1
|
Atzeni M, Cappon G, Quint JK, Kelly F, Barratt B, Vettoretti M. A machine learning framework for short-term prediction of chronic obstructive pulmonary disease exacerbations using personal air quality monitors and lifestyle data. Sci Rep 2025; 15:2385. [PMID: 39827228 PMCID: PMC11742930 DOI: 10.1038/s41598-024-85089-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/31/2024] [Indexed: 01/22/2025] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a heterogeneous disease with a variety of symptoms including, persistent coughing and mucus production, shortness of breath, wheezing, and chest tightness. As the disease advances, exacerbations, i.e. acute worsening of respiratory symptoms, may increase in frequency, leading to potentially life-threatening complications. Exposure to air pollutants may trigger COPD exacerbations. Literature predictive models for COPD exacerbations, while promising, may be constrained by their reliance on fixed air quality sensor data that may not fully capture individuals' dynamic exposure to air pollution. To address this, we designed a machine learning (ML) framework that leverages data from personal air quality monitors, health records, lifestyle, and living condition information to build models that perform short-term prediction of COPD exacerbations. The framework employs (i) k-means clustering to uncover potentially distinct patient sub-types, (ii) supervised ML techniques (Logistic Regression, Random Forest, and eXtreme Gradient Boosting) to train and test predictive models for each patient sub-type and (iii) an explainable artificial intelligence technique (SHAP) to interpret the final models. The framework was tested on data collected in 101 COPD patients monitored for up to 6 months with occurrence of exacerbation in 10.7% of total samples. Two different patient sub-types have been identified, characterised by different disease severity. The best performing models were Random Forest in cluster 1, with area under the receiver operating characteristic curve (AUC) of 0.90, and area under the precision/recall curve (AUPRC) of 0.7; and Random Forest model in cluster 2, with AUC of 0.82 and AUPRC of 0.56. The model interpretability analysis identified previous symptoms and cumulative pollutant exposure as key predictors of exacerbations. The results of our study set a premise for a predictive framework in COPD exacerbations, particularly investigating the potential influence of environmental features. The SHAP analysis revealed that the contribution of environmental features is not uniform across all subjects. For instance, cumulative exposure to pollutants demonstrated greater predictive power in cluster 1. The SHAP analysis also shown that overall clinical factors and individual symptomatology play the most significant role in this setup to determine exacerbation risk.
Collapse
Affiliation(s)
- M Atzeni
- Department of Information Engineering, University of Padova, Padova, Italy
| | - G Cappon
- Department of Information Engineering, University of Padova, Padova, Italy
| | - J K Quint
- School of Public Health, Imperial College London, London, United Kingdom
| | - F Kelly
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, United Kingdom
| | - B Barratt
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, United Kingdom
| | - M Vettoretti
- Department of Information Engineering, University of Padova, Padova, Italy.
| |
Collapse
|
2
|
Arnold M, Liou L, Boland MR. Development, evaluation and comparison of machine learning algorithms for predicting in-hospital patient charges for congestive heart failure exacerbations, chronic obstructive pulmonary disease exacerbations and diabetic ketoacidosis. BioData Min 2024; 17:35. [PMID: 39267093 PMCID: PMC11395859 DOI: 10.1186/s13040-024-00387-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/30/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Hospitalizations for exacerbations of congestive heart failure (CHF), chronic obstructive pulmonary disease (COPD) and diabetic ketoacidosis (DKA) are costly in the United States. The purpose of this study was to predict in-hospital charges for each condition using machine learning (ML) models. RESULTS We conducted a retrospective cohort study on national discharge records of hospitalized adult patients from January 1st, 2016, to December 31st, 2019. We constructed six ML models (linear regression, ridge regression, support vector machine, random forest, gradient boosting and extreme gradient boosting) to predict total in-hospital cost for admission for each condition. Our models had good predictive performance, with testing R-squared values of 0.701-0.750 (mean of 0.713) for CHF; 0.694-0.724 (mean 0.709) for COPD; and 0.615-0.729 (mean 0.694) for DKA. We identified important key features driving costs, including patient age, length of stay, number of procedures, and elective/nonelective admission. CONCLUSIONS ML methods may be used to accurately predict costs and identify drivers of high cost for COPD exacerbations, CHF exacerbations and DKA. Overall, our findings may inform future studies that seek to decrease the underlying high patient costs for these conditions.
