong, China
| | - Ming Ji
- Qiusuo Health Technologies Inc., Suzhou, China
| | - Kuo Meng
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhouguang Hui
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianyang Wang
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Juying Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yin Zhou
- Homology Medical Technologies Inc., Ningbo, China
| | - Jian Huan
- Department of Radiation Oncology, Suzhou Science and Technology Town Hospital, Suzhou, China
| |
Collapse
|
5
|
Yani S, Noviantoro YA, Husin AD, Rhani MF, Sumaryada T, Haryanto F. Verification of 3D-CRT dose distribution in ArcCheck phantom using Monte Carlo code. Radiat Phys Chem Oxf Engl 1993 2023; 210:111019. [DOI: 10.1016/j.radphyschem.2023.111019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
6
|
Chand B, Singh R, Kumar M. Determination and validation of the initial beam parameters of Elekta Agility collimator head by Monte Carlo simulations. Phys Eng Sci Med 2022; 45:889-899. [PMID: 35849322 DOI: 10.1007/s13246-022-01159-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 07/01/2022] [Indexed: 11/24/2022]
Abstract
The availability of geometrical, physical, and initial beam parameters for Monte Carlo (MC) simulations of the Elekta Agility collimator head has become very difficult due to the proprietary nature of this data. This study presents strategies to independently determine the geometrical and physical properties of the components and initial beam parameters of the Agility collimator head for full beam simulations and postulates a benchmarking process using the EGSnrc MC toolkit. Target material of W (90%) and Re (10%) of 0.09 cm thickness, flattening filter of 1.77 cm thick stainless steel placed on 0.5 cm Al disc, and primary and secondary collimators of Tungsten alloy have been found to best fit the Agility head. The initial beam energy of 6.0 MeV with a radial distribution given as full-width half maxima (FWHM) of 0.301 cm (crossline) × 0.201 cm (inline) for 6 MV beam with a mean angular spread of 1.34° has been found best fitting the model. Variations of 0.29% and 0.59% have been noted in the measured and calculated values of TPR20,10 and D10 respectively. More than 90% dose points for all simulations passed the 2D gamma criteria of 3% DD, 3 mm DTA. This MC model of the Agility head can be used for dose calculation and validation of advanced treatment techniques.
Collapse
Affiliation(s)
- Bhagat Chand
- Department of Physics, Lovely Professional University, Phagwara, 1444141, Punjab, India.,Department of Radiotherapy, Dr. Rajendra Prasad Government Medical College, Tanda, Kangra, 176001, Himachal Pradesh, India
| | - Ranjit Singh
- Department of Radiotherapy, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Mukesh Kumar
- Department of Physics, Lovely Professional University, Phagwara, 1444141, Punjab, India.
| |
Collapse
|
7
|
Almatani T, Hugtenburg RP, Smakovs A. A Monte Carlo model of an agility head for a 10-MV photon beam. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2050097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Richard P. Hugtenburg
- College of Medicine, Swansea University, Swansea, UK
- Department of Medical Physics and Clinical Engineering, Swansea Bay University Health Board, Swansea, UK
| | - Artjoms Smakovs
- Department of Medical Physics and Clinical Engineering, Swansea Bay University Health Board, Swansea, UK
| |
Collapse
|
8
|
Beam modeling and commissioning for Monte Carlo photon beam on an Elekta Versa HD LINAC. Appl Radiat Isot 2021; 180:110054. [PMID: 34875475 DOI: 10.1016/j.apradiso.2021.110054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 11/22/2022]
Abstract
PURPOSE This study aims at analyzing beam data commissioning along with verifying Monte Carlo-based treatment planning system on the basis of the manufacturer guidelines for Elekta Versa HD Linear Accelerator. Moreover, evaluating the beam match process in terms of quality index, photon profile and multi leaf collimator (MLC) offset is aimed as well. MATERIALS AND METHODS The process of collecting beam data for Monaco 5.51 Treatment Planning System commissioning was done based on the instructions provided by the manufacturer as well as AAPM TG-106. Monte Carlo analysis was done for output factors in water, percent depth dose and beam profiles. A set of eight static and intensity modulated radiation therapy fields were used to verify the MLC parameters. RESULTS The difference between the measured and modeled penetrative quality (D10) was achieved to be 0.54%. The output factors for 6 MV photon energy were measured and the difference between the measured and Monte Carlo output results was smaller than 1% for all the fields. The average percentage of passing the gamma criteria for commissioning test fields was (95+-4)%, however, the minimum agreement was 87.5% belonging to "7SEGA". Additionally, the agreement between both LINAC is 96%, however, the second LINAC reveals a positive offset in the point of approximately -4 cm on the x-axis at the crossplane. CONCLUSION Test commissioning was successfully verified using a homogeneous phantom for point dose measurements, post modelling MLC parameters and patient QA plans. All plan parameters pass the gamma criteria. 6 MV photon beam was successfully commissioned for Elekta VersaHD LINAC and is ready for clinical implementation.
Collapse
|