1
|
Bahr AC, Scherer NB, de Gregório E, Kieling L, de Castro AL, Araujo ASDR, Türck P, Dal Lago P. Photobiomodulation and Physical Exercise Modulate of Cell Survival Proteins in the Skeletal Muscle of Rats with Heart Failure and Diabetes Mellitus. Photobiomodul Photomed Laser Surg 2024. [PMID: 39441652 DOI: 10.1089/photob.2024.0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Introduction: Heart failure (HF) and type 2 diabetes mellitus (DM2) are global health problems that often lead to muscle atrophy. These conditions are associated with increased autophagy and apoptosis in the muscle cells, resulting in decreased muscle mass. Physical exercise associated with photobiomodulation (PBM) seems promising to attenuate the skeletal muscle changes caused by HF and DM2, due to its direct effects on mitochondria, which may result in an increase in antioxidant capacity. Objective: To verify the influence of physical exercise and the association with PBM on autophagy, apoptosis, and cell survival signaling pathways in myocytes from rats with HF and DM2. Materials and Methods: Male rats were assigned to one of four groups: control (CT), HF+DM (disease model), exercise+HF+DM (EX+HF+DM), and EX+HF+DM+PBM (EX+HF+DM+PBM). To induce DM2, we administered streptozotocin (STZ) (0.25 mL/kg, intraperitoneally). HF was induced by coronary ligation. One week post-induction, an 8-week aerobic exercise and PBM protocol was initiated. Western blot analysis was used to measure the expression of apoptosis-related proteins and autophagy. Results: The EX+HF+DM+PBM group showed a substantial increase in Nrf2, p-AKT, and LC3-I levels compared to the HF+DM group. Conclusions: These findings suggest that physical exercise combined with PBM can upregulate proteins that promote myocyte survival in rats with HF and DM2.
Collapse
Affiliation(s)
- Alan Christhian Bahr
- Laboratório de Fisiologia, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Departamento de Fisioterapia, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, Brazil
| | - Naira Bohrer Scherer
- Laboratório de Fisiologia, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Departamento de Fisioterapia, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, Brazil
| | - Elizama de Gregório
- Departamento de Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Lucas Kieling
- Laboratório de Fisiologia, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Alexandre Luz de Castro
- Departamento de Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | - Patrick Türck
- Departamento de Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Pedro Dal Lago
- Laboratório de Fisiologia, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Departamento de Fisioterapia, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, Brazil
| |
Collapse
|
2
|
Li BM, Qiu DY, Ni PS, Wang ZZ, Duan R, Yang L, Liu CY, Chen BY, Li FH. Can pre-exercise photobiomodulation improve muscle endurance and promote recovery from muscle strength and injuries in people with different activity levels? A meta-analysis of randomized controlled trials. Lasers Med Sci 2024; 39:132. [PMID: 38758297 DOI: 10.1007/s10103-024-04079-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
Photobiomodulation therapy (PBMT) was introduced as an ergogenic aid for sport performance in healthy individuals is still controversial. The main aim of this study is to assess the potential enhancements in muscle endurance and recovery from muscle strength and injuries mediated by PBMT among individuals exhibiting diverse activity levels. Randomized controlled trials (RCT) of PBMT interventions for healthy people (both trained and untrained individuals) exercising were searched (up to January 16, 2024) in four electronic databases: Web of Science, PubMed, Scopus and Embase. Primary outcome measures included muscle endurance, muscle strength and creatine kinase (CK) levels; secondary outcome measure included Lactate dehydrogenase (LDH) levels. Subgroup analyses based on physical activity levels were conducted for each outcome measure. Thirty-four RCTs were included based on the article inclusion and exclusion criteria. Statistical results showed that PBMT significantly improved muscle endurance (standardized mean difference [SMD] = 0.31, 95%CI 0.11, 0.51, p < 0.01), indicating a moderate effect size. It also facilitated the recovery of muscle strength (SMD = 0.24, 95%CI 0.10, 0.39, p < 0.01) and CK (mean difference [MD] = -77.56, 95%CI -112.67, -42.44, p < 0.01), indicating moderate and large effect sizes, respectively. Furthermore, pre-application of PBMT significantly improved muscle endurance, recovery of muscle strength and injuries in physically inactive individuals and athletes (p < 0.05), while there was no significant benefit for physically active individuals. Pre-application of PBMT improves muscle endurance and promotes recovery from muscle strength and injury (includes CK and LDH) in athletes and sedentary populations, indicating moderate to large effect sizes, but is ineffective in physically active populations. This may be due to the fact that physically active people engage in more resistance training, which leads to a decrease in the proportion of red muscle fibres, thus affecting photobiomodulation.
Collapse
Affiliation(s)
- Bo-Ming Li
- School of Sport Sciences, Nanjing Normal University, No.1 Wenyuan Road Qixia District, Nanjing, 210046, China
| | - Da-Yong Qiu
- School of Physical and Health Education, Nanjing Normal University Taizhou College, Taizhou, China
| | - Pin-Shi Ni
- School of Sport Sciences, Nanjing Normal University, No.1 Wenyuan Road Qixia District, Nanjing, 210046, China
| | - Zhuang-Zhi Wang
- School of Sport Sciences, Nanjing Normal University, No.1 Wenyuan Road Qixia District, Nanjing, 210046, China
| | - Rui Duan
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Luodan Yang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Cheng-Yi Liu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Bao-Yi Chen
- Qixia Sports Hospital Affiliated to Nanjing Normal University, Nanjing, China
| | - Fang-Hui Li
- School of Sport Sciences, Nanjing Normal University, No.1 Wenyuan Road Qixia District, Nanjing, 210046, China.
| |
Collapse
|
3
|
Barolet AC, Barolet D. Reducing Carbon Dioxide Laser-Induced Postinflammatory Hyperpigmentation with Prophylactic Photobiomodulation: A Case Study. Photobiomodul Photomed Laser Surg 2024; 42:339-342. [PMID: 38776545 DOI: 10.1089/photob.2023.0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Objective: This study aimed to investigate the effectiveness of prophylactic photobiomodulation (PBM) in reducing postinflammatory hyperpigmentation (PIH) induced by carbon dioxide (CO2) laser resurfacing in a patient with periorbital syringomas. Background: PIH is a common condition characterized by abnormal skin pigmentation after an inflammatory process occurring in up to 20-30% of patients undergoing CO2 laser resurfacing. Methods: The patient was treated with PBM using a pulsed home-use device at 630 nm before and after CO2 laser treatment. The patient was asked to treat the right periorbital area before and after the CO2 laser treatment, which was continued once a day for 2 consecutive weeks. Results: At 12 weeks, PIH was significantly reduced on the treated side compared with the contralateral untreated side (leading to persistent erythema at 6 months). Conclusions: This is the first report of prophylactic treatment of CO2 laser-induced dyschromia using PBM.
Collapse
Affiliation(s)
- Augustin C Barolet
- Department of Surgery, Regenerative Medicine Division, CHU de Quebec-Université Laval Research Centre, Quebec City, Quebec, Canada
- RoseLab Skin Optics Research Laboratory, Laval, Quebec, Canada
| | - Daniel Barolet
- RoseLab Skin Optics Research Laboratory, Laval, Quebec, Canada
- Dermatology Division, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Parvin A, Erabi G, Saboohi Tasooji MR, Sadeghpour S, Mellatyar H, Rezaei Arablouydareh S, Navapour L, Taheri-Anganeh M, Ghasemnejad-Berenji H. The effects of photobiomodulation on the improvement of sperm parameters: A review study. Photochem Photobiol 2024. [PMID: 38623963 DOI: 10.1111/php.13941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/27/2024] [Accepted: 03/18/2024] [Indexed: 04/17/2024]
Abstract
The prevalence of male infertility has become a significant clinical concern worldwide, with a noticeable upward trend in recent times. The rates of fertilization and subsequent development of embryos are dependent on many parameters associated with the quality and viability of sperm. Photobiomodulation (PBM) is a promising approach with a great potential for translational applications in the treatment of spermatozoa exhibiting low quality and motility. In this study, a comprehensive analysis of the existing literature, specifically examining the mechanisms of action of PBM has been presented. Our objective was to enhance knowledge in the field of laser light therapy in order to promote the usage of irradiation in clinical settings in a more effective way. Within the realm of reproductive science, the utilization of PBM has been employed to enhance the metabolic processes, motility, and viability of spermatozoa. This is attributed to its advantageous effects on mitochondria, resulting in the activation of the mitochondrial respiratory chain and subsequent synthesis of ATP. This therapeutic approach can be highly advantageous in circumventing the reliance on chemical substances within the culture medium for spermatozoa while also facilitating the viability and motility of spermatozoa, particularly in circumstances involving thawing or samples with significant immotility.