Collapse
Affiliation(s)
- Monique Arnold
- Department of Emergency Medicine, The Mount Sinai Hospital at the Icahn School of Medicine, 306 E 96th Street, #4A, New York, NY, 10128, USA.
| | - Lathan Liou
- Icahn School of Medicine at Mount Sinai Hospital, New York City, NY, USA
| | - Mary Regina Boland
- Data Science, Department of Mathematics, Herbert W. Boyer School of Natural Sciences, Mathematics, and Computing, Saint Vincent College, Latrobe, PA, USA
| |
Collapse
|
3
|
Wu Y, Xia S, Liang Z, Chen R, Qi S. Artificial intelligence in COPD CT images: identification, staging, and quantitation. Respir Res 2024; 25:319. [PMID: 39174978 PMCID: PMC11340084 DOI: 10.1186/s12931-024-02913-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) stands as a significant global health challenge, with its intricate pathophysiological manifestations often demanding advanced diagnostic strategies. The recent applications of artificial intelligence (AI) within the realm of medical imaging, especially in computed tomography, present a promising avenue for transformative changes in COPD diagnosis and management. This review delves deep into the capabilities and advancements of AI, particularly focusing on machine learning and deep learning, and their applications in COPD identification, staging, and imaging phenotypes. Emphasis is laid on the AI-powered insights into emphysema, airway dynamics, and vascular structures. The challenges linked with data intricacies and the integration of AI in the clinical landscape are discussed. Lastly, the review casts a forward-looking perspective, highlighting emerging innovations in AI for COPD imaging and the potential of interdisciplinary collaborations, hinting at a future where AI doesn't just support but pioneers breakthroughs in COPD care. Through this review, we aim to provide a comprehensive understanding of the current state and future potential of AI in shaping the landscape of COPD diagnosis and management.
Collapse
Affiliation(s)
- Yanan Wu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
| | - Shuyue Xia
- Respiratory Department, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
- Key Laboratory of Medicine and Engineering for Chronic Obstructive Pulmonary Disease in Liaoning Province, Shenyang, China
| | - Zhenyu Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rongchang Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital, Shenzhen, China
| | - Shouliang Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China.
| |
Collapse
|
4
|
Wang N, Li M, Wang G, Lv L, Yu X, Cheng X, Liu T, Ji W, Hu T, Shi Z. Development and validation of a nomogram for assessing survival in acute exacerbation of chronic obstructive pulmonary disease patients. BMC Pulm Med 2024; 24:287. [PMID: 38898420 PMCID: PMC11186077 DOI: 10.1186/s12890-024-03091-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Early prediction of survival of hospitalized acute exacerbations of chronic obstructive pulmonary disease (AECOPD) patients is vital. We aimed to establish a nomogram to predict the survival probability of AECOPD patients. METHODS Retrospectively collected data of 4601 patients hospitalized for AECOPD. These patients were randomly divided into a training and a validation cohort at a 6:4 ratio. In the training cohort, LASSO-Cox regression analysis and multivariate Cox regression analysis were utilized to identify prognostic factors for in-hospital survival of AECOPD patients. A model was established based on 3 variables and visualized by nomogram. The performance of the model was assesed by AUC, C-index, calibration curve, decision curve analysis in both cohorts. RESULTS Coexisting arrhythmia, invasive mechanical ventilation (IMV) usage and lower serum albumin values were found to be significantly associated with lower survival probability of AECOPD patients, and these 3 predictors were further used to establish a prediction nomogram. The C-indexes of the nomogram were 0.816 in the training cohort and 0.814 in the validation cohort. The AUC in the training cohort was 0.825 for 7-day, 0.807 for 14-day and 0.825 for 21-day survival probability, in the validation cohort this were 0.796 for 7-day, 0.831 for 14-day and 0.841 for 21-day. The calibration of the nomogram showed a good goodness-of-fit and decision curve analysis showed the net clinical benefits achievable at different risk thresholds were excellent. CONCLUSION We established a nomogram based on 3 variables for predicting the survival probability of AECOPD patients. The nomogram showed good performance and was clinically useful.
