1
|
Bellini V, Russo M, Domenichetti T, Panizzi M, Allai S, Bignami EG. Artificial Intelligence in Operating Room Management. J Med Syst 2024; 48:19. [PMID: 38353755 PMCID: PMC10867065 DOI: 10.1007/s10916-024-02038-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
This systematic review examines the recent use of artificial intelligence, particularly machine learning, in the management of operating rooms. A total of 22 selected studies from February 2019 to September 2023 are analyzed. The review emphasizes the significant impact of AI on predicting surgical case durations, optimizing post-anesthesia care unit resource allocation, and detecting surgical case cancellations. Machine learning algorithms such as XGBoost, random forest, and neural networks have demonstrated their effectiveness in improving prediction accuracy and resource utilization. However, challenges such as data access and privacy concerns are acknowledged. The review highlights the evolving nature of artificial intelligence in perioperative medicine research and the need for continued innovation to harness artificial intelligence's transformative potential for healthcare administrators, practitioners, and patients. Ultimately, artificial intelligence integration in operative room management promises to enhance healthcare efficiency and patient outcomes.
Collapse
Affiliation(s)
- Valentina Bellini
- Anesthesiology, Intensive Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
| | - Michele Russo
- Anesthesiology, Intensive Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
| | - Tania Domenichetti
- Anesthesiology, Intensive Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
| | - Matteo Panizzi
- Anesthesiology, Intensive Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
| | - Simone Allai
- Anesthesiology, Intensive Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
| | - Elena Giovanna Bignami
- Anesthesiology, Intensive Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy.
| |
Collapse
|
2
|
Lippenberger F, Ziegelmayer S, Berlet M, Feussner H, Makowski M, Neumann PA, Graf M, Kaissis G, Wilhelm D, Braren R, Reischl S. Development of an image-based Random Forest classifier for prediction of surgery duration of laparoscopic sigmoid resections. Int J Colorectal Dis 2024; 39:21. [PMID: 38273097 PMCID: PMC10811180 DOI: 10.1007/s00384-024-04593-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
PURPOSE Sigmoid diverticulitis is a disease with a high socioeconomic burden, accounting for a high number of left-sided colonic resections worldwide. Modern surgical scheduling relies on accurate prediction of operation times to enhance patient care and optimize healthcare resources. This study aims to develop a predictive model for surgery duration in laparoscopic sigmoid resections, based on preoperative CT biometric and demographic patient data. METHODS This retrospective single-center cohort study included 85 patients who underwent laparoscopic sigmoid resection for diverticular disease. Potentially relevant procedure-specific anatomical parameters recommended by a surgical expert were measured in preoperative CT imaging. After random split into training and test set (75% / 25%) multiclass logistic regression was performed and a Random Forest classifier was trained on CT imaging parameters, patient age, and sex in the training cohort to predict categorized surgery duration. The models were evaluated in the test cohort using established performance metrics including receiver operating characteristics area under the curve (AUROC). RESULTS The Random Forest model achieved a good average AUROC of 0.78. It allowed a very good prediction of long (AUROC = 0.89; specificity 0.71; sensitivity 1.0) and short (AUROC = 0.81; specificity 0.77; sensitivity 0.56) procedures. It clearly outperformed the multiclass logistic regression model (AUROC: average = 0.33; short = 0.31; long = 0.22). CONCLUSION A Random Forest classifier trained on demographic and CT imaging biometric patient data could predict procedure duration outliers of laparoscopic sigmoid resections. Pending validation in a multicenter study, this approach could potentially improve procedure scheduling in visceral surgery and be scaled to other procedures.
