1
|
Zhang S, Pei J, Zhao Y, Yu X, Yang L. Gold nanoparticles decorated crystalline carbon nitride nano-walls as a SERS chip for rapid and sensitive detection of benzidine. Talanta 2024; 283:127057. [PMID: 39447400 DOI: 10.1016/j.talanta.2024.127057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
Risk level of benzidine residue to the environment and food safety urges surface enhanced Raman scattering (SERS) substrates to develop with high sensitivity and rapid enrichment. Herein, a hybrid of Au NPs decorated crystalline carbon nitride nano-walls (Au/CCN NWs) is fabricated on Al sheet and employed as a SERS substrate for the first time. An electro-enhanced adsorption strategy is employed to endow as-prepared Au/CCN NWs/Al chip with rapid assay capability. Crystalline phase transition and nano-wall morphology respectively bestows high charge transfer efficiency and favorable enrichment activity upon Au/CCN NWs/Al chip, and the hybrid substrate owns a considerable enhancement factor of 1.76 × 106 under static adsorption mode. Moreover, Au/CCN NWs/Al substrate can achieve the saturation enrichment of benzidine in 120 s with the help of electro-enhanced adsorption, and gains a significantly enhanced signal response compared to static adsorption. Likewise, the highly sensitive response (1 μg L-1), superior reproducibility (RSD = 9.11 %, n = 100) and reliable accuracy (recovery rate of 95.55 %-109.46 %) jointly demonstrate that Au/CCN NWs/Al substrate may be applicable for detecting benzidine residue in actual application. This work offers an integrated solution to both enhance charge transfer efficiency and enrichment activity based on collaborative crystalline phase transition and electro-enhanced adsorption, and may inspire the design of novel noble metal/semiconductor hybrid SERS substrates.
Collapse
Affiliation(s)
- Shuting Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Jingxuan Pei
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yanfang Zhao
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China; Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan, 250014, China
| | - Xiang Yu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Lei Yang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| |
Collapse
|
2
|
Habil MR, Hein DW. Effects of dose and human N-acetyltransferase 1 genetic polymorphism in benzidine metabolism and genotoxicity. Arch Toxicol 2023; 97:1765-1772. [PMID: 37097310 PMCID: PMC10192036 DOI: 10.1007/s00204-023-03497-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/13/2023] [Indexed: 04/26/2023]
Abstract
Benzidine undergoes N-acetylation and following CYP1A2-catalyzed N-hydroxylation undergoes O-acetylation catalyzed by N-acetyltransferase 1 (NAT1). Benzidine exposure is associated with urinary bladder cancer but the effect of NAT1 genetic polymorphism on individual risk remains unclear. We used Chinese hamster ovary (CHO) cells transfected with human CYP1A2 and NAT1*4 allele (reference) or NAT1*14B (variant) to investigate the effects of dose and NAT1 polymorphism on benzidine metabolism and genotoxicity. Rates of benzidine N-acetylation in vitro were higher in CHO cells transfected with NAT1*4 compared to NAT1*14B. CHO cells transfected with NAT1*14B exhibited greater N-acetylation rates in situ than cells transfected with NAT1*4 at low doses of benzidine expected with environmental exposures but not at higher doses. NAT1*14B exhibited over tenfold lower apparent KM which resulted in higher intrinsic clearance for benzidine N-acetylation compared to CHO cells transfected with NAT1*4. Benzidine-induced hypoxanthine phosphoribosyl transferase (HPRT) mutations were higher in CHO cells transfected with NAT1*14B than with NAT1*4 (p < 0.001). Benzidine caused concentration-dependent increase in γ-H2AX signal (indicative of DNA double-strand breaks) in CHO cells transfected with NAT1*4 or NAT1*14B. CHO cells transfected with NAT1*14B exhibited significantly higher level of DNA damage than with NAT1*4 (p < 0.0001). Benzidine-induced ROS did not differ significantly (p > 0.05) between CHO cells transfected with NAT1*4 or NAT1*14B except at 50 μM. Levels of benzidine-induced DNA damage and reactive oxygen species (ROS) showed strong dose-dependent correlation. Our findings support human studies associating NAT1*14B with increased incidence or severity of urinary bladder cancer in workers exposed to benzidine.