Collapse
Affiliation(s)
- Ali Parvin
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Sonia Sadeghpour
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Sahar Rezaei Arablouydareh
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Navapour
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
5
|
da Silva HNM, Fernandes EM, Pereira VA, Mizobuti DS, Covatti C, da Rocha GL, Minatel E. LEDT and Idebenone treatment modulate autophagy and improve regenerative capacity in the dystrophic muscle through an AMPK-pathway. PLoS One 2024; 19:e0300006. [PMID: 38498472 PMCID: PMC10947673 DOI: 10.1371/journal.pone.0300006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
PURPOSE Considering the difficulties and challenges in Duchenne muscular dystrophy (DMD) treatment, such as the adverse effects of glucocorticoids, which are the main medical prescription used by dystrophic patients, new treatment concepts for dystrophic therapy are very necessary. Thus, in this study, we explore the effects of photobiomodulation (PBM; a non-invasive therapy) and Idebenone (IDE) treatment (a potent antioxidant), applied alone or in association, in dystrophic muscle cells and the quadriceps muscle, with special focus on autophagy and regenerative pathways. METHODS For the in vitro studies, the dystrophic primary muscle cells received 0.5J LEDT and 0.06μM IDE; and for the in vivo studies, the dystrophic quadriceps muscle received 3J LEDT and the mdx mice were treated with 200mg/kg IDE. RESULTS LEDT and IDE treatment modulate autophagy by increasing autophagy markers (SQSTM1/p62, Beclin and Parkin) and signaling pathways (AMPK and TGF-β). Concomitantly, the treatments prevented muscle degeneration by reducing the number of IgG-positive fibers and the fibers with a central nucleus; decreasing the fibrotic area; up-regulating the myogenin and MCH-slow levels; and down-regulating the MyoD and MHC-fast levels. CONCLUSION These results suggest that LEDT and IDE treatments enhance autophagy and prevented muscle degeneration in the dystrophic muscle of the experimental model. These findings illustrate the potential efficacy of LEDT and IDE treatment as an alternative therapy focused on muscle recovery in the dystrophic patient.
Collapse
Affiliation(s)
| | - Evelyn Mendes Fernandes
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Valéria Andrade Pereira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Daniela Sayuri Mizobuti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Caroline Covatti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Guilherme Luiz da Rocha
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Elaine Minatel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
6
|
Khalil M, Hamadah O, Saifo M. Preconditioning with Photobiomodulation as an Effective Method in Preventing Chemotherapy-Induced Oral Mucositis: A Systematic Review. Photobiomodul Photomed Laser Surg 2023; 41:597-607. [PMID: 37976239 DOI: 10.1089/photob.2023.0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Background: Given the suffering experienced by cancer patients, effective solutions must be found to prevent the most painful and debilitating side effects of anticancer treatment. The use of photobiomodulation (PBM) with specific parameters has been proposed to prevent oral mucositis in adults undergoing hematopoietic stem cell transplantation as well as in head and neck cancer patients receiving radiotherapy alone without chemotherapy. No recommendations were possible for patients undergoing chemotherapy alone. This systematic review aims to analyze the effectiveness of preconditioning by PBM in preventing chemotherapy-induced oral mucositis. Methods: This study was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses, PRISMA, Checklist and registered at the International Prospective Register of Systematic Reviews (PROSPERO). We searched and identified articles of the subsequent bibliographic databases: PubMed and Cochrane. Revised Cochrane risk-of-bias tool for randomized trials (RoB 2.0) was used to assess the risk of bias of studies included in this review. Results: There were only six clinical trials examining the efficacy of PBM therapy in the primary prevention of chemotherapy-induced oral mucositis. All of the studies used lasers, except for one study that compared lasers with light-emitting diodes. The wavelength ranges from 630 to 830 nm. Irradiation parameters varied among the included studies. All studies showed good results for the use of PBM in the prevention of oral mucositis except for one study that found no benefit for the laser application. Conclusions: PBM has been shown to be effective in preventing oral mucositis when applied to healthy tissues. Finding the optimal protocol has been difficult due to the variability between studies, and therefore, further well-designed, controlled, blinded studies are recommended to precisely determine irradiation parameters and the number of sessions. This review has been registered at the International Prospective Register of Systematic Reviews (PROSPERO) under number CRD42023397771.
Collapse
Affiliation(s)
- Marwa Khalil
- Department of Oral Medicine, Faculty of Dentistry, Damascus University, Damascus, Syria
| | - Omar Hamadah
- Department of Oral Medicine, Faculty of Dentistry, Damascus University, Damascus, Syria
- The Higher Institute for Laser Research and Applications, Damascus University, Damascus, Syria
| | - Maher Saifo
- Department of Medical Oncology, Faculty of Medicine, Damascus University, Damascus, Syria
- Albairouni University Hospital, Damascus University, Damascus, Syria
| |
Collapse
|
7
|
Covatti C, Mizobuti DS, Rocha GLD, da Silva HNM, de Lourenço CC, Pertille A, Pereira ECL, Minatel E. Low-Level Photobiomodulation Therapy Modulates H 2O 2 Production, TRPC-6, and PGC-1α Levels in the Dystrophic Muscle. Photobiomodul Photomed Laser Surg 2023; 41:389-401. [PMID: 37527194 DOI: 10.1089/photob.2022.0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Objective: This study evaluated photobiomodulation therapy (PBMT) effects on the factors involved in mitochondrial biogenesis, on the mitochondrial respiratory complexes, and on the transient receptor potential canonical channels (such as TRPC-1 and TRPC-6) in in vitro (mdx muscle cells) and in vivo studies (gastrocnemius muscle) from mdx mice, the dystrophin-deficient model of Duchenne muscular dystrophy (DMD). Background: There is no successful treatment for DMD, therefore demanding search for new therapies that can improve the muscle role, the quality of life, and the survival of dystrophic patients. Methods: The dystrophic primary muscle cells received PBMT at 0.6 J and 5 J, and the dystrophic gastrocnemius muscle received PBMT at 0.6 J. Results: The dystrophic muscle cells treated with PBMT (0.6 J and 5 J) showed no cytotoxicity and significantly lower levels in hydrogen peroxide (H2O2) production. We also demonstrated, for the first time, the capacity of PBMT, at a low dose (0.6 J), in reducing the TRPC-6 content and in raising the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) content in the dystrophic gastrocnemius muscle. Conclusions: PBMT modulates H2O2 production, TRPC-6, and PGC-1α content in the dystrophic muscle. These results suggest that laser therapy could act as an auxiliary therapy in the treatment of dystrophic patients.