Collapse
Affiliation(s)
- Na Wang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta Road, Yanta District, Xi'an, Shaanxi, 710061, China
| | - Mengcong Li
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta Road, Yanta District, Xi'an, Shaanxi, 710061, China
| | - Guangdong Wang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta Road, Yanta District, Xi'an, Shaanxi, 710061, China
| | - Lin Lv
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta Road, Yanta District, Xi'an, Shaanxi, 710061, China
| | - Xiaohui Yu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta Road, Yanta District, Xi'an, Shaanxi, 710061, China
| | - Xue Cheng
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta Road, Yanta District, Xi'an, Shaanxi, 710061, China
| | - Tingting Liu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta Road, Yanta District, Xi'an, Shaanxi, 710061, China
| | - Wenwen Ji
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta Road, Yanta District, Xi'an, Shaanxi, 710061, China
| | - Tinghua Hu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta Road, Yanta District, Xi'an, Shaanxi, 710061, China
| | - Zhihong Shi
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta Road, Yanta District, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
5
|
Arnold M, Liou L, Boland MR. Development and Optimization of Machine Learning Algorithms for Predicting In-hospital Patient Charges for Congestive Heart Failure Exacerbations, Chronic Obstructive Pulmonary Disease Exacerbations and Diabetic Ketoacidosis. RESEARCH SQUARE 2024:rs.3.rs-4490027. [PMID: 38947079 PMCID: PMC11213225 DOI: 10.21203/rs.3.rs-4490027/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Hospitalizations for exacerbations of congestive heart failure (CHF), chronic obstructive pulmonary disease (COPD) and diabetic ketoacidosis (DKA) are costly in the United States. The purpose of this study was to predict in-hospital charges for each condition using machine learning (ML) models. Results We conducted a retrospective cohort study on national discharge records of hospitalized adult patients from January 1st, 2016, to December 31st, 2019. We used numerous ML techniques to predict in-hospital total cost. We found that linear regression (LM), gradient boosting (GBM) and extreme gradient boosting (XGB) models had good predictive performance and were statistically equivalent, with training R-square values ranging from 0.49-0.95 for CHF, 0.56-0.95 for COPD, and 0.32-0.99 for DKA. We identified important key features driving costs, including patient age, length of stay, number of procedures. and elective/nonelective admission. Conclusions ML methods may be used to accurately predict costs and identify drivers of high cost for COPD exacerbations, CHF exacerbations and DKA. Overall, our findings may inform future studies that seek to decrease the underlying high patient costs for these conditions.
Collapse
Affiliation(s)
- Monique Arnold
- The Mount Sinai Hospital at the Icahn School of Medicine
| | | | - Mary Regina Boland
- Alex G McKenna School of Business, Economics and Government. Saint Vincent College
| |
Collapse
|
6
|
Wang S, Li W, Zeng N, Xu J, Yang Y, Deng X, Chen Z, Duan W, Liu Y, Guo Y, Chen R, Kang Y. Acute exacerbation prediction of COPD based on Auto-metric graph neural network with inspiratory and expiratory chest CT images. Heliyon 2024; 10:e28724. [PMID: 38601695 PMCID: PMC11004525 DOI: 10.1016/j.heliyon.2024.e28724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/16/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a widely prevalent disease with significant mortality and disability rates and has become the third leading cause of death globally. Patients with acute exacerbation of COPD (AECOPD) often substantially suffer deterioration and death. Therefore, COPD patients deserve special consideration regarding treatment in this fragile population for pre-clinical health management. Based on the above, this paper proposes an AECOPD prediction model based on the Auto-Metric Graph Neural Network (AMGNN) using inspiratory and expiratory chest low-dose CT images. This study was approved by the ethics committee in the First Affiliated Hospital of Guangzhou Medical University. Subsequently, 202 COPD patients with inspiratory and expiratory chest CT Images and their annual number of AECOPD were collected after the exclusion. First, the inspiratory and expiratory lung parenchyma images of the 202 COPD patients are extracted using a trained ResU-Net. Then, inspiratory and expiratory lung Radiomics and CNN features are extracted from the 202 inspiratory and expiratory lung parenchyma images by Pyradiomics and pre-trained Med3D (a heterogeneous 3D network), respectively. Last, Radiomics and CNN features are combined and then further selected by the Lasso algorithm and generalized linear model for determining node features and risk factors of AMGNN, and then the AECOPD prediction model is established. Compared to related models, the proposed model performs best, achieving an accuracy of 0.944, precision of 0.950, F1-score of 0.944, ad area under the curve of 0.965. Therefore, it is concluded that our model may become an effective tool for AECOPD prediction.