Collapse
Affiliation(s)
- Mariam R Habil
- Department of Pharmacology and Toxicology and Brown Cancer Center, University of Louisville, School of Medicine, Louisville, KY, 40202, USA
| | - David W Hein
- Department of Pharmacology and Toxicology and Brown Cancer Center, University of Louisville, School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
3
|
Habil MR, Salazar-González RA, Doll MA, Hein DW. N-acetyltransferase 2 acetylator genotype-dependent N-acetylation and toxicity of the arylamine carcinogen β-naphthylamine in cryopreserved human hepatocytes. Arch Toxicol 2022; 96:3257-3263. [PMID: 36112171 PMCID: PMC9641657 DOI: 10.1007/s00204-022-03381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/02/2022]
Abstract
We used cryopreserved human hepatocytes that express rapid, intermediate, and slow acetylator N-acetyltransferase 2 (NAT2) genotypes to measure the N-acetylation of β-naphthylamine (BNA) which is one of the aromatic amines found in cigarette smoke including E-cigarettes. We investigated the role of NAT2 genetic polymorphism in genotoxicity and oxidative stress induced by BNA. In vitro BNA NAT2 activities in rapid acetylators was 1.6 and 3.5-fold higher than intermediate (p < 0.01) and slow acetylators (p < 0.0001). BNA N-acetylation in situ was 3 to 4- fold higher in rapid acetylators than slow acetylators, following incubation with 10 and 100 µM BNA (p < 0.01). DNA damage was two to threefold higher in the rapid versus slow acetylators (p < 0.0001) and 2.5-fold higher in intermediate versus slow acetylators following BNA treatment at 100 and 1000 μM, ROS/RNS level was the highest in rapid acetylators followed by intermediate and then slow acetylators (p < 0.0001). Our findings show that the N-acetylation of BNA is NAT2 genotype dependent in cryopreserved human hepatocytes and our data further document an important role for NAT2 genetic polymorphism in modifying BNA-induced genotoxicity and oxidative damage.
Collapse
Affiliation(s)
- Mariam R Habil
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, 505 S. Hancock Street, CTR Rm 303, Louisville, KY, 40202, USA
| | - Raúl A Salazar-González
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, 505 S. Hancock Street, CTR Rm 303, Louisville, KY, 40202, USA
| | - Mark A Doll
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, 505 S. Hancock Street, CTR Rm 303, Louisville, KY, 40202, USA
| | - David W Hein
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, 505 S. Hancock Street, CTR Rm 303, Louisville, KY, 40202, USA.
| |
Collapse
|
4
|
Habil MR, Salazar-González RA, Doll MA, Hein DW. Differences in β-naphthylamine metabolism and toxicity in Chinese hamster ovary cell lines transfected with human CYP1A2 and NAT2*4, NAT2*5B or NAT2*7B N-acetyltransferase 2 haplotypes. Arch Toxicol 2022; 96:2999-3012. [PMID: 36040704 PMCID: PMC10187863 DOI: 10.1007/s00204-022-03367-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 02/01/2023]
Abstract
β-naphthylamine (BNA) is an important aromatic amine carcinogen. Current exposures derive primarily from cigarette smoking including e-cigarettes. Occupational and environmental exposure to BNA is associated with urinary bladder cancer which is the fourth most frequent cancer in the United States. N-acetyltransferase 2 (NAT2) is an important metabolizing enzyme for aromatic amines. Previous studies investigated mutagenicity and genotoxicity of BNA in bacteria and in rabbit or rat hepatocytes. However, the effects of human NAT2 genetic polymorphism on N-acetylation and genotoxicity induced by BNA still need to be clarified. We used nucleotide excision repair-deficient Chinese hamster ovary (CHO) cells that were stably transfected with human CYP1A2 and NAT2 alleles: NAT2*4 (reference allele), NAT2*5B (variant slow acetylator allele common in Europe) or NAT2*7B (variant slow acetylator allele common in Asia). BNA N-acetylation was measured both in vitro and in situ via high-performance liquid chromatography (HPLC). Hypoxanthine phosphoribosyl transferase (HPRT) mutations, double-strand DNA breaks, and reactive oxygen species (ROS) were measured as indices of toxicity. NAT2*4 cells showed significantly higher BNA N-acetylation rates followed by NAT2*7B and NAT2*5B. BNA caused concentration-dependent increases in DNA damage and ROS levels. NAT2*7B showed significantly higher levels of HPRT mutants, DNA damage and ROS than NAT2*5B (p < 0.001, p < 0.0001, p < 0.0001 respectively) although both are slow alleles. Our findings suggest that BNA N-acetylation and toxicity are modified by NAT2 polymorphism. Furthermore, they confirm heterogeneity among slow acetylator alleles for BNA metabolism and toxicity supporting differential risk for individuals carrying NAT2*7B allele.