Collapse
Affiliation(s)
- Caroline Covatti
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Daniela Sayuri Mizobuti
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Guilherme Luiz da Rocha
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Heloina Nathalliê Mariano da Silva
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Caroline Caramano de Lourenço
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Adriana Pertille
- Graduate Program in Science of Human Movement, Universidade Metodista de Piracicaba (UNIMEP), Piracicaba, São Paulo, Brazil
| | - Elaine Cristina Leite Pereira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Universidade de Brasília (UnB), Faculdade de Ceilândia, Brasília, Distrito Federal, Brazil
| | - Elaine Minatel
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
8
|
Cronshaw M, Parker S, Grootveld M, Lynch E. Photothermal Effects of High-Energy Photobiomodulation Therapies: An In Vitro Investigation. Biomedicines 2023; 11:1634. [PMID: 37371729 DOI: 10.3390/biomedicines11061634] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/23/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The purpose of this study was to investigate photothermal aspects of photobiomodulation therapies (PBMT) in vitro to assist in the development of safe clinical parameters with respect to higher-power devices with large surface applicators. Laser wavelengths in the range of 650 nm-1064 nm were investigated using a thermal camera. Thermographic measures of surface and sub-surface temperature variations of similar lean porcine muscle tissue samples were recorded for a series of calibrated experiments. A thermal comparison was then made between Flat-top and Gaussian beam spatial distribution devices. Outcome data were subjected to statistical analysis using an ANOVA model. Results acquired at similar parameters of irradiance indicated that the application of the 980 nm wavelength was associated with the highest rise in temperature, which decreased with other wavelengths in the order 980 > 1064 ≈ 650 >>> 810 nm (p < 5 × 10-20). All wavelengths assessed were associated with a significant temperature increase, and with the exception of 810 nm, all exceeded the threshold of a 6 °C rise within the prescribed parameter limits. Optical scanning by movement of the applied source over a relevant area was found to offer effective mitigation of these temperature increases. An extended discussion is presented, analysing the clinical significance of the study outcomes. Recommendations are made within the limits of this in vitro study in order to assist future clinical investigations.
Collapse
Affiliation(s)
- Mark Cronshaw
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Steven Parker
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Martin Grootveld
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Edward Lynch
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| |
Collapse
|
9
|
Kunarti S, Eka Juniarti D, Kartini Sunur Y, Kurnia Ariani M. The different effects of low-level laser therapy before and after overinstrumentation on the expression of substance P and interleukin-10. Saudi Dent J 2023; 35:317-321. [DOI: 10.1016/j.sdentj.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
|
10
|
Bikmulina P, Kosheleva N, Shpichka A, Yusupov V, Gogvadze V, Rochev Y, Timashev P. Photobiomodulation in 3D tissue engineering. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220027VRR. [PMID: 36104833 PMCID: PMC9473299 DOI: 10.1117/1.jbo.27.9.090901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
SIGNIFICANCE The method of photobiomodulation (PBM) has been used in medicine for a long time to promote anti-inflammation and pain-resolving processes in different organs and tissues. PBM triggers numerous cellular pathways including stimulation of the mitochondrial respiratory chain, alteration of the cytoskeleton, cell death prevention, increasing proliferative activity, and directing cell differentiation. The most effective wavelengths for PBM are found within the optical window (750 to 1100 nm), in which light can permeate tissues and other water-containing structures to depths of up to a few cm. PBM already finds its applications in the developing fields of tissue engineering and regenerative medicine. However, the diversity of three-dimensional (3D) systems, irradiation sources, and protocols intricate the PBM applications. AIM We aim to discuss the PBM and 3D tissue engineered constructs to define the fields of interest for PBM applications in tissue engineering. APPROACH First, we provide a brief overview of PBM and the timeline of its development. Then, we discuss the optical properties of 3D cultivation systems and important points of light dosimetry. Finally, we analyze the cellular pathways induced by PBM and outcomes observed in various 3D tissue-engineered constructs: hydrogels, scaffolds, spheroids, cell sheets, bioprinted structures, and organoids. RESULTS Our summarized results demonstrate the great potential of PBM in the stimulation of the cell survival and viability in 3D conditions. The strategies to achieve different cell physiology states with particular PBM parameters are outlined. CONCLUSIONS PBM has already proved itself as a convenient and effective tool to prevent drastic cellular events in the stress conditions. Because of the poor viability of cells in scaffolds and the convenience of PBM devices, 3D tissue engineering is a perspective field for PBM applications.
Collapse
Affiliation(s)
- Polina Bikmulina
- Sechenov First Moscow State Medical University, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Moscow, Russia
| | - Nastasia Kosheleva
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
- FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia
- Sechenov University, Laboratory of Clinical Smart Nanotechnologies, Moscow, Russia
| | - Anastasia Shpichka
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
- Sechenov University, Laboratory of Clinical Smart Nanotechnologies, Moscow, Russia
| | - Vladimir Yusupov
- Institute of Photon Technologies of FSRC “Crystallography and Photonics” RAS, Troitsk, Russia
| | - Vladimir Gogvadze
- Lomonosov Moscow State University, Faculty of Medicine, Moscow, Russia
- Karolinska Institutet, Institute of Environmental Medicine, Division of Toxicology, Stockholm, Sweden
| | - Yury Rochev
- National University of Ireland, Galway, Galway, Ireland
| | - Peter Timashev
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
- Sechenov University, Laboratory of Clinical Smart Nanotechnologies, Moscow, Russia
| |
Collapse
|
11
|
Parker S, Cronshaw M, Grootveld M. Photobiomodulation Delivery Parameters in Dentistry: An Evidence-Based Approach. Photobiomodul Photomed Laser Surg 2022; 40:42-50. [DOI: 10.1089/photob.2021.0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Steven Parker
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Mark Cronshaw
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Martin Grootveld
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| |
Collapse
|
12
|
Photobiomodulation therapy preconditioning modifies nitric oxide pathway and oxidative stress in human-induced pluripotent stem cell-derived ventricular cardiomyocytes treated with doxorubicin. Lasers Med Sci 2021; 37:1667-1675. [PMID: 34536182 DOI: 10.1007/s10103-021-03416-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/13/2021] [Indexed: 12/16/2022]
Abstract
Doxorubicin (DOX) is an anthracycline antibiotic that exhibits high heart toxicity. Human-induced pluripotent stem cell-derived ventricular cardiomyocytes (hiPSC-vCMs) are important in vitro models for testing drug cardiotoxicity. Photobiomodulation therapy (PBMT) is a non-invasive therapy that stimulates cells growth and self-repair using light irradiation. This study aimed to investigate the in vitro effects of PBMT preconditioning on cardiotoxicity induced by DOX. HiPSC-vCMs were treated with PBMT for 500 s, followed by the addition of 2 μM DOX. LED irradiation preconditioning parameters were at 660 nm with an irradiance of 10 mW/cm2, performing 5 J/cm2, followed by 24-h DOX exposure (2 μM). Human iPSC-vCMs treated with 2 μM DOX or irradiated with PBMT composed the second and third groups, respectively. The control group did neither receive PBMT preconditioning nor DOX and was irradiated with a white standard lamp. Cells from all groups were collected to perform mRNA and miRNA expressions quantification. PBMT, when applied before the DOX challenge, restored the viability of hiPSC-vCMs and reduced ROS levels. Although downregulated by DOX, myocardial UCP2 mRNA expression presented marked upregulation after PBMT preconditioning. Expression of eNOS and UCP2 mRNA and NO production were decreased after DOX exposure, and PBMT preconditioning before the DOX challenge reversed these changes. Moreover, our data indicated that PBMT preconditioning lowered the miR-24 expression. Our data suggested that PBMT preconditioning ameliorated in vitro DOX-induced cardiotoxicity on transcription level, restoring NO levels and reducing oxidative stress.