Collapse
Affiliation(s)
- Shicong Wang
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
- School of Applied Technology, Shenzhen University, Shenzhen 518060, China
| | - Wei Li
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Nanrong Zeng
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
- School of Applied Technology, Shenzhen University, Shenzhen 518060, China
| | - Jiaxuan Xu
- The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The National Center for Respiratory Medicine, Guangzhou 510120, China
| | - Yingjian Yang
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Xingguang Deng
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Ziran Chen
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Wenxin Duan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
- School of Applied Technology, Shenzhen University, Shenzhen 518060, China
| | - Yang Liu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Yingwei Guo
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Rongchang Chen
- The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The National Center for Respiratory Medicine, Guangzhou 510120, China
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen Institute of Respiratory Diseases, Shenzhen 518001, China
| | - Yan Kang
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
- School of Applied Technology, Shenzhen University, Shenzhen 518060, China
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- Engineering Research Centre of Medical Imaging and Intelligent Analysis, Ministry of Education, Shenyang 110169, China
| |
Collapse
|
7
|
Al-Anazi S, Al-Omari A, Alanazi S, Marar A, Asad M, Alawaji F, Alwateid S. Artificial intelligence in respiratory care: Current scenario and future perspective. Ann Thorac Med 2024; 19:117-130. [PMID: 38766378 PMCID: PMC11100474 DOI: 10.4103/atm.atm_192_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND This narrative review aims to explore the current state and future perspective of artificial intelligence (AI) in respiratory care. The objective is to provide insights into the potential impact of AI in this field. METHODS A comprehensive analysis of relevant literature and research studies was conducted to examine the applications of AI in respiratory care and identify areas of advancement. The analysis included studies on remote monitoring, early detection, smart ventilation systems, and collaborative decision-making. RESULTS The obtained results highlight the transformative potential of AI in respiratory care. AI algorithms have shown promising capabilities in enabling tailored treatment plans based on patient-specific data. Remote monitoring using AI-powered devices allows for real-time feedback to health-care providers, enhancing patient care. AI algorithms have also demonstrated the ability to detect respiratory conditions at an early stage, leading to timely interventions and improved outcomes. Moreover, AI can optimize mechanical ventilation through continuous monitoring, enhancing patient comfort and reducing complications. Collaborative AI systems have the potential to augment the expertise of health-care professionals, leading to more accurate diagnoses and effective treatment strategies. CONCLUSION By improving diagnosis, AI has the potential to revolutionize respiratory care, treatment planning, and patient monitoring. While challenges and ethical considerations remain, the transformative impact of AI in this domain cannot be overstated. By leveraging the advancements and insights from this narrative review, health-care professionals and researchers can continue to harness the power of AI to improve patient outcomes and enhance respiratory care practices. IMPROVEMENTS Based on the findings, future research should focus on refining AI algorithms to enhance their accuracy, reliability, and interpretability. In addition, attention should be given to addressing ethical considerations, ensuring data privacy, and establishing regulatory frameworks to govern the responsible implementation of AI in respiratory care.
Collapse
Affiliation(s)
- Saad Al-Anazi
- Lead Clincial Appliaction AzeerTrade (Lowenstein Medical Company), Riyadh, Saudi Arabia
| | - Awad Al-Omari
- Department of Intensive Care, Dr. Sulaiman Al-Habib Group Hospitals, Riyadh, Saudi Arabia
| | - Safug Alanazi
- Intensivist, Al Hammadi Hospital, Riyadh, Saudi Arabia
| | - Aqeelah Marar
- Respiratory Care Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Mohammed Asad
- Department of Emergency, Dr. Sulaiman Al-Habib Group Hospitals, Riyadh, Saudi Arabia
| | - Fadi Alawaji
- Ar Rass General Hospital, Qassim Health Cluster, Senior Laboratory Specialist, Rass Region, Qassim City, Saudi Arabia
| | - Salman Alwateid
- Respiratory Care Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Smith LA, Oakden-Rayner L, Bird A, Zeng M, To MS, Mukherjee S, Palmer LJ. Machine learning and deep learning predictive models for long-term prognosis in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis. Lancet Digit Health 2023; 5:e872-e881. [PMID: 38000872 DOI: 10.1016/s2589-7500(23)00177-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 06/26/2023] [Accepted: 08/29/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Machine learning and deep learning models have been increasingly used to predict long-term disease progression in patients with chronic obstructive pulmonary disease (COPD). We aimed to summarise the performance of such prognostic models for COPD, compare their relative performances, and identify key research gaps. METHODS We conducted a systematic review and meta-analysis to compare the performance of machine learning and deep learning prognostic models and identify pathways for future research. We searched PubMed, Embase, the Cochrane Library, ProQuest, Scopus, and Web of Science from database inception to April 6, 2023, for studies in English using machine learning or deep learning to predict patient outcomes at least 6 months after initial clinical presentation in those with COPD. We included studies comprising human adults aged 18-90 years and allowed for any input modalities. We reported area under the receiver operator characteristic curve (AUC) with 95% CI for predictions of mortality, exacerbation, and decline in forced expiratory volume in 1 s (FEV1). We reported the degree of interstudy heterogeneity using Cochran's Q test (significant heterogeneity was defined as p≤0·10 or I2>50%). Reporting quality was assessed using the TRIPOD checklist and a risk-of-bias assessment was done using the PROBAST checklist. This study was registered with PROSPERO (CRD42022323052). FINDINGS We identified 3620 studies in the initial search. 