Collapse
Affiliation(s)
- Mariam R Habil
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, 505 S. Hancock Street, CTR Rm 303, Louisville, KY, 40202, USA
| | - Raúl A Salazar-González
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, 505 S. Hancock Street, CTR Rm 303, Louisville, KY, 40202, USA
| | - Mark A Doll
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, 505 S. Hancock Street, CTR Rm 303, Louisville, KY, 40202, USA
| | - David W Hein
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, 505 S. Hancock Street, CTR Rm 303, Louisville, KY, 40202, USA.
| |
Collapse
|
5
|
Millerick-May ML, Wang L, Rice C, Rosenman KD. Ongoing risk of bladder cancer among former workers at the last benzidine manufacturing facility in the USA. Occup Environ Med 2021; 78:625-631. [PMID: 33972377 DOI: 10.1136/oemed-2020-106431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/05/2021] [Accepted: 02/27/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To determine whether there is an ongoing risk of developing bladder cancer in a previously studied cohort of workers exposed to both benzidine and dichlorobenzidine or dichlorobenzidine only in the last benzidine manufacturing plant in the USA. METHODS Workers (n=488) were identified from the quarterly 941 forms the employer was required to submit to the Social Security Administration from 1960 to 1977. Exposures were assigned based on dates worked and known benzidine/dichlorobenzidine production schedules. Incidence, vital status and cause of death were determined through 2014. Analyses were restricted to white men. RESULTS Bladder cancer incidence and mortality were significantly increased (25 incident cases, standardised incidence ratio (SIR) 2.19, 95% CI 1.42 to 3.23, and 5 deaths, standardised mortality ratio (SMR) 3.79, 95% CI 1.23 to 8.84). There were significant increases in incidence and mortality in those exposed to both benzidine and dichlorobenzidine (SIR 3.11, 95% CI 1.97 to 4.67, SMR 4.10, 95% CI 1.12 to 10.50), but not among workers exposed to dichlorobenzidine only (two incident cases, SIR 0.89, 95% CI 0.11 to 3.23 and one death, SMR 2.90, 95% CI 0.07 to 16.15). Bladder cancer incidence and mortality were increased in individuals with >20 years since last exposure with >5 years worked (six observed, SIR 5.94, 95% CI 2.18 to 12.92 and two deaths, SMR 7.93, 95% CI 0.96 to 28.65). CONCLUSIONS Incidence and mortality due to bladder cancer increased among workers exposed to benzidine but not among workers exposed only to dichlorobenzidine. The risk of incidence and death from bladder cancer remain elevated more than 20 years after last exposure to benzidine in those who worked >5 years.
Collapse
Affiliation(s)
| | - Ling Wang
- Department of Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Carol Rice
- Department of Environmental & Public Health Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kenneth D Rosenman
- Department of Medicine, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
6
|
Li N, Zhai Z, Zheng Y, Lin S, Deng Y, Xiang G, Yao J, Xiang D, Wang S, Yang P, Yang S, Xu P, Wu Y, Hu J, Dai Z, Wang M. Association of 13 Occupational Carcinogens in Patients With Cancer, Individually and Collectively, 1990-2017. JAMA Netw Open 2021; 4:e2037530. [PMID: 33599775 PMCID: PMC7893501 DOI: 10.1001/jamanetworkopen.2020.37530] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
IMPORTANCE Occupational exposure to carcinogens has been shown to pose a serious disease burden at the global, regional, and national levels. Based on epidemiologic studies and clinical observations, working environment appears to have important effects on the occurrence of human malignant tumors; however, to date, no systematic articles have been published that specifically investigated cancer burden due to occupational exposure in an individual and collective manner. OBJECTIVE To estimate the degree of exposure and evaluate the cancer burden attributable to occupational carcinogens (OCs) individually and collectively by sex, age, year, and location. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional study including data on 195 countries from the Global Burden of Diseases, Injuries, and Risk Factors Study from January 1, 1990, to December 31, 2017. Data were analyzed from June 24, 2020, to July 20, 2020. EXPOSURES Thirteen OCs (ie, arsenic, asbestos, benzene, beryllium, cadmium, chromium, diesel engine exhaust, formaldehyde, nickel, polycyclic aromatic hydrocarbons, silica, sulfuric acid, and trichloroethylene). MAIN OUTCOMES AND MEASURES The degree and change patterns of exposure as well as the attributable cancer burden, including deaths and disability-adjusted life years (DALYs), by sex, age, year, and location for 13 OCs. The calculation of the