1
|
Yüce A. Evaluation of Pain Through a Novel Mobile Application: The Visual, Auditory, and Tactile Scale (VATAS). Cureus 2024; 16:e60793. [PMID: 38910725 PMCID: PMC11191392 DOI: 10.7759/cureus.60793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2024] [Indexed: 06/25/2024] Open
Abstract
Developing a validated, standardized, and easily accessible pain assessment tool is the first step toward improving pain management. Since pain measurement is often used as a primary or secondary endpoint in daily clinical practice and clinical trials, accurate and precise pain measurement is of great importance. Therefore, there is a need for a valid, reliable, safe, and low-cost method to measure and assess pain levels more objectively. Traditional measurement tools, still considered the gold standard in clinical pain research, have significant disadvantages, including low sensitivity and higher rates of false responses. Perhaps most importantly, the assumption that general pain is a one-dimensional experience that can be measured with a single-item scale is limiting. Recently, new technologies utilizing smart devices have emerged to improve existing traditional pain outcome measures. The Visual, Auditory, and Tactile Analog Scale (VATAS) was designed to address tactile, auditory, and visual senses. By including multiple senses, it is thought that errors arising from the objectification of pain solely through a single-dimensional scale, such as Visual Analog Scale (VAS), could be eliminated, providing a more standardized and repeatable pain assessment. VATAS has the potential to complement the deficiencies of standard pain measurement methods by appealing to multiple senses. It can provide a more standardized, patient-compliant, and repeatable pain assessment. Furthermore, it can be used for evaluating and recording pain in visually impaired patients and has the potential for data tracking, allowing patients' pain to be monitored even when they are at home.
Collapse
Affiliation(s)
- Ali Yüce
- Department of Orthopaedics and Traumatology, Prof. Dr. Cemil Taşcıoğlu Şehir Hastanesi, Istanbul, TUR
| |
Collapse
|
2
|
DaSilva AF, Kim DJ, Lim M, Nascimento TD, Scott PJH, Smith YR, Koeppe RA, Zubieta JK, Kaciroti N. Effect of High-Definition Transcranial Direct Current Stimulation on Headache Severity and Central µ-Opioid Receptor Availability in Episodic Migraine. J Pain Res 2023; 16:2509-2523. [PMID: 37497372 PMCID: PMC10368121 DOI: 10.2147/jpr.s407738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023] Open
Abstract
Objective The current understanding of utilizing HD-tDCS as a targeted approach to improve headache attacks and modulate endogenous opioid systems in episodic migraine is relatively limited. This study aimed to determine whether high-definition transcranial direct current stimulation (HD-tDCS) over the primary motor cortex (M1) can improve clinical outcomes and endogenous µ-opioid receptor (µOR) availability for episodic migraineurs. Methods In a randomized, double-blind, and sham-controlled trial, 25 patients completed 10-daily 20-min M1 HD-tDCS, repeated Positron Emission Tomography (PET) scans with a selective agonist for µOR. Twelve age- and sex-matched healthy controls participated in the baseline PET/MRI scan without neuromodulation. The primary endpoints were moderate-to-severe (M/S) headache days and responder rate (≥50% reduction on M/S headache days from baseline), and secondary endpoints included the presence of M/S headache intensity and the use of rescue medication over 1-month after treatment. Results In a one-month follow-up, at initial analysis, both the active and sham groups exhibited no significant differences in their primary outcomes (M/S headache days and responder rates). Similarly, secondary outcomes (M/S headache intensity and the usage of rescue medication) also revealed no significant differences between the two groups. However, subsequent analyses showed that active M1 HD-tDCS, compared to sham, resulted in a more beneficial response predominantly in higher-frequency individuals (>3 attacks/month), as demonstrated by the interaction between treatment indicator and baseline frequency of migraine attacks on the primary outcomes. These favorable outcomes were also confirmed for the secondary endpoints in higher-frequency patients. Active treatment also resulted in increased µOR concentration compared to sham in the limbic and descending pain modulatory pathway. Our exploratory mediation analysis suggests that the observed clinical efficacy of HD-tDCS in patients with higher-frequency conditions might be potentially mediated through an increase in µOR availability. Conclusion The 10-daily M1 HD-tDCS can improve clinical outcomes in episodic migraineurs with a higher baseline frequency of migraine attacks (>3 attacks/month). This improvement may be, in part, facilitated by the increase in the endogenous µOR availability. Clinical Trial Registration www.ClinicalTrials.gov, identifier - NCT02964741.