18 studies were eligible, and, of these, 12 used conventional machine learning and six used deep learning models. Seven models analysed exacerbation risk, with only six reporting AUC and 95% CI on internal validation datasets (pooled AUC 0·77 [95% CI 0·69-0·85]) and there was significant heterogeneity (I2 97%, p<0·0001). 11 models analysed mortality risk, with only six reporting AUC and 95% CI on internal validation datasets (pooled AUC 0·77 [95% CI 0·74-0·80]) with significant degrees of heterogeneity (I2 60%, p=0·027). Two studies assessed decline in lung function and were unable to be pooled. Machine learning and deep learning models did not show significant improvement over pre-existing disease severity scores in predicting exacerbations (p=0·24). Three studies directly compared machine learning models against pre-existing severity scores for predicting mortality and pooled performance did not differ (p=0·57). Of the five studies that performed external validation, performance was worse than or equal to regression models. Incorrect handling of missing data, not reporting model uncertainty, and use of datasets that were too small relative to the number of predictive features included provided the largest risks of bias. INTERPRETATION There is limited evidence that conventional machine learning and deep learning prognostic models demonstrate superior performance to pre-existing disease severity scores. More rigorous adherence to reporting guidelines would reduce the risk of bias in future studies and aid study reproducibility. FUNDING None.
Collapse
Affiliation(s)
- Luke A Smith
- Australian Institute for Machine Learning, University of Adelaide, Adelaide, SA, Australia; School of Public Health, University of Adelaide, Adelaide, SA, Australia.
| | - Lauren Oakden-Rayner
- Australian Institute for Machine Learning, University of Adelaide, Adelaide, SA, Australia; School of Public Health, University of Adelaide, Adelaide, SA, Australia
| | - Alix Bird
- Australian Institute for Machine Learning, University of Adelaide, Adelaide, SA, Australia; School of Public Health, University of Adelaide, Adelaide, SA, Australia
| | - Minyan Zeng
- Australian Institute for Machine Learning, University of Adelaide, Adelaide, SA, Australia; School of Public Health, University of Adelaide, Adelaide, SA, Australia
| | - Minh-Son To
- Health Data and Clinical Trials, Flinders University, Bedford Park, SA, Australia; South Australia Medical Imaging, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Sutapa Mukherjee
- Department of Respiratory and Sleep Medicine, Southern Adelaide Local Health Network (SALHN), Bedford Park, SA, Australia; Adelaide Institute for Sleep Health/Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Lyle J Palmer
- Australian Institute for Machine Learning, University of Adelaide, Adelaide, SA, Australia; School of Public Health, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
9
|
Zhuan B, Ma HH, Zhang BC, Li P, Wang X, Yuan Q, Yang Z, Xie J. Identification of non-small cell lung cancer with chronic obstructive pulmonary disease using clinical symptoms and routine examination: a retrospective study. Front Oncol 2023; 13:1158948. [PMID: 37576878 PMCID: PMC10419203 DOI: 10.3389/fonc.2023.1158948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/03/2023] [Indexed: 08/15/2023] Open
Abstract
Background Patients with non-small cell lung cancer (NSCLC) and patients with NSCLC combined with chronic obstructive pulmonary disease (COPD) have similar physiological conditions in early stages, and the latter have shorter survival times and higher mortality rates. The purpose of this study was to develop and compare machine learning models to identify future diagnoses of COPD combined with NSCLC patients based on the patient's disease and routine clinical data. Methods Data were obtained from 237 patients with COPD combined with NSCLC as well as NSCLC admitted to Ningxia Hui Autonomous Region People's Hospital from October 2013 to July 2022. Six machine learning algorithms (K-nearest neighbor, logistic regression, eXtreme gradient boosting, support vector machine, naïve Bayes, and artificial neural network) were used to develop prediction models for NSCLC combined with COPD. Sensitivity, specificity, positive predictive value, negative predictive value, accuracy, F1 score, Mathews correlation coefficient (MCC), Kappa, area under the receiver operating characteristic curve (AUROC)and area under the precision-recall curve (AUPRC) were used as performance indicators to evaluate the performance of the models. Results 135 patients with NSCLC combined with COPD, 102 patients with NSCLC were included in the study. The results showed that pulmonary function and emphysema were important risk factors and that the support vector machine-based identification model showed optimal performance with accuracy:0.946, recall:0.940, specificity:0.955, precision:0.972, npv:0.920, F1 score:0.954, MCC:0.893, Kappa:0.888, AUROC:0.975, AUPRC:0.987. Conclusion The use of machine learning tools combining clinical symptoms and routine examination data features is suitable for identifying the risk of concurrent NSCLC in COPD patients.