population-attributable fraction was based on past exposure in the population and relative risks. RESULTS Based on the GBD 2017 study, 13 OCs attributable to 7 cancer types were included. Most summary exposure values for the 13 OCs, particularly those of diesel engine exhaust (35.6% increase; 95% uncertainty interval [UI], 32.4%-38.5%) and trichloroethylene (30.3% increase; 95% UI, 27.3%-33.5%), increased from 1990 to 2017. Only exposure to asbestos decreased by 13.8% (95% UI, -26.7% to 2.2%). In 2017, 319 000 (95% UI, 256 000-382 000) cancer deaths and 6.42 million (95% UI, 5.15 million to 7.76 million) DALYs were associated with OCs combined, accounting for 61.0% (95% UI, 59.6%-62.4%) of the total cancer deaths and 48.3% (46.3% to 50.2%) of the DALYs. Among the 13 OCs, the 3 leading risk factors for cancer burden were asbestos (71.8%), silica (15.4%), and diesel engine exhaust (5.6%). For most OCs, the attributed cancer outcome was tracheal, bronchial, and lung cancer, which accounted for 89.0% of attributable cancer deaths. China (61 644 cancer deaths), the US (42 848), and Japan (20 748) accounted for the largest number of attributable cancer deaths in 2017; for DALYs, China (1.47 million), the US (0.71 million), and India (0.37 million) were the 3 leading countries. CONCLUSIONS AND RELEVANCE Results of this study suggest that although OC exposure levels have decreased, the overall cancer burden is continuously increasing.
Collapse
Affiliation(s)
- Na Li
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhen Zhai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Zheng
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shuai Lin
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yujiao Deng
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Grace Xiang
- College of Arts and Sciences, New York University, New York
| | - Jia Yao
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Dong Xiang
- Celilo Cancer Center, Oregon Health Science Center Affiliated Mid-Columbia Medical Center, The Dalles
| | - Shuqian Wang
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Pengtao Yang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Si Yang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Peng Xu
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ying Wu
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jingjing Hu
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Meng Wang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
7
|
Gillette MA, Satpathy S, Cao S, Dhanasekaran SM, Vasaikar SV, Krug K, Petralia F, Li Y, Liang WW, Reva B, Krek A, Ji J, Song X, Liu W, Hong R, Yao L, Blumenberg L, Savage SR, Wendl MC, Wen B, Li K, Tang LC, MacMullan MA, Avanessian SC, Kane MH, Newton CJ, Cornwell M, Kothadia RB, Ma W, Yoo S, Mannan R, Vats P, Kumar-Sinha C, Kawaler EA, Omelchenko T, Colaprico A, Geffen Y, Maruvka YE, da Veiga Leprevost F, Wiznerowicz M, Gümüş ZH, Veluswamy RR, Hostetter G, Heiman DI, Wyczalkowski MA, Hiltke T, Mesri M, Kinsinger CR, Boja ES, Omenn GS, Chinnaiyan AM, Rodriguez H, Li QK, Jewell SD, Thiagarajan M, Getz G, Zhang B, Fenyö D, Ruggles KV, Cieslik MP, Robles AI, Clauser KR, Govindan R, Wang P, Nesvizhskii AI, Ding L, Mani DR, Carr SA. Proteogenomic Characterization Reveals Therapeutic Vulnerabilities in Lung Adenocarcinoma. Cell 2020; 182:200-225.e35. [PMID: 32649874 PMCID: PMC7373300 DOI: 10.1016/j.cell.2020.06.013] [Citation(s) in RCA: 392] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/06/2020] [Accepted: 06/03/2020] [Indexed: 12/24/2022]
Abstract
To explore the biology of lung adenocarcinoma (LUAD) and identify new therapeutic opportunities, we performed comprehensive proteogenomic characterization of 110 tumors and 101 matched normal adjacent tissues (NATs) incorporating genomics, epigenomics, deep-scale proteomics, phosphoproteomics, and acetylproteomics. Multi-omics clustering revealed four subgroups defined by key driver mutations, country, and gender. Proteomic and phosphoproteomic data illuminated biology downstream of copy number aberrations, somatic mutations, and fusions and identified therapeutic vulnerabilities associated with driver events involving KRAS, EGFR, and ALK. Immune subtyping revealed a complex landscape, reinforced the association of STK11 with immune-cold behavior, and underscored a potential immunosuppressive role of neutrophil degranulation. Smoking-associated LUADs showed correlation with other environmental exposure signatures and a field effect in NATs. Matched NATs allowed identification of differentially expressed proteins with potential diagnostic and therapeutic utility. This proteogenomics dataset represents a unique public resource for researchers and clinicians seeking to better understand and treat lung adenocarcinomas.
