1
|
Pini N, Fifer WP, Oh J, Nebeker C, Croff JM, Smith BA. Remote data collection of infant activity and sleep patterns via wearable sensors in the HEALthy Brain and Child Development Study (HBCD). Dev Cogn Neurosci 2024; 69:101446. [PMID: 39298921 PMCID: PMC11426054 DOI: 10.1016/j.dcn.2024.101446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/16/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
The HEALthy Brain and Child Development (HBCD) Study, a multi-site prospective longitudinal cohort study, will examine human brain, cognitive, behavioral, social, and emotional development beginning prenatally and planned through early childhood. Wearable and remote sensing technologies have advanced data collection outside of laboratory settings to enable exploring, in more detail, the associations of early experiences with brain development and social and health outcomes. In the HBCD Study, the Novel Technology/Wearable Sensors Working Group (WG-NTW) identified two primary data types to be collected: infant activity (by measuring leg movements) and sleep (by measuring heart rate and leg movements). These wearable technologies allow for remote collection in the natural environment. This paper illustrates the collection of such data via wearable technologies and describes the decision-making framework, which led to the currently deployed study design, data collection protocol, and derivatives, which will be made publicly available. Moreover, considerations regarding actual and potential challenges to adoption and use, data management, privacy, and participant burden were examined. Lastly, the present limitations in the field of wearable sensor data collection and analysis will be discussed in terms of extant validation studies, the difficulties in comparing performance across different devices, and the impact of evolving hardware/software/firmware.
Collapse
Affiliation(s)
- Nicolò Pini
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA; Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA.
| | - William P Fifer
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA; Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA; Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Jinseok Oh
- Division of Developmental-Behavioral Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Camille Nebeker
- Herbert Wertheim School of Public Health and Human Longevity Science, UC San Diego, La Jolla, CA, USA; The Qualcomm Institute, UC San Diego, La Jolla, CA, USA
| | - Julie M Croff
- Department of Rural Health, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| | - Beth A Smith
- Developmental Neuroscience and Neurogenetics Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA; Division of Developmental-Behavioral Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Islam B, McElwain NL, Li J, Davila MI, Hu Y, Hu K, Bodway JM, Dhekne A, Roy Choudhury R, Hasegawa-Johnson M. Preliminary Technical Validation of LittleBeats™: A Multimodal Sensing Platform to Capture Cardiac Physiology, Motion, and Vocalizations. SENSORS (BASEL, SWITZERLAND) 2024; 24:901. [PMID: 38339617 PMCID: PMC10857055 DOI: 10.3390/s24030901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
Across five studies, we present the preliminary technical validation of an infant-wearable platform, LittleBeats™, that integrates electrocardiogram (ECG), inertial measurement unit (IMU), and audio sensors. Each sensor modality is validated against data from gold-standard equipment using established algorithms and laboratory tasks. Interbeat interval (IBI) data obtained from the LittleBeats™ ECG sensor indicate acceptable mean absolute percent error rates for both adults (Study 1, N = 16) and infants (Study 2, N = 5) across low- and high-challenge sessions and expected patterns of change in respiratory sinus arrythmia (RSA). For automated activity recognition (upright vs. walk vs. glide vs. squat) using accelerometer data from the LittleBeats™ IMU (Study 3, N = 12 adults), performance was good to excellent, with smartphone (industry standard) data outperforming LittleBeats™ by less than 4 percentage points. Speech emotion recognition (Study 4, N = 8 adults) applied to LittleBeats™ versus smartphone audio data indicated a comparable performance, with no significant difference in error rates. On an automatic speech recognition task (Study 5, N = 12 adults), the best performing algorithm yielded relatively low word error rates, although LittleBeats™ (4.16%) versus smartphone (2.73%) error rates were somewhat higher. Together, these validation studies indicate that LittleBeats™ sensors yield a data quality that is largely comparable to those obtained from gold-standard devices and established protocols used in prior research.
Collapse
Affiliation(s)
- Bashima Islam
- Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Nancy L. McElwain
- Department of Human Development and Family Studies, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (Y.H.); (K.H.); (J.M.B.)
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jialu Li
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (J.L.); (R.R.C.)
| | - Maria I. Davila
- Research Triangle Institute, Research Triangle Park, NC 27709, USA;
| | - Yannan Hu
- Department of Human Development and Family Studies, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (Y.H.); (K.H.); (J.M.B.)
| | - Kexin Hu
- Department of Human Development and Family Studies, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (Y.H.); (K.H.); (J.M.B.)
| | - Jordan M. Bodway
- Department of Human Development and Family Studies, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (Y.H.); (K.H.); (J.M.B.)
| | - Ashutosh Dhekne
- School of Computer Science, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Romit Roy Choudhury
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (J.L.); (R.R.C.)
| | - Mark Hasegawa-Johnson
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (J.L.); (R.R.C.)
| |
Collapse
|