Collapse
|
13
|
Hypericin and Pheophorbide a Mediated Photodynamic Therapy Fighting MRSA Wound Infections: A Translational Study from In Vitro to In Vivo. Pharmaceutics 2021; 13:pharmaceutics13091399. [PMID: 34575478 PMCID: PMC8472478 DOI: 10.3390/pharmaceutics13091399] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/17/2021] [Accepted: 08/27/2021] [Indexed: 01/14/2023] Open
Abstract
High prevalence rates of methicillin-resistant Staphylococcus aureus (MRSA) and lack of effective antibacterial treatments urge discovery of alternative therapeutic modalities. The advent of antibacterial photodynamic therapy (aPDT) is a promising alternative, composing rapid, nonselective cell destruction without generating resistance. We used a panel of clinically relevant MRSA to evaluate hypericin (Hy) and pheophobide a (Pa)-mediated PDT with clinically approved methylene blue (MB). We translated the promising in vitro anti-MRSA activity of selected compounds to a full-thick MRSA wound infection model in mice (in vivo) and the interaction of aPDT innate immune system (cytotoxicity towards neutrophils). Hy-PDT consistently displayed lower minimum bactericidal concentration (MBC) values (0.625-10 µM) against ATCC RN4220/pUL5054 and a whole panel of community-associated (CA)-MRSA compared to Pa or MB. Interestingly, Pa-PDT and Hy-PDT topical application demonstrated encouraging in vivo anti-MRSA activity (>1 log10 CFU reduction). Furthermore, histological analysis showed wound healing via re-epithelization was best in the Hy-PDT group. Importantly, the dark toxicity of Hy was significantly lower (p < 0.05) on neutrophils compared to Pa or MB. Overall, Hy-mediated PDT is a promising alternative to treat MRSA wound infections, and further rigorous mechanistic studies are warranted.
Collapse
|
14
|
Fan Z, Wei Y, Yin Z, Huang H, Liao X, Sun L, Liu B, Liu F. Near-Infrared Light-Triggered Unfolding Microneedle Patch for Minimally Invasive Treatment of Myocardial Ischemia. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40278-40289. [PMID: 34424666 DOI: 10.1021/acsami.1c09658] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It is hard to achieve safe, effective, and minimally invasive therapies on myocardial infarction (MI) via conventional treatments. To address this challenge, a vascular endothelial growth factor (VEGF)-loaded and near-infrared (NIR)-triggered self-unfolding graphene oxide (GO)-poly(vinyl alcohol) (PVA) microneedle (MN) patch was designed and fabricated to treat MI through a minimally invasive surgery (MIS). The folded MN patch can be easily placed into the chest cavity through a small cut (4 mm) and quickly recover to its original shape with 10 s of irradiation of NIR light (1.5 W/cm2, beam diameter = 0.5 cm), thanks to its excellent shape memory effect and fast shape recovery ability. Meanwhile, the unfolded MN patch can be readily punctured into the heart and wrap the heart tightly, thanks to its sufficient mechanical strength and adjustable morphological structure, thus ensuring a high fixation strength to withstand the high-frequency pulsation of the heart. In addition, the prepared MN patch has low cytotoxicity and controllable and sustainable release of VEGF. More importantly, the MN patch can effectively promote neovascularization, reduce myocardial fibrosis, and restore cardiac function, which indicates its promising application prospects in MIS.
Collapse
Affiliation(s)
- Zengjie Fan
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou 730000, People's Republic of China
- School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yuan Wei
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou 730000, People's Republic of China
- School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhengrong Yin
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou 730000, People's Republic of China
- School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Haofei Huang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou 730000, People's Republic of China
- School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xiaozhu Liao
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou 730000, People's Republic of China
- School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Luyi Sun
- Polymer Program, Institute of Materials Science and Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Bin Liu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou 730000, People's Republic of China
- School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Fengzhen Liu
- Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng 252000, People's Republic of China
| |
Collapse
|
15
|
Costa DR, Pessoa DR, Seefeldt VB, Costa DR, Maia DTL, Dos Santos Maciel T, Mota BBM, Delpasso CA, Ribeiro CAD, Nicolau RA. Orofacial evaluation of individuals with temporomandibular disorder after LED therapy associated or not of occlusal splint: a randomized double-blind controlled clinical study. Lasers Med Sci 2021; 36:1681-1689. [PMID: 33616765 DOI: 10.1007/s10103-021-03269-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 02/10/2021] [Indexed: 11/29/2022]
Abstract
This study compared the effects of LED therapy associated with occlusal splint (OS) on the signs and symptoms of temporomandibular disorder (TMD). In this randomized, double-blind clinical trial, 70 TMD patients were randomly divided into six groups. The volunteers received the following treatments: Group 1 (G1) was the control and received only conventional therapy with OS; Group 2 (G2) was the placebo and received treatment with OS and therapy with LED (device turned off); Group 3 (G3) LED therapy (infrared,) once a week; Group 4 (G4) LED therapy (infrared) twice a week; Group 5 (G5) OS associated with LED (infrared) therapy (once a week); Group 6 (G6) received OS therapy plus infrared LED (two sessions per week). The patients were evaluated before, after, and 30 days after treatment. The pain intensity in masticatory system was recorded at each interval. The evaluation of the electromyographic signals (EMG) of the muscles (masseter and temporal) and blood lactate was performed before and after treatment. The associated groups presented better clinical results in relation to the control. The associated groups showed significant differences (p < 0.05) from control in the analysis of pain intensity and in decrease of the RMS value (EMG analysis). In the intragroup analysis, the volunteers in G6 exhibited a significant reduction (p < 0.05) in blood lactate. In conclusion, the association of LED therapy and OS presented superior results in relation to the isolated therapies, especially the protocol with two weekly sessions.
Collapse
Affiliation(s)
- Davidson Ribeiro Costa
- Divisão de Saúde, Prefeitura Municipal de Santo Antônio do Pinhal, Av. Min. Nelson Hungria, 622 - Centro, Santo Antônio do Pinhal, São Paulo, 12450-000, Brazil. .,Centro de Pesquisas Avançadas em Fototerapia (CPAF), CARBONFIT, Jacareí, São Paulo, Brazil.
| | - Diego Rodrigues Pessoa
- Centro de Pesquisas Avançadas em Fototerapia (CPAF), CARBONFIT, Jacareí, São Paulo, Brazil
| | | | - David Ribeiro Costa
- Centro de Pesquisas Avançadas em Fototerapia (CPAF), CARBONFIT, Jacareí, São Paulo, Brazil
| | | | - Thiago Dos Santos Maciel
- Institute of Health and Biotechnology, Universidade Federal do Amazonas (UFAM), Coari, Amazonas, Brazil
| | | | | | | | - Renata Amadei Nicolau
- Institute of Research and Development, Universidade do Vale do Paraíba (Univap), São José dos Campos, SP, Brazil
| |
Collapse
|
16
|
Nica DF, Riviș M, Roi CI, Todea CD, Duma VF, Sinescu C. Complementarity of Photo-Biomodulation, Surgical Treatment, and Antibiotherapy for Medication-Related Osteonecrosis of the Jaws (MRONJ). ACTA ACUST UNITED AC 2021; 57:medicina57020145. [PMID: 33562600 PMCID: PMC7914693 DOI: 10.3390/medicina57020145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 01/16/2023]
Abstract
Background and Objectives: Antiresorptive or anti-angiogenic agents may induce medication-related osteonecrosis of the jaws (MRONJ), which represents a challenge for clinicians. The aim of this study is to design and apply a composed and stage-approach therapy combining antibiotherapy, surgical treatment, and photo-biomodulation (PBM) for the prevention or treatment of MRONJ lesions. Materials and Methods: The proposed treatment protocol was carried out in the Department of Oral & Maxillofacial Surgery of the “Victor Babes” University of Medicine and Farmacy of Timisoara, in 2018–2020. A total of 241 patients who were previously exposed to antiresorptive or anti-angiogenic therapy, as well as patients already diagnosed with MRONJ at different stages of the disease were treated. A preventive protocol was applied for patients in an “at risk” stage. Patients in more advanced stages received a complex treatment. Results: The healing proved to be complete, with spontaneous bone coverage in all the n = 84 cases placed in an “at risk” stage. For the n = 49 patients belonging to stage 0, pain reductions and decreases of mucosal inflammations were also obtained in all cases. For the n = 108 patients proposed for surgery (i.e., in stages 1, 2, or 3 of MRONJ), a total healing rate of 91.66% was obtained after the first surgery, while considering the downscaling to stage 1 as a treatment “success”, only one “failure” was reported. This brings the overall “success” rate to 96.68% for a complete healing, and to 99.59% when downscaling to stage 1 is included in the healing rate. Conclusions: Therefore, the clinical outcome of the present study indicates that patients with MRONJ in almost all stages of the disease can benefit from such a proposed association of methods, with superior clinical results compared to classical therapies.