Collapse
Affiliation(s)
- Alexandre F DaSilva
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Dajung J Kim
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Manyoel Lim
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Thiago D Nascimento
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Yolanda R Smith
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
| | - Robert A Koeppe
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Jon-Kar Zubieta
- Department of Psychiatry, Mass General Brigham, Newton-Wellesley Hospital, Newton, MA, USA
| | - Niko Kaciroti
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
DaSilva AF, Robinson MA, Shi W, McCauley LK. The Forefront of Dentistry-Promising Tech-Innovations and New Treatments. JDR Clin Trans Res 2022; 7:16S-24S. [PMID: 36121134 PMCID: PMC9793430 DOI: 10.1177/23800844221116850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
KNOWLEDGE TRANSFER STATEMENT This article discusses innovations in technology and treatments that have enormous potential to revolutionize our dental care, including novel concepts in electronic health records, communication between dentists and patients, biologics around diagnosis and treatment, digital dentistry, and, finally, the real-time optimization of information technology. The early implementation and validation of these innovations can drive down their costs and provide better dental and medical services to all members of our society.
Collapse
Affiliation(s)
- A F DaSilva
- Learning Health Systems, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - M A Robinson
- University of Alabama at Birmingham School of Dentistry, Birmingham, AL, USA
- University of Alabama at Birmingham School of Education, Birmingham, AL, USA
| | - W Shi
- The Forsyth Institute, Cambridge, MA, USA
| | - L K McCauley
- University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Dixit A, Lee M. Quantification of Digital Body Maps for Pain: Development and Application of an Algorithm for Generating Pain Frequency Maps. JMIR Form Res 2022; 6:e36687. [PMID: 35749160 PMCID: PMC9232214 DOI: 10.2196/36687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Pain is an unpleasant sensation that signals potential or actual bodily injury. The locations of bodily pain can be communicated and recorded by freehand drawing on 2D or 3D (manikin) surface maps. Freehand pain drawings are often part of validated pain questionnaires (eg, the Brief Pain Inventory) and use 2D templates with undemarcated body outlines. The simultaneous analysis of drawings allows the generation of pain frequency maps that are clinically useful for identifying areas of common pain in a disease. The grid-based approach (dividing a template into cells) allows easy generation of pain frequency maps, but the grid's granularity influences data capture accuracy and end-user usability. The grid-free templates circumvent the problem related to grid creation and selection and provide an unbiased basis for drawings that most resemble paper drawings. However, the precise capture of drawn areas poses considerable challenges in producing pain frequency maps. While web-based applications and mobile-based apps for freehand digital drawings are widely available, tools for generating pain frequency maps from grid-free drawings are lacking. OBJECTIVE We sought to provide an algorithm that can process any number of freehand drawings on any grid-free 2D body template to generate a pain frequency map. We envisage the use of the algorithm in clinical or research settings to facilitate fine-grain comparisons of human pain anatomy between disease diagnosis or disorders or as an outcome metric to guide monitoring or discovery of treatments. METHODS We designed a web-based tool to capture freehand pain drawings using a grid-free 2D body template. Each drawing consisted of overlapping rectangles (Scalable Vector Graphics <rect> elements) created by scribbling in the same area of the body template. An algorithm was developed and implemented in Python to compute the overlap of rectangles and generate a pain frequency map. The utility of the algorithm was demonstrated on drawings obtained from 2 clinical data sets, one of which was a clinical drug trial (ISRCTN68734605). We also used simulated data sets of overlapping rectangles to evaluate the performance of the algorithm. RESULTS The algorithm produced nonoverlapping rectangles representing unique locations on the body template. Each rectangle carries an overlap frequency that denotes the number of participants with pain at that location. When transformed into an HTML file, the output is feasibly rendered as a pain frequency map on web browsers. The layout (vertical-horizontal) of the output rectangles can be specified based on the dimensions of the body regions. The output can also be exported to a CSV file for further analysis. CONCLUSIONS Although further validation in much larger clinical data sets is required, the algorithm in its current form allows for the generation of pain frequency maps from any number of freehand drawings on any 2D body template.