Collapse
Affiliation(s)
- Michael A Gillette
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, 02115, USA.
| | - Shankha Satpathy
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA.
| | - Song Cao
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | | | - Suhas V Vasaikar
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yize Li
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Wen-Wei Liang
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Boris Reva
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jiayi Ji
- Department of Population Health Science and Policy; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Xiaoyu Song
- Department of Population Health Science and Policy; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Wenke Liu
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Runyu Hong
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Lijun Yao
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Lili Blumenberg
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael C Wendl
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kai Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lauren C Tang
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA; Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Melanie A MacMullan
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Shayan C Avanessian
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - M Harry Kane
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | | | - MacIntosh Cornwell
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ramani B Kothadia
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Weiping Ma
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Seungyeul Yoo
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rahul Mannan
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Pankaj Vats
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Emily A Kawaler
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Tatiana Omelchenko
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Antonio Colaprico
- Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Yifat Geffen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Yosef E Maruvka
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | | | - Maciej Wiznerowicz
- Poznan University of Medical Sciences, Poznań, 61-701, Poland; International Institute for Molecular Oncology, Poznań, 60-203, Poland
| | - Zeynep H Gümüş
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rajwanth R Veluswamy
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - David I Heiman
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Matthew A Wyczalkowski
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Christopher R Kinsinger
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Emily S Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Qing Kay Li
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, 21224, USA
| | - Scott D Jewell
- Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Mathangi Thiagarajan
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Gad Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Kelly V Ruggles
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Marcin P Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Karl R Clauser
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Ramaswamy Govindan
- Division of Oncology and Siteman Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Li Ding
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
8
|
Affiliation(s)
- Julia Kastner
- University of Maryland School of Medicine, Baltimore, MD
| | - Rydhwana Hossain
- University of Maryland School of Medicine, Cardiothoracic Imaging, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Medical Center, Baltimore, MD
| | | |
Collapse
|
9
|
Kwak K, Paek D, Zoh KE. Exposure to asbestos and the risk of colorectal cancer mortality: a systematic review and meta-analysis. Occup Environ Med 2019; 76:861-871. [DOI: 10.1136/oemed-2019-105735] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/26/2019] [Accepted: 09/15/2019] [Indexed: 01/10/2023]
Abstract
Asbestos exposure is associated with mesothelioma and cancer of the lung, larynx and ovary. However, the association between asbestos exposure and colorectal cancer is controversial despite several systematic reviews of the literature, including a number of meta-analyses. We performed a systematic review and meta-analysis to evaluate quantitatively the association between exposure to asbestos and colorectal cancer. We searched for articles on occupational asbestos exposure and colorectal cancer in PubMed, EMBASE and Web of Science published before April 2018. In total, 44 articles were selected and 46 cohort studies were analysed. The overall pooled risk estimates and corresponding 95% CIs of the association between occupational asbestos exposure and colorectal cancer were calculated using a random-effects model. Subgroup analyses and sensitivity tests were also performed. There was a significantly increased risk of colorectal cancer mortality among workers exposed to asbestos occupationally, with an overall pooled SMR of 1.16 (95% CI: 1.05 to 1.29). The pooled SMR for colorectal cancer was elevated in studies in which the asbestos-associated risk of lung cancer was also elevated (1.43; 95% CI: 1.30 to 1.56). This implies that the risk of colorectal cancer mortality increases as the level of asbestos exposure rises. A sensitivity analysis showed robust results and there was no publication bias. Although the effect size was small and the heterogeneity among studies was large, our findings indicate that occupational exposure to asbestos is a risk factor for colorectal cancer.