Collapse
Affiliation(s)
- Diana Florina Nica
- Department of Anaesthesiology and Oral Surgery, School of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 2A Eftimie Murgu Place, 300041 Timisoara, Romania; (D.F.N.); (C.I.R.)
| | - Mircea Riviș
- Department of Anaesthesiology and Oral Surgery, School of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 2A Eftimie Murgu Place, 300041 Timisoara, Romania; (D.F.N.); (C.I.R.)
- Correspondence: (M.R.); (V.-F.D.); Tel.: +40-751-511451 (V.-F.D.)
| | - Ciprian Ioan Roi
- Department of Anaesthesiology and Oral Surgery, School of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 2A Eftimie Murgu Place, 300041 Timisoara, Romania; (D.F.N.); (C.I.R.)
| | - Carmen Darinca Todea
- Department of Oral Rehabilitation and Dental Emergencies, School of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 2A Eftimie Murgu Place, 300041 Timisoara, Romania;
| | - Virgil-Florin Duma
- 3OM Optomechatronics Group, Faculty of Engineering, “Aurel Vlaicu” University of Arad, 2 Elena Dragoi Str., 310177 Arad, Romania
- Doctoral School, Polytechnic University of Timisoara, 1 Mihai Viteazu Ave., 300222 Timisoara, Romania
- Research Center in Dental Medicine Using Conventional and Alternative Technologies, School of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania;
- Correspondence: (M.R.); (V.-F.D.); Tel.: +40-751-511451 (V.-F.D.)
| | - Cosmin Sinescu
- Research Center in Dental Medicine Using Conventional and Alternative Technologies, School of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania;
| |
Collapse
|
17
|
Yang L, Dong Y, Wu C, Youngblood H, Li Y, Zong X, Li L, Xu T, Zhang Q. Effects of prenatal photobiomodulation treatment on neonatal hypoxic ischemia in rat offspring. Theranostics 2021; 11:1269-1294. [PMID: 33391534 PMCID: PMC7738878 DOI: 10.7150/thno.49672] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Neonatal hypoxic-ischemic (HI) injury is a severe complication often leading to neonatal death and long-term neurobehavioral deficits in children. Currently, the only treatment option available for neonatal HI injury is therapeutic hypothermia. However, the necessary specialized equipment, possible adverse side effects, and limited effectiveness of this therapy creates an urgent need for the development of new HI treatment methods. Photobiomodulation (PBM) has been shown to be neuroprotective against multiple brain disorders in animal models, as well as limited human studies. However, the effects of PBM treatment on neonatal HI injury remain unclear. Methods: Two-minutes PBM (808 nm continuous wave laser, 8 mW/cm2 on neonatal brain) was applied three times weekly on the abdomen of pregnant rats from gestation day 1 (GD1) to GD21. After neonatal right common carotid artery ligation, cortex- and hippocampus-related behavioral deficits due to HI insult were measured using a battery of behavioral tests. The effects of HI insult and PBM pretreatment on infarct size; synaptic, dendritic, and white matter damage; neuronal degeneration; apoptosis; mitochondrial function; mitochondrial fragmentation; oxidative stress; and gliosis were then assessed. Results: Prenatal PBM treatment significantly improved the survival rate of neonatal rats and decreased infarct size after HI insult. Behavioral tests revealed that prenatal PBM treatment significantly alleviated cortex-related motor deficits and hippocampus-related memory and learning dysfunction. In addition, mitochondrial function and integrity were protected in HI animals treated with PBM. Additional studies revealed that prenatal PBM treatment significantly alleviated HI-induced neuroinflammation, oxidative stress, and myeloid cell/astrocyte activation. Conclusion: Prenatal PBM treatment exerts neuroprotective effects on neonatal HI rats. Underlying mechanisms for this neuroprotection may include preservation of mitochondrial function, reduction of inflammation, and decreased oxidative stress. Our findings support the possible use of PBM treatment in high-risk pregnancies to alleviate or prevent HI-induced brain injury in the perinatal period.
Collapse
|
18
|
Safian F, Ghaffari Novin M, Nazarian H, Shams Mofarahe Z, Abdollahifar MA, Jajarmi V, Karimi S, Kazemi M, Chien S, Bayat M. Photobiomodulation preconditioned human semen protects sperm cells against detrimental effects of cryopreservation. Cryobiology 2020; 98:239-244. [PMID: 33223006 DOI: 10.1016/j.cryobiol.2020.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
The biological consequences of semen samples preconditioning with photobiomodulation (PBM) were studied on human sperm cells post cryopreservation. Donated semen samples were collected from 22 married men with normal sperm parameters according to World Health Organization (WHO) criteria. Included samples were divided into control and PBM-preconditioning (one session, 810 nm, diode laser, and 0.6 J/cm2) groups before cryopreservation procedure. Progressive sperm motility (PSM), morphology, viability, sperm mitochondrial membrane potential(MMP), intracellular reactive oxygen species (ROS) and lipid peroxidation of sperm cells were assessed post thawing. PBM preconditioning of cryopreserved semen samples most prominently increased the PSM percentage 30 min post thawing (p = 0.000).Application of PBM before cryopreservation significantly increased the number of viable spermatozoa (p = 0.000), increased significantly the number of spermatozoa with high MMP (p = 0.004) and decreased significantly the number of spermatozoa with low MMP post-thawing(P = 0. 007)compared to control group. Cryopreserved human sperm cells with PBM preconditioning showed significant decrease in the levels of intracellular ROS (47.66 ± 2.14 versus 60.42 ± 3.16, p = 0.002) and lipid peroxidation (3.06 ± 0.13 versus 3.68 ± 0.27, p = 0.05)compared to control group. Our findings, as the first evidence, indicated that PBM-preconditioning of human semen before cryopreservation provides a real and substantial advantage. This might lead to a novel strategy in improving PBM application in the procedures of assisted reproductive technologies.
Collapse
Affiliation(s)
- Fereshteh Safian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zahra Shams Mofarahe
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Vahid Jajarmi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sareh Karimi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mahsa Kazemi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, Noveratech LLC of Louisville, Louisville, KY, USA.
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Price Institute of Surgical Research, University of Louisville, Noveratech LLC of Louisville, Louisville, KY, USA.
| |
Collapse
|
19
|
Blue light: Friend or foe ? JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 212:112026. [PMID: 32979781 DOI: 10.1016/j.jphotobiol.2020.112026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The purpose of this study was to elucidate why some potentially damaging and beneficial effects were obtained following blue light exposures on skin. MATERIALS AND METHODS Light-emitting diode (LED) devices containing 415 and 470 nm bulbs were used on normal human keratinocytes, skin biopsies and subjects with acne. Reactive oxygen species (ROS) evaluation was performed after a course of blue LED light exposures. A comparison between very small bandwidth centered at 415 nm and a combination of (415 + 470 nm) wavelengths was also carried out regarding the effects on ROS production. The effects on other targets such as opsin1 short wavelength (OPN1 SW) photoreceptor, fibrillin-1 dermal component, LL37 antimicrobial peptide and interleukin-8 (IL-8) proinflammatory cytokine were then explored. Finally, clinical pictures of acne signs were also investigated after blue LED exposures. RESULTS Dose dependent increases of ROS production were obtained on keratinocytes exposed to increasing 415 nm LED exposures. However, a ROS decreasing first phase was observed on keratinocytes exposed to 415 + 470 nm LED exposures. Moreover, comparing the same doses of 415 nm wavelength and (415 + 470 nm) wavelength combination, 415 nm alone is more damaging than the 415 + 470 nm exposures. In case of increase in ROS, decrease in OPN1 SW photoreceptor and fragmentation of fibrillin-1 dermal fiber were observed. When conditions of ROS decrease were experienced, an increase in LL37 antimicrobial peptide and a modulation of IL-8 inflammatory response were noted, suggesting improvement in acne signs. Clinical results confirmed the benefits on inflammatory lesions on subjects with acne. CONCLUSION Blue lights can induce beneficial and adverse effects, depending on the dose and on the spectrum width of the exposure.