Collapse
Affiliation(s)
- Florian Lippenberger
- Institute of Diagnostic and Interventional Radiology, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Sebastian Ziegelmayer
- Institute of Diagnostic and Interventional Radiology, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maximilian Berlet
- Department of Surgery, School of Medicine, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
- Research Group MITI, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Hubertus Feussner
- Department of Surgery, School of Medicine, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
- Research Group MITI, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Marcus Makowski
- Institute of Diagnostic and Interventional Radiology, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Philipp-Alexander Neumann
- Department of Surgery, School of Medicine, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Markus Graf
- Institute of Diagnostic and Interventional Radiology, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Georgios Kaissis
- Institute of Diagnostic and Interventional Radiology, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Institute for Artificial Intelligence in Medicine and Healthcare, School of Medicine and Faculty of Informatics, Technical University of Munich, Munich, Germany
| | - Dirk Wilhelm
- Department of Surgery, School of Medicine, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
- Research Group MITI, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Rickmer Braren
- Institute of Diagnostic and Interventional Radiology, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK, Partner Site Munich) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Stefan Reischl
- Institute of Diagnostic and Interventional Radiology, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
3
|
Arina P, Kaczorek MR, Hofmaenner DA, Pisciotta W, Refinetti P, Singer M, Mazomenos EB, Whittle J. Prediction of Complications and Prognostication in Perioperative Medicine: A Systematic Review and PROBAST Assessment of Machine Learning Tools. Anesthesiology 2024; 140:85-101. [PMID: 37944114 PMCID: PMC11146190 DOI: 10.1097/aln.0000000000004764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND The utilization of artificial intelligence and machine learning as diagnostic and predictive tools in perioperative medicine holds great promise. Indeed, many studies have been performed in recent years to explore the potential. The purpose of this systematic review is to assess the current state of machine learning in perioperative medicine, its utility in prediction of complications and prognostication, and limitations related to bias and validation. METHODS A multidisciplinary team of clinicians and engineers conducted a systematic review using the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) protocol. Multiple databases were searched, including Scopus, Cumulative Index to Nursing and Allied Health Literature (CINAHL), the Cochrane Library, PubMed, Medline, Embase, and Web of Science. The systematic review focused on study design, type of machine learning model used, validation techniques applied, and reported model performance on prediction of complications and prognostication. This review further classified outcomes and machine learning applications using an ad hoc classification system. The Prediction model Risk Of Bias Assessment Tool (PROBAST) was used to assess risk of bias and applicability of the studies. RESULTS A total of 103 studies were identified. The models reported in the literature were primarily based on single-center validations (75%), with only 13% being externally validated across multiple centers. Most of the mortality models demonstrated a limited ability to discriminate and classify effectively. The PROBAST assessment indicated a high risk of systematic errors in predicted outcomes and artificial intelligence or machine learning applications. CONCLUSIONS The findings indicate that the development of this field is still in its early stages. This systematic review indicates that application of machine learning in perioperative medicine is still at an early stage. While many studies suggest potential utility, several key challenges must be first overcome before their introduction into clinical practice. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Pietro Arina
- Bloomsbury Institute of Intensive Care Medicine and Human Physiology and Performance Laboratory, Centre for Perioperative Medicine, Department of Targeted Intervention, University College London, London, United Kingdom
| | - Maciej R. Kaczorek
- Wellcome/EPSRC Centre of Interventional and Surgical Sciences and Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Daniel A. Hofmaenner
- Bloomsbury Institute of Intensive Care Medicine, University College London, London, United Kingdom; and Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Walter Pisciotta
- Bloomsbury Institute of Intensive Care Medicine, University College London, London, United Kingdom
| | - Patricia Refinetti
- Human Physiology and Performance Laboratory, Centre for Perioperative Medicine, Department of Targeted Intervention, University College London, London, United Kingdom