Collapse
Affiliation(s)
- Bing Zhuan
- Department of Respiratory Medicine, Ningxia Hui Autonomous Region People’s Hospital, Yinchuan, Ningxia, China
- Department of Respiratory Medicine, Ningxia Hui Autonomous Region People’s Hospital Affiliated to Ningxia Medical University, Yinchuan, Ningxia, China
| | - Hong-Hong Ma
- Department of Respiratory Medicine, Ningxia Hui Autonomous Region People’s Hospital, Yinchuan, Ningxia, China
- Department of Respiratory Medicine, Ningxia Hui Autonomous Region People’s Hospital Affiliated to Ningxia Medical University, Yinchuan, Ningxia, China
| | - Bo-Chao Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Ping Li
- Department of Respiratory Medicine, Ningxia Hui Autonomous Region People’s Hospital, Yinchuan, Ningxia, China
- Department of Respiratory Medicine, Ningxia Hui Autonomous Region People’s Hospital Affiliated to Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xi Wang
- Department of Respiratory Medicine, Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Qun Yuan
- Department of Respiratory Medicine, Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Zhao Yang
- Department of Respiratory Medicine, Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jun Xie
- Department of Thoracic Surgery, Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
10
|
Jacobson PK, Lind L, Persson HL. Unleashing the Power of Very Small Data to Predict Acute Exacerbations of Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2023; 18:1457-1473. [PMID: 37485052 PMCID: PMC10362872 DOI: 10.2147/copd.s412692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction In this article, we explore to what extent it is possible to leverage on very small data to build machine learning (ML) models that predict acute exacerbations of chronic obstructive pulmonary disease (AECOPD). Methods We build ML models using the small data collected during the eHealth Diary telemonitoring study between 2013 and 2017 in Sweden. This data refers to a group of multimorbid patients, namely 18 patients with chronic obstructive pulmonary disease (COPD) as the major reason behind previous hospitalisations. The telemonitoring was supervised by a specialised hospital-based home care (HBHC) unit, which also was responsible for the medical actions needed. Results We implement two different ML approaches, one based on time-dependent covariates and the other one based on time-independent covariates. We compare the first approach with standard COX Proportional Hazards (CPH). For the second one, we use different proportions of synthetic data to build models and then evaluate the best model against authentic data. Discussion To the best of our knowledge, the present ML study shows for the first time that the most important variable for an increased risk of future AECOPDs is "maintenance medication changes by HBHC". This finding is clinically relevant since a sub-optimal maintenance treatment, requiring medication changes, puts the patient in risk for future AECOPDs. Conclusion The experiments return useful insights about the use of small data for ML.
Collapse
Affiliation(s)
- Petra Kristina Jacobson
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Department of Respiratory Medicine in Linköping, Linköping University, Linköping, Sweden
| | - Leili Lind
- Department of Biomedical Engineering/Health Informatics, Linköping University, Linköping, Sweden
- Digital Systems Division, Unit Digital Health, RISE Research Institutes of Sweden, Linköping, Sweden
| | - Hans Lennart Persson
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Department of Respiratory Medicine in Linköping, Linköping University, Linköping, Sweden
| |
Collapse
|
11
|
Wang DD, Li YF, Mao YZ, He SM, Zhu P, Wei QL. A machine-learning approach for predicting the effect of carnitine supplementation on body weight in patients with polycystic ovary syndrome. Front Nutr 2022; 9:851275. [PMID: 36034907 PMCID: PMC9399747 DOI: 10.3389/fnut.2022.851275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
The present study aimed to explore the effect of carnitine supplementation on body weight in patients with polycystic ovary syndrome (PCOS) and predict an appropriate dosage schedule using a machine-learning approach. Data were obtained from literature mining and the rates of body weight change from the initial values were selected as the therapeutic index. The maximal effect (Emax) model was built up as the machine-learning model. A total of 242 patients with PCOS were included for analysis. In the machine-learning model, the Emax of carnitine supplementation on body weight was -3.92%, the ET50 was 3.6 weeks, and the treatment times to realize 25%, 50%, 75%, and 80% (plateau) Emax of carnitine supplementation on body weight were 1.2, 3.6, 10.8, and 14.4 weeks, respectively. In addition, no significant relationship of dose-response was found in the dosage range of carnitine supplementation used in the present study, indicating the lower limit of carnitine supplementation dosage, 250 mg/day, could be used as a suitable dosage. The present study first explored the effect of carnitine supplementation on body weight in patients with PCOS, and in order to realize the optimal therapeutic effect, carnitine supplementation needs 250 mg/day for at least 14.4 weeks.