Collapse
|
20
|
Cronshaw M, Parker S, Anagnostaki E, Mylona V, Lynch E, Grootveld M. Photobiomodulation and Oral Mucositis: A Systematic Review. Dent J (Basel) 2020; 8:dj8030087. [PMID: 32764305 PMCID: PMC7559189 DOI: 10.3390/dj8030087] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/31/2022] Open
Abstract
Oral mucositis (OM) is a debilitating complication of chemotherapy, and head and neck radiotherapy. In an effort to offer the best possible advice within the limitations of published research, a systematic review with an extended discussion and commentary on dosimetry and dose delivery is presented. Using keywords as listed, Pubmed, Google Scholar and Cochrane databases were searched during a period extending from 1995 to 2019. A total of 782 abstracts were identified. A total of 50 papers were analysed, and of these, 29 satisfied criteria required for systematic review in accordance with an optimized PRISMA statement. Clinical outcome as reported was subject to analysis with respect to time of intervention, incidence and severity of oral mucositis, and pain amelioration, and a comprehensive combined univariate and multivariate statistical analysis of the methods employed was performed. Recommendations are made with respect to the timing of the intervention. Moreover, there is an extended discussion available on the treatment care rationale of photobiomodulation (PBM), and its adjunctive association with OM. In conclusion, early prophylactic application offers clear advantages in clinical management. The many studies and associated variables and covariables assessed here revealed a choice of delivery techniques, associated wavelengths and many further indices to consider with regard to the accomplishment of optical parameters. It is therefore our recommendation that clinicians use PBM as a therapy with a full and proper understanding and training in order to optimise the clinical effects achievable.
Collapse
Affiliation(s)
- Mark Cronshaw
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (S.P.); (E.A.); (V.M.); (E.L.); (M.G.)
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham B5 7EG, UK
- Correspondence:
| | - Steven Parker
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (S.P.); (E.A.); (V.M.); (E.L.); (M.G.)
| | - Eugenia Anagnostaki
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (S.P.); (E.A.); (V.M.); (E.L.); (M.G.)
| | - Valina Mylona
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (S.P.); (E.A.); (V.M.); (E.L.); (M.G.)
| | - Edward Lynch
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (S.P.); (E.A.); (V.M.); (E.L.); (M.G.)
- School of Dental Medicine, University of Nevada, Las Vegas, NV 89106, USA
| | - Martin Grootveld
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (S.P.); (E.A.); (V.M.); (E.L.); (M.G.)
- School of Dental Medicine, University of Nevada, Las Vegas, NV 89106, USA
| |
Collapse
|
21
|
Elucidating the time course of the transcriptomic response to photobiomodulation through gene co-expression analysis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 208:111916. [PMID: 32480201 DOI: 10.1016/j.jphotobiol.2020.111916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/26/2022]
Abstract
Photobiomodulation (PBM) with low-intensity red to near infrared light elicits neuroprotection in various pre-clinical models and in some clinical contexts, yet the intracellular mechanisms triggered by PBM, and their temporal sequence of modulation, remain unclear. We aimed to address this uncertainty by mapping the temporal transcriptomic response to PBM. Human SH-SY5Y neuroblastoma cells were treated with 670 nm PBM and RNA collected a various time points over 24 h. The transcriptome was screened by RNA microarray, and gene co-expression analysis by hierarchical clustering was coupled with bioinformatics analysis to reveal the molecular systems modulated by PBM and their expression patterns over the time course. The findings suggest that PBM induces distinct early phase (up to 8 h post-PBM) and late phase (24 h post-PBM) intracellular responses. The early intracellular response features enrichment of pathways relating to transcriptional regulation and cellular stress responses, while the late intracellular response demonstrates a physiological shift to enrichment of downstream pathways such as cell death and DNA damage. These findings provide support for the hypothesis that PBM acts as a transient stressful stimulus, activating endogenous stress response pathways that in turn enhance cellular resilience. Further, the study introduces a novel method for retaining the richness of the temporal component when analysing transcriptomic time course data sets.
Collapse
|
22
|
Vahabzadeh-Hagh A, McCarthy TJ, De Taboada L, Streeter J, Pascual-Leone A, Lo EH, Hayakawa K. Near infrared light amplifies endothelial progenitor cell accumulation after stroke. CONDITIONING MEDICINE 2019; 2:170-177. [PMID: 34291201 PMCID: PMC8291201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Damage-associated molecular pattern signals may play key roles in mediating non-cell autonomous effects of pre and post-conditioning. Here, we show that near-infrared (NIR) light stimulation of astrocytes increases a calcium-dependent secretion of the prototypical DAMP, HMGB1, which may then accelerate endothelial progenitor cell (EPC) accumulation after stroke. Conditioned media from NIR-stimulated astrocytes increased EPC proliferation in vitro, and blockade of HMGB1 with siRNA diminished the effect. In vivo transcranial NIR treatment confirmed that approximately 40% of NIR could penetrate the scalp and skull. Concomitantly, NIR increased GFAP expression in normal mouse brain at 30 min after the irradiation. In a mouse model of focal ischemia, repeated irradiation of NIR at days 5, 9, and 13 successfully increased HMGB1 in peri-infarct cortex, leading to a higher accumulation of EPCs at 14 days post-stroke. Conditioning and tolerance are now known to involve cell-cell signaling between all cell types in the neurovascular unit. Taken together, our proof-of-concept study suggest that NIR light may be an effective conditioning tool to stimulate astrocytic signaling and promote EPC accumulation after stroke.
Collapse
Affiliation(s)
- Andrew Vahabzadeh-Hagh
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Eng H. Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Kazuhide Hayakawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
23
|
Cronshaw M, Parker S, Arany P. Feeling the Heat: Evolutionary and Microbial Basis for the Analgesic Mechanisms of Photobiomodulation Therapy. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 37:517-526. [PMID: 31329512 DOI: 10.1089/photob.2019.4684] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: The clinical therapeutic benefits of Photobiomodulation (PBM) therapy have been well established in many clinical scenarios. However, we are far from having developed a complete understanding of the underlying mechanisms of photon-biological tissue interactions. Concurrent to ongoing PBM studies, there are several parallel fields with evidences from cell and tissue physiology such as evolutionary biology, photobiology, and microbiology among others. Objective: This review is focused on extrapolating evidences from an expanded range of studies that may contribute to a better understanding of PBM mechanisms especially focusing on analgesia. Further, the choice of a PBM device source and relevant dosimetry with regards to specific mechanisms are discussed to enable broader clinical use of PBM therapies. Materials and methods: This discussion article is referenced from an expanded range of peer reviewed publications, including literature associated with evolutionary biology, microbiology, oncology, and photo-optical imaging technology, amongst others. Results and discussion: Materials drawn from many disparate disciplines is described. By inference from the current evidence base, a novel theory is offered to partially explain the cellular basis of PBM-induced analgesia. It is proposed that this may involve the activity of a class of transmembrane proteins known as uncoupling proteins. Furthermore, it is proposed that this may activate the heat stress protein response and that intracellur microthermal inclines may be of significance in PBM analgesia. It is suggested that the PBM dose response as a simple binary model of PBM effects as represented by the Arndt-Schulz law is clinically less useful than a multiphasic biological response. Finally, comments are made concerning the nature of photon to tissue interaction that can have significance in regard to the effective choice and delivery of dose to clinical target. Conclusions: It is suggested that a re-evaluation of phototransduction pathways may lead to an improvement in outcome in phototheraphy. An enhanced knowledge of safe parameters and a better knowledge of the mechanics of action at target level will permit more reliable and predictable clinical gain and assist the acceptance of PBM therapy within the wider medical community.