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, University College London, London, United Kingdom
| | - Evangelos B. Mazomenos
- Wellcome/EPSRC Centre of Interventional and Surgical Sciences and Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - John Whittle
- Human Physiology and Performance Laboratory, Centre for Perioperative Medicine, Department of Targeted Intervention, University College London, London, United Kingdom
| |
Collapse
|
4
|
Spence C, Shah OA, Cebula A, Tucker K, Sochart D, Kader D, Asopa V. Machine learning models to predict surgical case duration compared to current industry standards: scoping review. BJS Open 2023; 7:zrad113. [PMID: 37931236 PMCID: PMC10630142 DOI: 10.1093/bjsopen/zrad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Surgical waiting lists have risen dramatically across the UK as a result of the COVID-19 pandemic. The effective use of operating theatres by optimal scheduling could help mitigate this, but this requires accurate case duration predictions. Current standards for predicting the duration of surgery are inaccurate. Artificial intelligence (AI) offers the potential for greater accuracy in predicting surgical case duration. This study aimed to investigate whether there is evidence to support that AI is more accurate than current industry standards at predicting surgical case duration, with a secondary aim of analysing whether the implementation of the models used produced efficiency savings. METHOD PubMed, Embase, and MEDLINE libraries were searched through to July 2023 to identify appropriate articles. PRISMA extension for scoping reviews and the Arksey and O'Malley framework were followed. Study quality was assessed using a modified version of the reporting guidelines for surgical AI papers by Farrow et al. Algorithm performance was reported using evaluation metrics. RESULTS The search identified 2593 articles: 14 were suitable for inclusion and 13 reported on the accuracy of AI algorithms against industry standards, with seven demonstrating a statistically significant improvement in prediction accuracy (P < 0.05). The larger studies demonstrated the superiority of neural networks over other machine learning techniques. Efficiency savings were identified in a RCT. Significant methodological limitations were identified across most studies. CONCLUSION The studies suggest that machine learning and deep learning models are more accurate at predicting the duration of surgery; however, further research is required to determine the best way to implement this technology.
Collapse
Affiliation(s)
- Christopher Spence
- Academic Surgical Unit, South West London Elective Orthopaedic Centre, Epsom, Surrey, UK
| | - Owais A Shah
- Academic Surgical Unit, South West London Elective Orthopaedic Centre, Epsom, Surrey, UK
| | - Anna Cebula
- Academic Surgical Unit, South West London Elective Orthopaedic Centre, Epsom, Surrey, UK
| | - Keith Tucker
- Academic Surgical Unit, South West London Elective Orthopaedic Centre, Epsom, Surrey, UK
| | - David Sochart
- Academic Surgical Unit, South West London Elective Orthopaedic Centre, Epsom, Surrey, UK
| | - Deiary Kader
- Academic Surgical Unit, South West London Elective Orthopaedic Centre, Epsom, Surrey, UK
| | - Vipin Asopa
- Academic Surgical Unit, South West London Elective Orthopaedic Centre, Epsom, Surrey, UK
| |
Collapse
|
5
|
Adams MCB, Nelson AM, Narouze S. Daring discourse: artificial intelligence in pain medicine, opportunities and challenges. Reg Anesth Pain Med 2023; 48:439-442. [PMID: 37169486 PMCID: PMC10525018 DOI: 10.1136/rapm-2023-104526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
Artificial intelligence (AI) tools are currently expanding their influence within healthcare. For pain clinics, unfettered introduction of AI may cause concern in both patients and healthcare teams. Much of the concern stems from the lack of community standards and understanding of how the tools and algorithms function. Data literacy and understanding can be challenging even for experienced healthcare providers as these topics are not incorporated into standard clinical education pathways. Another reasonable concern involves the potential for encoding bias in healthcare screening and treatment using faulty algorithms. And yet, the massive volume of data generated by healthcare encounters is increasingly challenging for healthcare teams to navigate and will require an intervention to make the medical record manageable in the future. AI approaches that lighten the workload and support clinical decision-making may provide a solution to the ever-increasing menial tasks involved in clinical care. The potential for pain providers to have higher-quality connections with their patients and manage multiple complex data sources might balance the understandable concerns around data quality and decision-making that accompany introduction of AI. As a specialty, pain medicine will need to establish thoughtful and intentionally integrated AI tools to help clinicians navigate the changing landscape of patient care.