Collapse
Affiliation(s)
- Abhishek Dixit
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Michael Lee
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
de Souza Moura B, Hu XS, DosSantos MF, DaSilva AF. Study Protocol of tDCS Based Pain Modulation in Head and Neck Cancer Patients Under Chemoradiation Therapy Condition: An fNIRS-EEG Study. Front Mol Neurosci 2022; 15:859988. [PMID: 35721312 PMCID: PMC9200064 DOI: 10.3389/fnmol.2022.859988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Multiple therapeutic strategies have been adopted to reduce pain, odynophagia, and oral mucositis in head and neck cancer patients. Among them, transcranial direct current stimulation (tDCS) represents a unique analgesic modality. However, the details of tDCS mechanisms in pain treatment are still unclear. Aims (1) to study the analgesic effects of a protocol that encompassed supervised-remote and in-clinic tDCS sessions applied in head and neck patients undergoing chemoradiation therapy; (2) to explore the underlining brain mechanisms of such modulation process, using a novel protocol that combined functional near-infrared spectroscopy (fNIRS), and electroencephalograph (EEG), two distinct neuroimaging methods that bring information regarding changes in the hemodynamic as well as in the electrical activity of the brain, respectively. Methods This proof-of-concept study was performed on two subjects. The study protocol included a 7-week-long tDCS stimulation procedure, a pre-tDCS baseline session, and two post-tDCS follow-up sessions. Two types of tDCS devices were used. One was used in the clinical setting and the other remotely. Brain imaging was obtained in weeks 1, 2, 5, 7, 8, and after 1 month. Results The protocol implemented was safe and reliable. Preliminary results of the fNIRS analysis in weeks 2 and 7 showed a decrease in functional connections between the bilateral prefrontal cortex (PFC) and the primary sensory cortex (S1) (p < 0.05, FDR corrected). Changes in EEG power spectra were found in the PFC when comparing the seventh with the first week of tDCS. Conclusion The protocol combining remote and in-clinic administered tDCS and integrated fNIRS and EEG to evaluate the brain activity is feasible. The preliminary results suggest that the mechanisms of tDCS in reducing the pain of head and neck cancer patients may be related to its effects on the connections between the S1 and the PFC.
Collapse
Affiliation(s)
- Brenda de Souza Moura
- Headache & Orofacial Pain Effort (H.O.P.E.), Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
- Laboratório de Propriedades Mecânicas e Biologia Celular (PropBio), Departamento de Prótese e Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Xiao-Su Hu
- Headache & Orofacial Pain Effort (H.O.P.E.), Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Marcos F. DosSantos
- Laboratório de Propriedades Mecânicas e Biologia Celular (PropBio), Departamento de Prótese e Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Alexandre F. DaSilva
- Headache & Orofacial Pain Effort (H.O.P.E.), Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
6
|
Transumbilical Single-incision Laparoscopic Surgery for Harvesting Rib and Costal Cartilage. Plast Reconstr Surg Glob Open 2022; 10:e4161. [PMID: 35265442 PMCID: PMC8901211 DOI: 10.1097/gox.0000000000004161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/04/2022] [Indexed: 11/26/2022]
Abstract
The study aimed to introduce a rib and costal cartilage harvesting surgery by transumbilical single-incision laparoscopy and evaluate its efficiency and safety.