Collapse
Affiliation(s)
- Mark Cronshaw
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Steven Parker
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Praveen Arany
- Department of Oral Biology and Biomedical Engineering, School of Dental Medicine, Engineering and Applied Sciences, University at Buffalo, Buffalo, New York
| |
Collapse
|
24
|
Yang L, Dong Y, Wu C, Li Y, Guo Y, Yang B, Zong X, Hamblin MR, Cheng-Yi Liu T, Zhang Q. Photobiomodulation preconditioning prevents cognitive impairment in a neonatal rat model of hypoxia-ischemia. JOURNAL OF BIOPHOTONICS 2019; 12:e201800359. [PMID: 30652418 PMCID: PMC6546525 DOI: 10.1002/jbio.201800359] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/02/2018] [Accepted: 01/12/2019] [Indexed: 05/13/2023]
Abstract
Neonatal hypoxia-ischemia (HI) injury caused by oxygen deprivation is the most common cause of mortality and severe neurologic deficits in neonates. The present work evaluated the preventative effect of photobiomodulation (PBM) preconditioning, and its underlying mechanism of action on brain damage in an HI model in neonatal rats. According to the optimal time response of ATP levels in brain samples removed from normal rats, a PBM preconditioning (PBM-P) regimen (808 nm CW laser, 1 cm2 spot, 100 mW/cm2 , 12 J/cm2 ) was delivered to the scalp 6 hours before HI. PBM-P significantly attenuated cognitive impairment, volume shrinkage in the brain, neuron loss, dendritic and synaptic injury after HI. Further mechanistic investigation found that PBM-P could restore HI-induced mitochondrial dynamics and inhibit mitochondrial fragmentation, followed by a robust suppression of cytochrome c release, and prevention of neuronal apoptosis by inhibition of caspase activation. Our work suggests that PBM-P can attenuate HI-induced brain injury by maintaining mitochondrial dynamics and inhibiting the mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Luodan Yang
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, University Town, Guangzhou, GD 510006, China
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Yan Dong
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Chongyun Wu
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, University Town, Guangzhou, GD 510006, China
| | - Yong Li
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Yichen Guo
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Baocheng Yang
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Xuemei Zong
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Timon Cheng-Yi Liu
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, University Town, Guangzhou, GD 510006, China
| | - Quanguang Zhang
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, University Town, Guangzhou, GD 510006, China
| |
Collapse
|
25
|
Wang R, Dong Y, Lu Y, Zhang W, Brann DW, Zhang Q. Photobiomodulation for Global Cerebral Ischemia: Targeting Mitochondrial Dynamics and Functions. Mol Neurobiol 2019; 56:1852-1869. [PMID: 29951942 PMCID: PMC6310117 DOI: 10.1007/s12035-018-1191-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 06/08/2018] [Indexed: 12/13/2022]
Abstract
Hypothermia is currently the only approved therapy for global cerebral ischemia (GCI) after cardiac arrest; however, it unfortunately has multiple adverse effects. As a noninvasive procedure, photobiomodulation (PBM) therapy has emerged as a potential novel treatment for brain injury. PBM involves the use of low-level laser light therapy to influence cell behavior. In this study, we evaluated the therapeutic effects of PBM treatment with an 808-nm diode laser initiated 6 h after GCI. It was noted that PBM dose-dependently protected against GCI-induced neuronal death in the vulnerable hippocampal CA1 subregion. Functional assessments demonstrated that PBM markedly preserved both short-term (a week) and long-term (6 months) spatial learning and memory function following GCI. Further mechanistic studies revealed that PBM post-treatment (a) preserved healthy mitochondrial dynamics and suppressed substantial mitochondrial fragmentation of CA1 neurons, by reducing the detrimental Drp1 GTPase activity and its interactions with adaptor proteins Mff and Fis1 and by balancing mitochondrial targeting fission and fusion protein levels; (b) reduced mitochondrial oxidative damage and excessive mitophagy and restored mitochondrial overall health status and preserved mitochondrial function; and (c) suppressed mitochondria-dependent apoptosome formation/caspase-3/9 apoptosis-processing activities. Additionally, we validated, in an in vitro ischemia model, that cytochrome c oxidase served as a key PBM target for mitochondrial function preservation and neuroprotection. Our findings suggest that PBM serves as a promising therapeutic strategy for the functional recovery after GCI, with mechanisms involving PBM's preservation on mitochondrial dynamics and functions and the inhibition of delayed apoptotic neuronal death in GCI.
Collapse
Affiliation(s)
- Ruimin Wang
- Neurobiology Institute of Medical Research Center, North China University of Science and Technology, Tangshan, 063000, China.
| | - Yan Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yujiao Lu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Wenli Zhang
- Neurobiology Institute of Medical Research Center, North China University of Science and Technology, Tangshan, 063000, China
| | - Darrell W Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
26
|
Stone J, Mitrofanis J, Johnstone DM, Falsini B, Bisti S, Adam P, Nuevo AB, George-Weinstein M, Mason R, Eells J. Acquired Resilience: An Evolved System of Tissue Protection in Mammals. Dose Response 2018; 16:1559325818803428. [PMID: 30627064 PMCID: PMC6311597 DOI: 10.1177/1559325818803428] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/22/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022] Open
Abstract
This review brings together observations on the stress-induced regulation of resilience mechanisms in body tissues. It is argued that the stresses that induce tissue resilience in mammals arise from everyday sources: sunlight, food, lack of food, hypoxia and physical stresses. At low levels, these stresses induce an organised protective response in probably all tissues; and, at some higher level, cause tissue destruction. This pattern of response to stress is well known to toxicologists, who have termed it hormesis. The phenotypes of resilience are diverse and reports of stress-induced resilience are to be found in journals of neuroscience, sports medicine, cancer, healthy ageing, dementia, parkinsonism, ophthalmology and more. This diversity makes the proposing of a general concept of induced resilience a significant task, which this review attempts. We suggest that a system of stress-induced tissue resilience has evolved to enhance the survival of animals. By analogy with acquired immunity, we term this system 'acquired resilience'. Evidence is reviewed that acquired resilience, like acquired immunity, fades with age. This fading is, we suggest, a major component of ageing. Understanding of acquired resilience may, we argue, open pathways for the maintenance of good health in the later decades of human life.
Collapse
Affiliation(s)
- Jonathan Stone
- Discipline of Physiology, Bosch Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - John Mitrofanis
- Discipline of Anatomy and Histology, Bosch Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Daniel M. Johnstone
- Discipline of Physiology, Bosch Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Benedetto Falsini
- Facolta’ di Medicina e Chirurgia, Fondazione Policlinico A. Gemelli, Universita’ Cattolica del S. Cuore, Rome, Italy
| | - Silvia Bisti
- Department of Biotechnical and Applied Clinical Sciences, Università degli Studi dell’Aquila, IIT Istituto Italiano di Tecnologia Genova and INBB Istituto Nazionale Biosistemi e Biostrutture, Rome, Italy
| | - Paul Adam
- School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Arturo Bravo Nuevo
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Mindy George-Weinstein
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Rebecca Mason
- Discipline of Physiology, Bosch Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Janis Eells
- College of Health Sciences, University of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
27
|
Vilalva KH, Figueira RL, Silveira M, Graf C, Gonçalves FL, Sbragia L, Gomes MC, Mumic F, Vollet-Filho JD, Bagnato VS, D’Albuquerque LAC, Castro-e-Silva O. Prophylactic application of laser light restores L-FABP expression in the livers of rats submitted to partial ischemia. Clinics (Sao Paulo) 2018; 73:e113. [PMID: 29972436 PMCID: PMC6005990 DOI: 10.6061/clinics/2018/e113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 02/27/2018] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES The objective of the present study was to evaluate the protective effect of pre-conditioning treatment with laser light on hepatic injury in rats submitted to partial ischemia using mitochondrial function and liver fatty acid binding protein as markers. METHODS Rats were divided into four groups (n=5): 1) Control, 2) Control + Laser, 3) Partial Ischemia and 4) Partial Ischemia + Laser. Ischemia was induced by clamping the hepatic pedicle of the left and middle lobes of the liver for 60 minutes. Laser light at 660 nm was applied to the liver immediately prior to the induction of ischemia at 22.5 J/cm2, with 30 seconds of illumination at five individual points. The animals were sacrificed after 30 minutes of reperfusion. Blood and liver tissues were collected for analysis of mitochondrial function, determination of malondialdehyde and analysis of fatty acid binding protein expression by Western blot. RESULTS Mitochondrial function decreased in the Partial Ischemia group, especially during adenosine diphosphate-activated respiration (state 3), and the expression of fatty acid binding protein was also reduced. The application of laser light prevented bioenergetic changes and restored the expression of fatty acid binding protein. CONCLUSION Prophylactic application of laser light to the livers of rats submitted to partial ischemia was found to have a protective effect in the liver, with normalization of both mitochondrial function and fatty acid binding protein tissue expression.