Collapse
Affiliation(s)
- Dong-Dong Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ya-Feng Li
- Department of Pharmacy, Feng Xian People's Hospital, Xuzhou, China
| | - Yi-Zhen Mao
- School Infirmary, Jiangsu Normal University, Xuzhou, China
| | - Su-Mei He
- Department of Pharmacy, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Ping Zhu
- Department of Endocrinology, Huaian Hospital of Huaian City, Huaian, China
| | - Qun-Li Wei
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
12
|
Lee SJ, Yoon SS, Lee MH, Kim HJ, Lim Y, Park H, Park SJ, Jeong S, Han HW. Health-Screening-Based Chronic Obstructive Pulmonary Disease and Its Effect on Cardiovascular Disease Risk. J Clin Med 2022; 11:jcm11113181. [PMID: 35683565 PMCID: PMC9181412 DOI: 10.3390/jcm11113181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/28/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is considered a major cause of death worldwide, and various studies have been conducted for its early diagnosis. Our work developed a scoring system by predicting and validating COPD and performed predictive model implementations. Participants who underwent a health screening between 2017 and 2020 were extracted from the Korea National Health and Nutrition Examination Survey (KNHANES) database. COPD individuals were defined as aged 40 years or older with prebronchodilator forced expiratory volume in 1 s/forced vital capacity (FEV1/FVC < 0.7). The logistic regression model was performed, and the C-index was used for variable selection. Receiver operating characteristic (ROC) curves with area under the curve (AUC) values were generated for evaluation. Age, sex, waist circumference and diastolic blood pressure were used to predict COPD and to develop a COPD score based on a multivariable model. A simplified model for COPD was validated with an AUC value of 0.780 from the ROC curves. In addition, we evaluated the association of the derived score with cardiovascular disease (CVD). COPD scores showed significant performance in COPD prediction. The developed score also showed a good effect on the diagnostic ability for CVD risk. In the future, studies comparing the diagnostic accuracy of the derived scores with standard diagnostic tests are needed.
Collapse
Affiliation(s)
- Sang-Jun Lee
- Department of Biomedical Informatics, School of Medicine, CHA University, Seongnam 13488, Korea; (S.-J.L.); (S.-S.Y.); (M.-H.L.); (H.-J.K.); (Y.L.); (H.P.)
- Institute of Basic Medical Sciences, School of Medicine, CHA University, Seongnam 13488, Korea
- Institute for Biomedical Informatics, School of Medicinie, CHA University, Seongnam 13488, Korea
| | - Sung-Soo Yoon
- Department of Biomedical Informatics, School of Medicine, CHA University, Seongnam 13488, Korea; (S.-J.L.); (S.-S.Y.); (M.-H.L.); (H.-J.K.); (Y.L.); (H.P.)
- Institute of Basic Medical Sciences, School of Medicine, CHA University, Seongnam 13488, Korea
- Institute for Biomedical Informatics, School of Medicinie, CHA University, Seongnam 13488, Korea
| | - Myeong-Hoon Lee
- Department of Biomedical Informatics, School of Medicine, CHA University, Seongnam 13488, Korea; (S.-J.L.); (S.-S.Y.); (M.-H.L.); (H.-J.K.); (Y.L.); (H.P.)
- Institute of Basic Medical Sciences, School of Medicine, CHA University, Seongnam 13488, Korea
- Institute for Biomedical Informatics, School of Medicinie, CHA University, Seongnam 13488, Korea
| | - Hye-Jun Kim
- Department of Biomedical Informatics, School of Medicine, CHA University, Seongnam 13488, Korea; (S.-J.L.); (S.-S.Y.); (M.-H.L.); (H.-J.K.); (Y.L.); (H.P.)