Collapse
|
7
|
DaSilva AF, Datta A, Swami J, Kim DJ, Patil PG, Bikson M. The Concept, Development, and Application of a Home-Based High-Definition tDCS for Bilateral Motor Cortex Modulation in Migraine and Pain. FRONTIERS IN PAIN RESEARCH 2022; 3:798056. [PMID: 35295794 PMCID: PMC8915734 DOI: 10.3389/fpain.2022.798056] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/13/2022] [Indexed: 11/16/2022] Open
Abstract
Whereas, many debilitating chronic pain disorders are dominantly bilateral (e.g., fibromyalgia, chronic migraine), non-invasive and invasive cortical neuromodulation therapies predominantly apply unilateral stimulation. The development of excitatory stimulation targeting bilateral primary motor (M1) cortices could potentially expand its therapeutic effect to more global pain relief. However, this is hampered by increased procedural and technical complexity. For example, repetitive transcranial magnetic stimulation (rTMS) and 4 × 1/2 × 2 high-definition transcranial direct current stimulation (4 × 1/2 × 2 HD-tDCS) are largely center-based, with unilateral-target focus-bilateral excitation would require two rTMS/4 × 1 HD-tDCS systems. We developed a system that allows for focal, non-invasive, self-applied, and simultaneous bilateral excitatory M1 stimulation, supporting long-term home-based treatment with a well-tolerated wearable battery-powered device. Here, we overviewed the most employed M1 neuromodulation methods, from invasive techniques to non-invasive TMS and tDCS. The evaluation extended from non-invasive diffuse asymmetric bilateral (M1-supraorbital [SO] tDCS), non-invasive and invasive unilateral focal (4 × 1/2 × 2 HD-tDCS, rTMS, MCS), to non-invasive and invasive bilateral bipolar (M1-M1 tDCS, MCS), before outlining our proposal for a neuromodulatory system with unique features. Computational models were applied to compare brain current flow for current laboratory-based unilateral M11 and bilateral M12 HD-tDCS models with a functional home-based M11-2 HD-tDCS prototype. We concluded the study by discussing the promising concept of bilateral excitatory M1 stimulation for more global pain relief, which is also non-invasive, focal, and home-based.
Collapse
Affiliation(s)
- Alexandre F. DaSilva
- Headache and Orofacial Pain Effort Lab, Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | | | - Jaiti Swami
- Neural Engineering Laboratory, Department of Biomedical Engineering, The City College of New York, New York, NY, United States
| | - Dajung J. Kim
- Headache and Orofacial Pain Effort Lab, Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Parag G. Patil
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States
| | - Marom Bikson
- Neural Engineering Laboratory, Department of Biomedical Engineering, The City College of New York, New York, NY, United States
| |
Collapse
|
8
|
Treatment of Upper Eyelid Third-Degree Burns by Dispersed Implantation of Very Small Autologous Columnar Skin Grafts: A Pilot Study of a New Method. Burns 2022; 48:1671-1679. [DOI: 10.1016/j.burns.2022.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/06/2022] [Accepted: 01/16/2022] [Indexed: 11/18/2022]
|
9
|
Hu XS, Nascimento TD, DaSilva AF. Shedding light on pain for the clinic: a comprehensive review of using functional near-infrared spectroscopy to monitor its process in the brain. Pain 2021; 162:2805-2820. [PMID: 33990114 PMCID: PMC8490487 DOI: 10.1097/j.pain.0000000000002293] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/29/2021] [Indexed: 11/27/2022]
Abstract
ABSTRACT Pain is a complex experience that involves sensation, emotion, and cognition. The subjectivity of the traditional pain measurement tools has expedited the interest in developing neuroimaging techniques to monitor pain objectively. Among noninvasive neuroimaging techniques, functional near-infrared spectroscopy (fNIRS) has balanced spatial and temporal resolution; yet, it is portable, quiet, and cost-effective. These features enable fNIRS to image the cortical mechanisms of pain in a clinical environment. In this article, we evaluated pain neuroimaging studies that used the fNIRS technique in the past decade. Starting from the experimental design, we reviewed the regions of interest, probe localization, data processing, and primary findings of these existing fNIRS studies. We also discussed the fNIRS imaging's potential as a brain surveillance technique for pain, in combination with artificial intelligence and extended reality techniques. We concluded that fNIRS is a brain imaging technique with great potential for objective pain assessment in the clinical environment.