Collapse
Affiliation(s)
- Kelvin Henrique Vilalva
- Divisao de Transplante de Figado, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP, BR
| | - Rebeca Lopes Figueira
- Laboratorio de Cirurgia Fetal Experimental, Divisao de Cirurgia Pediatrica, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP, BR
| | - Marina Silveira
- Divisao de Transplante de Figado, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP, BR
| | - Catarina Graf
- Divisao de Transplante de Figado, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP, BR
| | - Frances Lanhellas Gonçalves
- Laboratorio de Cirurgia Fetal Experimental, Divisao de Cirurgia Pediatrica, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP, BR
| | - Lourenço Sbragia
- Laboratorio de Cirurgia Fetal Experimental, Divisao de Cirurgia Pediatrica, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP, BR
| | - Maria Cecília Gomes
- Divisao de Transplante de Figado, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP, BR
| | - Fabrícia Mumic
- Divisao de Transplante de Figado, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP, BR
| | - José Dirceu Vollet-Filho
- Departamento de Fisica e Ciencia dos Materiais, Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, SP, BR
| | - Vanderlei Salvador Bagnato
- Departamento de Fisica e Ciencia dos Materiais, Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, SP, BR
| | | | - Orlando Castro-e-Silva
- Divisao de Transplante de Figado, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP, BR
- Departamento de Gastroenterologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| |
Collapse
|
28
|
Barolet D. Dual Effect of Photobiomodulation on Melasma: Downregulation of Hyperpigmentation and Enhanced Solar Resistance-A Pilot Study. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2018; 11:28-34. [PMID: 29657669 PMCID: PMC5891084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Overview. Melasma is a resistant, sun-induced facial hyperpigmentation capable of remaining present for decades with ensuing psychological distress. Treatment is difficult and focuses on an array of measures to reduce skin hyperpigmentation resulting from triggered hyperactive melanocytes. The pathogenesis of melanoma is not clearly understood but it has been reported that some growth factors and specific cell-signaling pathways are involved. Objective. The objective of the current study was to evaluate the use of pulsed photobiomodulation to modulate melasma via the regulation of gene expression pertaining to skin pigmentation. Methods. We evaluated a two-step approach via a spilt-face pilot study involving seven patients with bilateral dermal melasma who had formerly undergone unsuccessful treatments. During treatment, the initial mobilization phase with microdermabrasion was closely followed by the modulation phase, delivering low-energy pulsed photons (940nm) to downregulate highly metabolic melanocytes in the dermis. A weekly treatment was performed for eight consecutive weeks. White light pictures, ultraviolet pictures, melanin index scores, and Melasma Area and Severity Index scores were obtained at baseline and at Week 12. Results. The pulsed photobiomodulation-treated side versus the control side showed statistically significant results for pigment reduction. Conclusion. This pilot study shows that dermal melasma can be significantly improved with pulsed photobiomodulation. Interestingly, it might also precondition the skin, helping it to build a resistance to future solar ultraviolet ray exposure.
Collapse
Affiliation(s)
- Daniel Barolet
- Dr. Barolet is with the Department of Medicine, Dermatology Division, McGill University in Montreal, Québec, Canada, and with the RoseLab Skin Optics Laboratory in Laval, Canada
| |
Collapse
|
29
|
Can photobiomodulation associated with implantation of mesenchymal adipose-derived stem cells attenuate the expression of MMPs and decrease degradation of type II collagen in an experimental model of osteoarthritis? Lasers Med Sci 2018. [PMID: 29520686 DOI: 10.1007/s10103-018-2466-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
This study aimed to determine whether photobiomodulation therapy (PBMT) could improve the bioavailability and chondroprotective benefits of mesenchymal stem cells injected into the knees of rats used as an experimental model of osteoarthritis (OA) as well as reduce the expression of matrix metalloproteinases (MMPs) and degradation of type II collagen (COL2-1) in the cartilage. Adipose-derived stem/stromal cells (ADSCs) were collected from three male Fischer 344 rats and characterized by flow cytometry. Fifty female Fischer 344 rats were distributed into five groups of 10 animals each. These groups were as follows: control, OA, OA PBMT, OA ADSC, and OA ADSC PBMT. OA was induced in the animals using a 4% papain solution. Animals from the OA ADSC and OA ADSC PBMT groups received an intra-articular injection of 10 × 106 ADSCs and were treated with PBMT by irradiation (wavelength: 808 nm, power: 50 mW, energy: 42 J, energy density: 71.2 J/cm2, spot size: 0.028). Euthanasia was performed 7 days after the first treatment. The use of PBMT alone and the injection of ADSCs resulted in downregulation of pro-inflammatory cytokines and MPs in cartilage compared to the OA group. PBMT and ADSCs caused upregulation of tissue inhibitors of MPs 1 and 2 and mRNA and protein expression of COL2-1 in cartilage compared to the OA group. The intra-articular injection of ADSCs and PBMT prevented joint degeneration resulting from COL2-1 degradation and modulated inflammation by downregulating cytokines and MMPs in the OA group.
Collapse
|
30
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018; 94:199-212. [PMID: 29164625 PMCID: PMC5844808 DOI: 10.1111/php.12864] [Citation(s) in RCA: 347] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/31/2017] [Indexed: 12/23/2022]
Abstract
Photobiomodulation (PBM) involves the use of red or near-infrared light at low power densities to produce a beneficial effect on cells or tissues. PBM therapy is used to reduce pain, inflammation, edema, and to regenerate damaged tissues such as wounds, bones, and tendons. The primary site of light absorption in mammalian cells has been identified as the mitochondria and, more specifically, cytochrome c oxidase (CCO). It is hypothesized that inhibitory nitric oxide can be dissociated from CCO, thus restoring electron transport and increasing mitochondrial membrane potential. Another mechanism involves activation of light or heat-gated ion channels. This review will cover the redox signaling that occurs in PBM and examine the difference between healthy and stressed cells, where PBM can have apparently opposite effects. PBM has a marked effect on stem cells, and this is proposed to operate via mitochondrial redox signaling. PBM can act as a preconditioning regimen and can interact with exercise on muscles.
Collapse
Affiliation(s)
- Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA
- Department of Dermatology, Harvard Medical School, Boston, MA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
| |
Collapse
|
31
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
32
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
33
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
34
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 and make_set(2234=2234,4853)-- tppa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
35
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 or updatexml(4295,concat(0x2e,0x717a717671,(select (elt(4295=4295,1))),0x71706a6271),3985)-- bssu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
36
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 or not 3194=3194# dgnj] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
37
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 and (select (case when (5719=8223) then null else ctxsys.drithsx.sn(1,5719) end) from dual) is null] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
38
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
39
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
40
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 and 8885=3318-- bykq] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
41
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
42
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 or not 8779=2113# mdth] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
43
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 or not 5169=2257-- ejdi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
44
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 and 2019=2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
45
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 and 1705=('qzqvq'||(select case 1705 when 1705 then 1 else 0 end from rdb$database)||'qpjbq')-- qsrj] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
46
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 and extractvalue(6022,concat(0x5c,0x717a717671,(select (elt(6022=6022,1))),0x71706a6271))# igpm] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
47
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
48
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
49
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
50
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|