Rostami A, Barzegar M, Usman M, Paloor SP, Mkanna AY, Al-Sabahi AF, Hammoud RW. Technical Note: Investigating of dosimetric leaf gap and leaf transmission factor variations across gantry and collimator angles in volumetric modulation arc therapy.
J Appl Clin Med Phys 2024:e14523. [PMID:
39258581 DOI:
10.1002/acm2.14523]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024] Open
Abstract
PURPOSE
This study investigates the influence of gantry and collimator angles on the dosimetric leaf gap (DLG) and leaf transmission factor (LTF) in a Varian LINAC equipped with rounded-end multi-leaf collimators (MLCs). While Varian guidelines recommend DLG measurements at zero degrees for both gantry and collimator, this research aims to address the knowledge gap by assessing DLG and LTF variations at different gantry and collimator angles.
METHODS
Measurements were conducted using a Varian TrueBeam LINAC with a Millennium 120-leaf MLC and Eclipse TPS version 16.1. The beams utilized in this study had energies of 6 MV, 10 MV, 6 FFF, and 10 FFF. LTF and DLG were determined using ionization chambers in solid water phantoms at various gantry angles (0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°). For each gantry angle, measurements were also taken at various collimator angles (0°, 45°, 90°, and 315°). Dosimetric impacts were evaluated through VMAT Picket Fence tests and patient-specific verification using portal dosimetry for 10 clinical VMAT plans.
RESULTS
LTF values showed no significant variation across gantry and collimator angles. However, DLG values exhibited notable differences depending on the gantry angle and were independent of the collimator angle. The highest DLG value was observed at a gantry angle of 270 degrees, while the lowest was at 90 degrees. The AXB DLGAverage (averaging seven measurements of DLGs at different gantry angles) model demonstrated the best agreement between measured and calculated dose distributions, indicating the importance of considering averaged DLG values across multiple gantry angles for accurate dose calculations.
CONCLUSION
Our study highlights the variability of DLG with gantry angle alterations, contrary to Varian guidelines recommending DLG measurements at zero gantry angle only. We advocate for utilizing an averaged DLG value from measurements across multiple gantry angles, as outlined in our methodology.
Collapse