Collapse
Affiliation(s)
- Xiao-Su Hu
- University of Michigan, School of Dentistry, Biologic & Materials Sciences Department, Hedache & Orofacial Pain Effort Lab
| | - Thiago D. Nascimento
- University of Michigan, School of Dentistry, Biologic & Materials Sciences Department, Hedache & Orofacial Pain Effort Lab
| | - Alexandre F. DaSilva
- University of Michigan, School of Dentistry, Biologic & Materials Sciences Department, Hedache & Orofacial Pain Effort Lab
| |
Collapse
|
10
|
Soulard J, Vaillant J, Baillet A, Gaudin P, Vuillerme N. Gait and Axial Spondyloarthritis: Comparative Gait Analysis Study Using Foot-Worn Inertial Sensors. JMIR Mhealth Uhealth 2021; 9:e27087. [PMID: 34751663 PMCID: PMC8663701 DOI: 10.2196/27087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/18/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022] Open
Abstract
Background Axial spondyloarthritis (axSpA) can lead to spinal mobility restrictions associated with restricted lower limb ranges of motion, thoracic kyphosis, spinopelvic ankylosis, or decrease in muscle strength. It is well known that these factors can have consequences on spatiotemporal gait parameters during walking. However, no study has assessed spatiotemporal gait parameters in patients with axSpA. Divergent results have been obtained in the studies assessing spatiotemporal gait parameters in ankylosing spondylitis, a subgroup of axSpA, which could be partly explained by self-reported pain intensity scores at time of assessment. Inertial measurement units (IMUs) are increasingly popular and may facilitate gait assessment in clinical practice. Objective This study compared spatiotemporal gait parameters assessed with foot-worn IMUs in patients with axSpA and matched healthy individuals without and with pain intensity score as a covariate. Methods A total of 30 patients with axSpA and 30 age- and sex-matched healthy controls performed a 10-m walk test at comfortable speed. Various spatiotemporal gait parameters were computed from foot-worn inertial sensors including gait speed in ms–1 (mean walking velocity), cadence in steps/minute (number of steps in a minute), stride length in m (distance between 2 consecutive footprints of the same foot on the ground), swing time in percentage (portion of the cycle during which the foot is in the air), stance time in percentage (portion of the cycle during which part of the foot touches the ground), and double support time in percentage (portion of the cycle where both feet touch the ground). Results Age, height, and weight were not significantly different between groups. Self-reported pain intensity was significantly higher in patients with axSpA than healthy controls (P<.001). Independent sample t tests indicated that patients with axSpA presented lower gait speed (P<.001) and cadence (P=.004), shorter stride length (P<.001) and swing time (P<.001), and longer double support time (P<.001) and stance time (P<.001) than healthy controls. When using pain intensity as a covariate, spatiotemporal gait parameters were still significant with patients with axSpA exhibiting lower gait speed (P<.001), shorter stride length (P=.001) and swing time (P<.001), and longer double support time (P<.001) and stance time (P<.001) than matched healthy controls. Interestingly, there were no longer statistically significant between-group differences observed for the