- Institute of Basic Medical Sciences, School of Medicine, CHA University, Seongnam 13488, Korea
- Institute for Biomedical Informatics, School of Medicinie, CHA University, Seongnam 13488, Korea
| | - Yohwan Lim
- Department of Biomedical Informatics, School of Medicine, CHA University, Seongnam 13488, Korea; (S.-J.L.); (S.-S.Y.); (M.-H.L.); (H.-J.K.); (Y.L.); (H.P.)
- Institute of Basic Medical Sciences, School of Medicine, CHA University, Seongnam 13488, Korea
- Institute for Biomedical Informatics, School of Medicinie, CHA University, Seongnam 13488, Korea
| | - Hyewon Park
- Department of Biomedical Informatics, School of Medicine, CHA University, Seongnam 13488, Korea; (S.-J.L.); (S.-S.Y.); (M.-H.L.); (H.-J.K.); (Y.L.); (H.P.)
- Institute of Basic Medical Sciences, School of Medicine, CHA University, Seongnam 13488, Korea
- Institute for Biomedical Informatics, School of Medicinie, CHA University, Seongnam 13488, Korea
| | - Sun Jae Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Seogsong Jeong
- Department of Biomedical Informatics, School of Medicine, CHA University, Seongnam 13488, Korea; (S.-J.L.); (S.-S.Y.); (M.-H.L.); (H.-J.K.); (Y.L.); (H.P.)
- Institute of Basic Medical Sciences, School of Medicine, CHA University, Seongnam 13488, Korea
- Institute for Biomedical Informatics, School of Medicinie, CHA University, Seongnam 13488, Korea
- Correspondence: (S.J.); (H.-W.H.); Tel.: +82-31-881-7129 (H.-W.H.)
| | - Hyun-Wook Han
- Department of Biomedical Informatics, School of Medicine, CHA University, Seongnam 13488, Korea; (S.-J.L.); (S.-S.Y.); (M.-H.L.); (H.-J.K.); (Y.L.); (H.P.)
- Institute of Basic Medical Sciences, School of Medicine, CHA University, Seongnam 13488, Korea
- Institute for Biomedical Informatics, School of Medicinie, CHA University, Seongnam 13488, Korea
- Healthcare Big-Data Center, Bundang CHA Hospital, Seongnam 13488, Korea
- Correspondence: (S.J.); (H.-W.H.); Tel.: +82-31-881-7129 (H.-W.H.)
| |
Collapse
|
13
|
Zeng S, Arjomandi M, Luo G. Automatically Explaining Machine Learning Predictions on Severe Chronic Obstructive Pulmonary Disease Exacerbations: Retrospective Cohort Study. JMIR Med Inform 2022; 10:e33043. [PMID: 35212634 PMCID: PMC8917430 DOI: 10.2196/33043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/15/2021] [Accepted: 01/02/2022] [Indexed: 11/13/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a major cause of death and places a heavy burden on health care. To optimize the allocation of precious preventive care management resources and improve the outcomes for high-risk patients with COPD, we recently built the most accurate model to date to predict severe COPD exacerbations, which need inpatient stays or emergency department visits, in the following 12 months. Our model is a machine learning model. As is the case with most machine learning models, our model does not explain its predictions, forming a barrier for clinical use. Previously, we designed a method to automatically provide rule-type explanations for machine learning predictions and suggest tailored interventions with no loss of model performance. This method has been tested before for asthma outcome prediction but not for COPD outcome prediction. Objective This study aims to assess the generalizability of our automatic explanation method for predicting severe COPD exacerbations. Methods The patient cohort included all patients with COPD who visited the University of Washington Medicine facilities between 2011 and 2019. In a secondary analysis of 43,576 data instances, we used our formerly developed automatic explanation method to automatically explain our model’s predictions and suggest tailored interventions. Results Our method explained the predictions for 97.1% (100/103) of the patients with COPD whom our model correctly predicted to have severe COPD exacerbations in the following 12 months and the predictions for 73.6% (134/182) of the patients with COPD who had ≥1 severe COPD exacerbation in the following 12 months. Conclusions Our automatic explanation method worked well for predicting severe COPD exacerbations. After further improving our method, we hope to use it to facilitate future clinical use of our model. International Registered Report Identifier (IRRID) RR2-10.2196/13783
Collapse
Affiliation(s)
- Siyang Zeng
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA, United States
| | - Mehrdad Arjomandi
- Medical Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States.,Department of Medicine, University of California, San Francisco, CA, United States
| | - Gang Luo
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA, United States
| |
Collapse
|