Collapse
Affiliation(s)
- Meredith C B Adams
- Departments of Anesthesiology, Biomedical Informatics, Physiology & Pharmacology, and Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Ariana M Nelson
- Department of Anesthesiology and Perioperative Care, University of California Irvine, Irvine, California, USA
| | | |
Collapse
|
6
|
Zeleke AJ, Palumbo P, Tubertini P, Miglio R, Chiari L. Machine learning-based prediction of hospital prolonged length of stay admission at emergency department: a Gradient Boosting algorithm analysis. Front Artif Intell 2023; 6:1179226. [PMID: 37588696 PMCID: PMC10426288 DOI: 10.3389/frai.2023.1179226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/10/2023] [Indexed: 08/18/2023] Open
Abstract
Objective This study aims to develop and compare different models to predict the Length of Stay (LoS) and the Prolonged Length of Stay (PLoS) of inpatients admitted through the emergency department (ED) in general patient settings. This aim is not only to promote any specific model but rather to suggest a decision-supporting tool (i.e., a prediction framework). Methods We analyzed a dataset of patients admitted through the ED to the "Sant"Orsola Malpighi University Hospital of Bologna, Italy, between January 1 and October 26, 2022. PLoS was defined as any hospitalization with LoS longer than 6 days. We deployed six classification algorithms for predicting PLoS: Random Forest (RF), Support Vector Machines (SVM), Gradient Boosting (GB), AdaBoost, K-Nearest Neighbors (KNN), and logistic regression (LoR). We evaluated the performance of these models with the Brier score, the area under the ROC curve (AUC), accuracy, sensitivity (recall), specificity, precision, and F1-score. We further developed eight regression models for LoS prediction: Linear Regression (LR), including the penalized linear models Least Absolute Shrinkage and Selection Operator (LASSO), Ridge and Elastic-net regression, Support vector regression, RF regression, KNN, and eXtreme Gradient Boosting (XGBoost) regression. The model performances were measured by their mean square error, mean absolute error, and mean relative error. The dataset was randomly split into a training set (70%) and a validation set (30%). Results A total of 12,858 eligible patients were included in our study, of whom 60.88% had a PloS. The GB classifier best predicted PloS (accuracy 75%, AUC 75.4%, Brier score 0.181), followed by LoR classifier (accuracy 75%, AUC 75.2%, Brier score 0.182). These models also showed to be adequately calibrated. Ridge and XGBoost regressions best predicted LoS, with the smallest total prediction error. The overall prediction error is between 6 and 7 days, meaning there is a 6-7 day mean difference between actual and predicted LoS. Conclusion Our results demonstrate the potential of machine learning-based methods to predict LoS and provide valuable insights into the risks behind prolonged hospitalizations. In addition to physicians' clinical expertise, the results of these models can be utilized as input to make informed decisions, such as predicting hospitalizations and enhancing the overall performance of a public healthcare system.
Collapse
Affiliation(s)
- Addisu Jember Zeleke
- Department of Electrical, Electronic, and Information Engineering Guglielmo Marconi, University of Bologna, Bologna, Italy
| | - Pierpaolo Palumbo
- Department of Electrical, Electronic, and Information Engineering Guglielmo Marconi, University of Bologna, Bologna, Italy
| | - Paolo Tubertini
- Enterprise Information Systems for Integrated Care and Research Data Management, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero—Universitaria di Bologna, Bologna, Italy
| | - Rossella Miglio
- Department of Statistical Sciences, University of Bologna, Bologna, Italy
| | - Lorenzo Chiari
- Department of Electrical, Electronic, and Information Engineering Guglielmo Marconi, University of Bologna, Bologna, Italy
- Health Sciences and Technologies Interdepartmental Center for Industrial Research (CIRI SDV), University of Bologna, Bologna, Italy
| |
Collapse
|