cadence (P=.17). Conclusions Gait was significantly altered in patients with axSpA with reduced speed, cadence, stride length, and swing time and increased double support and stance time. Taken together, these changes in spatiotemporal gait parameters could be interpreted as the adoption of a so-called cautious gait pattern in patients with axSpA. Among factors that may influence gait in patients with axSpA, patient self-reported pain intensity could play a role. Finally, IMUs allowed computation of spatiotemporal gait parameters and are usable to assess gait in patients with axSpA in clinical routine. Trial Registration ClinicalTrials.gov NCT03761212; https://clinicaltrials.gov/ct2/show/NCT03761212 International Registered Report Identifier (IRRID) RR2-10.1007/s00296-019-04396-4
Collapse
Affiliation(s)
- Julie Soulard
- University Grenoble Alpes, AGEIS, La Tronche, France.,Grenoble Alpes University Hospital, Grenoble, France
| | | | - Athan Baillet
- University Grenoble Alpes, CNRS, Grenoble Alpes University Hospital, Grenoble INP, TIMC-IMAG UMR5525, Grenoble, France
| | - Philippe Gaudin
- University Grenoble Alpes, CNRS, Grenoble Alpes University Hospital, Grenoble INP, TIMC-IMAG UMR5525, Grenoble, France
| | - Nicolas Vuillerme
- University Grenoble Alpes, AGEIS, La Tronche, France.,Institut Universitaire de France, Paris, France.,LabCom Telecom4Health, Orange Labs & Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP-UGA, Grenoble, France
| |
Collapse
|
11
|
Scrivani SJ, Keith DA, Kulich RJ, DaSilva AF, Donoff RB, Handa S, Holland N, Lerman MA, McCauley JL, Reisner L, Resnick CM, Stohler CS, Vasciannie A, Fortino M, Schatman ME. Pain Management for Dental Medicine in 2021: Opioids, Coronavirus and Beyond. J Pain Res 2021; 14:1371-1387. [PMID: 34079355 PMCID: PMC8164473 DOI: 10.2147/jpr.s319373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022] Open
Abstract
Over the past year our attention has inevitably been on the coronavirus pandemic, the health and welfare of our families, patients, and office staffs as well as the re-opening of our dental practices. In addition, the opioid crisis continues, is very likely to worsen as a result of the pandemic and continues to be a challenge to Dentistry. National public health issues and healthcare disparities continue and have created a global concern for providing evidence-based, adequate pain management in the dental setting. We have brought together a group of national thought leaders and experts in this field who will share their insights on the current state of opioid prescribing in Dentistry and describe some of the exciting work being done in advancing pain management. The learning objectives for this conference proceedings were: Describing the implications of current public health concerns for safe and effective pain management in dental medicine.Identifying risk factors and understanding the current guidelines for the use of opioid and non-opioid medications in dental medicine.Analyzing the interprofessional collaborations necessary for effective pain management in dental medicine.Recognizing the challenges and opportunities brought about by the COVID-19 pandemic for the dental profession.Applying evidence-based strategies for managing the complex pain patient in the dental setting.Appraising new and future modalities for the assessment and management of orofacial pain.
