1
|
Tan H, Othman MHD, Kek HY, Chong WT, Nyakuma BB, Wahab RA, Teck GLH, Wong KY. Revolutionizing indoor air quality monitoring through IoT innovations: a comprehensive systematic review and bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44463-44488. [PMID: 38943001 DOI: 10.1007/s11356-024-34075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Indoor air quality (IAQ) in the built environment is significantly influenced by particulate matter, volatile organic compounds, and air temperature. Recently, the Internet of Things (IoT) has been integrated to improve IAQ and safeguard human health, comfort, and productivity. This review seeks to highlight the potential of IoT integration for monitoring IAQ. Additionally, the paper details progress by researchers in developing IoT/mobile applications for IAQ monitoring, and their transformative impact in smart building, healthcare, predictive maintenance, and real-time data analysis systems. It also outlines the persistent challenges (e.g., data privacy, security, and user acceptability), hampering effective IoT implementation for IAQ monitoring. Lastly, the global developments and research landscape on IoT for IAQ monitoring were examined through bibliometric analysis (BA) of 106 publications indexed in Web of Science from 2015 to 2022. BA revealed the most significant contributing countries are India and Portugal, while the top productive institutions and researchers are Instituto Politecnico da Guarda (10.37% of TP) and Marques Goncalo (15.09% of TP), respectively. Keyword analysis revealed four major research themes: IoT, pollution, monitoring, and health. Overall, this paper provides significant insights for identifying prospective collaborators, benchmark publications, strategic funding, and institutions for future IoT-IAQ researchers.
Collapse
Affiliation(s)
- Huiyi Tan
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor, Skudai, Malaysia
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor, Skudai, Malaysia
| | - Hong Yee Kek
- Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310, Johor, Skudai, Malaysia
| | - Wen Tong Chong
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Bemgba Bevan Nyakuma
- Department of Chemical Sciences, Faculty of Science and Computing, Pen Resource University, P. M. B, Gombe, 0198, Gombe State, Nigeria
| | - Roswanira Abdul Wahab
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor, Skudai, Malaysia
- Department of Chemistry, Faculty of Sciences, Universiti Teknologi Malaysia, 81310, Johor, Skudai, Malaysia
| | - Gabriel Ling Hoh Teck
- Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, 81310, Johor, Skudai, Malaysia
| | - Keng Yinn Wong
- Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310, Johor, Skudai, Malaysia.
- Process Systems Engineering Centre (PROSPECT), Universiti Teknologi Malaysia, 81310, Johor, Skudai, Malaysia.
| |
Collapse
|
2
|
Kim S, Stanton K, Park Y, Thomas S. A Mobile App for Children With Asthma to Monitor Indoor Air Quality (AirBuddy): Development and Usability Study. JMIR Form Res 2022; 6:e37118. [PMID: 35604753 PMCID: PMC9171598 DOI: 10.2196/37118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Indoor air quality is an important environmental factor that triggers and exacerbates asthma, the most common chronic disease in children. A mobile app to monitor indoor air quality could help occupants keep their indoor air quality clean. However, no app is available that allows children to monitor and improve their indoor air quality. OBJECTIVE Previously, we conducted a series of user-centered design studies to identify user needs and design requirements toward creating a mobile app that helps children with asthma to engage in monitoring and improving indoor air quality as part of their asthma management. Based on the findings from these studies, we created AirBuddy, a child-friendly app that visualizes air quality indoors and outdoors. METHODS This paper reports on the findings from a field deployment with 7 pediatric asthma patients, where we evaluated AirBuddy's usability and usefulness in real-world settings by conducting weekly semistructured interviews for 8 weeks. RESULTS All participants positively responded to the usefulness and usability of AirBuddy, which we believe is thanks to the iterative, user-centered design approach that allowed us to identify and address potential usability issues early on and throughout the design process. CONCLUSIONS This project contributes to the field of mHealth app design for children by demonstrating how a user-centered design process can lead to the development of digital devices that are more acceptable and relevant to target users' needs.
Collapse
Affiliation(s)
- Sunyoung Kim
- Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Kaitlyn Stanton
- Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Yunoh Park
- Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Stephen Thomas
- Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|