Collapse
|
10
|
Wojtczyk-Miaskowska A, Schlichtholz B. Tobacco carcinogens and the methionine metabolism in human bladder cancer. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2019; 782:108281. [PMID: 31843138 DOI: 10.1016/j.mrrev.2019.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 04/29/2019] [Accepted: 06/03/2019] [Indexed: 01/08/2023]
Abstract
Cigarette smoking is a strong risk factor for bladder cancer. It has been shown that the duration of smoking is associated with a poor prognosis and a higher risk of recurrence. This is due to tobacco carcinogens forming adducts with DNA and proteins that participate in the DNA repair mechanisms. Additionally, polymorphisms of genes responsible for methyl group transfer in the methionine cycle and dosages of vitamins (from diet and supplements) can cause an increased risk of bladder cancer. Upregulated DNA methyltransferase 1 expression and activity results in a high level of methylated products of metabolism, as well as hypermethylation of tumor suppressor genes. The development of a market that provides new inhibitors of DNA methyltransferase or alternatives for current smokers is essential not only for patients but also for people who are under the danger of secondhand smoking and can experience its long-term exposure consequences.
Collapse
Affiliation(s)
- A Wojtczyk-Miaskowska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland.
| | - B Schlichtholz
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| |
Collapse
|
11
|
Zeng Y, Cui Y, Ma J, Huo T, Dong F, Zhang Q, Deng J, Zhang X, Yang J, Wang Y. Lung injury and expression of p53 and p16 in Wistar rats induced by respirable chrysotile fiber dust from four primary areas of China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:22389-22399. [PMID: 28963651 DOI: 10.1007/s11356-017-0279-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
Chrysotile products were widely used in daily life, and a large amount of respirable dust was produced in the process of production and application. At present, there was seldom research on the safety of chrysotile fiber dust, and whether its long-term inhalation can lead to lung cancer was unknown. In order to determine whether respirable chrysotile fiber dust of China caused lung cancer, four major chrysotile-producing mine areas in China were selected for this study. Chrysotile fibers were prepared into respirable dust. Particle size was measured by laser particle analysis, morphology was observed by scanning electron microscope, chrysotile fiber phase was analyzed by X-ray diffraction, trace chemical elements were identified by X-ray fluorescence, and the structure and the active groups of the dust were determined after grinding by Fourier transform infrared spectroscopy. Male Wistar rats were exposed to non-exposed intratracheal instillation with different concentrations of chrysotile fiber dust. The rats were weighed after 1, 3, and 6 months, then the lung tissues were separated, the lung morphology was observed, and the pulmonary index was calculated. Pathological changes in lung tissues were observed by optical microscope after the HE staining of tissues, and the gene expression of p53 and p16 was determined by reverse transcription polymerase chain reaction. First, the results showed that the particle sizes of the four fibers were less than 10 μm. Four primary areas of chrysotile had similar fibrous structure, arranged in fascicles, or mixed with thin chunks of material. Second, the elementary composition of the four fibers was mainly chrysotile, and the structure and the active groups of the grinding dust were not damaged. Third, the weights of the treated rats were obviously lower, and the lung weights and the pulmonary index increased significantly (P < 0.05). Fourth, the treated Wistar rat lung tissues revealed different degrees of congestion, edema, inflammatory cell infiltration, and mild fibrosis. Fifth, the p53 and p16 genes decreased in the Mangnai group after 1 month of exposure, and the other groups increased. The expression of p53 and p16 in each group decreased significantly after 6 months (P < 0.05). In conclusion, the respirable chrysotile fiber dust from the four primary areas of China had the risk of causing lung injury, and these changes may be related to the physical and chemical characteristics of chrysotile from different production areas.
Collapse
Affiliation(s)
- Yali Zeng
- Department of Clinical Laboratory, 404 Hospital of Mianyang, Mianyang, 621000, Sichuan, People's Republic of China
| | - Yan Cui
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Ji Ma
- Department of Clinical Laboratory, 404 Hospital of Mianyang, Mianyang, 621000, Sichuan, People's Republic of China
| | - Tingting Huo
- Key Laboratory of Solid Waste Treatment and the Resource Recycle, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and the Resource Recycle, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China.
| | - Qingbi Zhang
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jianjun Deng
- Department of Clinical Laboratory, 404 Hospital of Mianyang, Mianyang, 621000, Sichuan, People's Republic of China.
| | - Xu Zhang
- Department of Clinical Laboratory, 404 Hospital of Mianyang, Mianyang, 621000, Sichuan, People's Republic of China
| | - Jie Yang
- Department of Clinical Laboratory, 404 Hospital of Mianyang, Mianyang, 621000, Sichuan, People's Republic of China
| | - Yulin Wang
- Department of Clinical Laboratory, 404 Hospital of Mianyang, Mianyang, 621000, Sichuan, People's Republic of China
| |
Collapse
|