Collapse
Affiliation(s)
- Steven J Scrivani
- Department of Diagnostic Sciences, Craniofacial Pain and Headache Center, Tufts University School of Dental Medicine, Boston, MA, USA
| | - David A Keith
- Oral and Maxillofacial Surgery, Harvard School of Dental Medicine, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Ronald J Kulich
- Department of Diagnostic Sciences, Craniofacial Pain and Headache Center, Tufts University School of Dental Medicine, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Alexandre F DaSilva
- Department of Biological and Material Sciences & Prosthodontics, University of Michigan School of Dentistry, Headache and Orofacial Pain Effort, University of Michigan, Ann Harbor, MI, USA
- fNIRS Laboratory, University of Michigan, Ann Harbor, MI, USA
| | - R Bruce Donoff
- Oral and Maxillofacial Surgery, Harvard School of Dental Medicine, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Shruti Handa
- Oral and Maxillofacial Surgery, Harvard School of Dental Medicine, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Nicole Holland
- Department of Public Health and Community Service, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Mark A Lerman
- Department of Diagnostic Sciences, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Jenna L McCauley
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Lori Reisner
- Department of Pharmaceutical Services, School of Pharmacy University of California, San Francisco, CA, USA
- Department of Clinical Pharmacy, San Francisco Medical Center, San Francisco, CA, USA
| | - Cory M Resnick
- Department of Plastic and Oral Surgery, Boston Children’s Hospital, Boston, MA, USA
- Harvard School of Dental Medicine, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Christian S Stohler
- Columbia University College of Dental Medicine, New York, NY, USA
- Columbia University Medical Center, New York, NY, USA
| | - Alexis Vasciannie
- Department of Diagnostic Sciences, Craniofacial Pain and Headache Center, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Matthew Fortino
- Department of Diagnostic Sciences, Craniofacial Pain and Headache Center, Tufts University School of Dental Medicine, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Michael E Schatman
- Department of Diagnostic Sciences, Craniofacial Pain and Headache Center, Tufts University School of Dental Medicine, Boston, MA, USA
- Department of Public Health & Community Medicine, Tufts University School of Medicine, Boston, MA, USA
- School of Social Work, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
12
|
Kim DJ, Jassar H, Lim M, Nascimento TD, DaSilva AF. Dopaminergic Regulation of Reward System Connectivity Underpins Pain and Emotional Suffering in Migraine. J Pain Res 2021; 14:631-643. [PMID: 33727857 PMCID: PMC7955762 DOI: 10.2147/jpr.s296540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/17/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose It has been suggested that reward system dysfunction may account for emotion and pain suffering in migraine. However, there is a lack of evidence whether the altered reward system connectivity is directly associated with clinical manifestations, including negative affect and ictal pain severity and, at the molecular level, the dopamine (DA) D2/D3 receptors (D2/3Rs) signaling implicated in encoding motivational and emotional cues. Patients and Methods We acquired resting-state functional MRI from interictal episodic migraine (EM) patients and age-matched healthy controls, as well as positron emission tomography (PET) with [11C]raclopride, a selective radiotracer for DA D2/3Rs, from a subset of these participants. The nucleus accumbens (NAc) was seeded to measure functional connectivity (FC) and DA D2/3Rs availability based on its essential involvement in pain-related aversive/reward functions. Associations of the brain measures with positive/negative affect and ictal pain severity were also assessed. Results Compared with controls, the EM group showed weaker right NAc connectivity with areas implicated in pain and emotional regulation, such as the amygdala, rostral anterior cingulate cortex, hippocampus, and thalamus; but showed stronger left NAc connectivity with the dorsolateral prefrontal cortex and lingual gyrus. Moreover, among the altered NAc connectivities, only right NAc-amygdala connectivity was inversely correlated with DA D2/3Rs availability in migraine patients (diagnostic group-by-D2/3Rs interaction p < 0.007). At a clinical level, such weaker NAc-amygdala connectivity was associated with lower interictal positive affect and greater ictal pain severity over the head and facial extension area (pain area and intensity number summation, PAINS). Conclusion Together, our findings suggest that altered reward system connectivity, specifically between the NAc and amygdala, might be affected by endogenous DA D2/3Rs signaling, and such process might be a neural mechanism that underlies emotional and pain suffering in episodic migraineurs.
Collapse
Affiliation(s)
- Dajung J Kim
- Headache and Orofacial Pain Effort (H.O.P.E.), Biologic and Material Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Hassan Jassar
- Headache and Orofacial Pain Effort (H.O.P.E.), Biologic and Material Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Manyoel Lim
- Headache and Orofacial Pain Effort (H.O.P.E.), Biologic and Material Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Thiago D Nascimento
- Headache and Orofacial Pain Effort (H.O.P.E.), Biologic and Material Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Alexandre F DaSilva
- Headache and Orofacial Pain Effort (H.O.P.E.), Biologic and Material Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| |
Collapse
|