1
|
Ghasemiyeh P, Mohammadi-Samani S. Lessons we learned during the past four challenging years in the COVID-19 era: pharmacotherapy, long COVID complications, and vaccine development. Virol J 2024; 21:98. [PMID: 38671455 PMCID: PMC11055380 DOI: 10.1186/s12985-024-02370-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
About four years have passed since the detection of the first cases of COVID-19 in China. During this lethal pandemic, millions of people have lost their lives around the world. Since the first waves of COVID-19 infection, various pharmacotherapeutic agents have been examined in the management of COVID-19. Despite all these efforts in pharmacotherapy, drug repurposing, and design and development of new drugs, multiple organ involvement and various complications occurred during COVID-19. Some of these complications became chronic and long-lasting which led to the "long COVID" syndrome appearance. Therefore, the best way to eradicate this pandemic is prophylaxis through mass vaccination. In this regard, various vaccine platforms including inactivated vaccines, nucleic acid-based vaccines (mRNA and DNA vaccines), adenovirus-vectored vaccines, and protein-based subunit vaccines have been designed and developed to prevent or reduce COVID-19 infection, hospitalization, and mortality rates. In this focused review, at first, the most commonly reported clinical presentations of COVID-19 during these four years have been summarized. In addition, different therapeutic regimens and their latest status in COVID-19 management have been listed. Furthermore, the "long COVID" and related signs, symptoms, and complications have been mentioned. At the end, the effectiveness of available COVID-19 vaccines with different platforms against early SARS-CoV-2 variants and currently circulating variants of interest (VOI) and the necessity of booster vaccine shots have been summarized and discussed in more detail.
Collapse
Affiliation(s)
- Parisa Ghasemiyeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soliman Mohammadi-Samani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Boppana U, Leonard TS, Jolayemi A, Ansari MI, Salib A. Drug-Drug Interactions Between COVID-19 Treatments and Psychotropic Medications: An Updated Study. Cureus 2023; 15:e50469. [PMID: 38222143 PMCID: PMC10786447 DOI: 10.7759/cureus.50469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 01/16/2024] Open
Abstract
The recent evolution of coronavirus disease 2019 (COVID-19) treatments has created challenges for healthcare providers in terms of new potential interactions between these COVID-19 treatments and psychotropic drugs in patients with psychiatric disorders. Current clinical practice guidelines on managing interactions between psychotropic medications and COVID-19 treatments do not account for the newer COVID-19 medications. There is a need for updated patient management recommendations that take into account drug interactions between psychotropic drugs and the latest pharmacological approaches to COVID-19 treatment. A search of literature pertaining to drug interactions and outcomes in patients concurrently prescribed COVID-19 treatments and psychotropic medications was conducted. Drug databases were also analyzed to screen for interactions. Our review focuses on the most recent and effective COVID-19 treatments, including PaxlovidTM (nirmatrelvir/ritonavir), remdesivir, dexamethasone, tocilizumab, and baricitinib. The study provides condensed and easily interpretable tables for healthcare providers to screen for potentially harmful drug interactions. We discuss the implications of our findings on appropriate treatment plan selection by healthcare providers for patients taking select antipsychotics, antidepressants, mood stabilizers, and benzodiazepines while receiving COVID-19 treatments. Notably, PaxlovidTM may interact with several medications, particularly antipsychotics and anxiolytics, necessitating close monitoring and, in some cases, reconsideration of use. We find that dexamethasone, remdesivir, tocilizumab, and baricitinib have fewer reported interactions with psychotropics, and while some monitoring is necessary, no major adjustments are recommended for their administration in conjunction with psychotropic medications. These findings underscore the importance of careful consideration and monitoring when combining COVID-19 treatments with other medications to mitigate the risk of adverse interactions and ensure patient safety.
Collapse
Affiliation(s)
- Ujwal Boppana
- Psychiatry, Interfaith Medical Center, Brooklyn, USA
| | | | | | - Maliha I Ansari
- College of Medicine, Pramukhswami Medical College, Anand, IND
| | - Andrew Salib
- College of Medicine, Florida International University, Herbert Wertheim College of Medicine, Florida, USA
- College of Medicine, American University of Antigua College of Medicine, St. John's, ATG
| |
Collapse
|
3
|
Gupta Y, Savytskyi OV, Coban M, Venugopal A, Pleqi V, Weber CA, Chitale R, Durvasula R, Hopkins C, Kempaiah P, Caulfield TR. Protein structure-based in-silico approaches to drug discovery: Guide to COVID-19 therapeutics. Mol Aspects Med 2023; 91:101151. [PMID: 36371228 PMCID: PMC9613808 DOI: 10.1016/j.mam.2022.101151] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
With more than 5 million fatalities and close to 300 million reported cases, COVID-19 is the first documented pandemic due to a coronavirus that continues to be a major health challenge. Despite being rapid, uncontrollable, and highly infectious in its spread, it also created incentives for technology development and redefined public health needs and research agendas to fast-track innovations to be translated. Breakthroughs in computational biology peaked during the pandemic with renewed attention to making all cutting-edge technology deliver agents to combat the disease. The demand to develop effective treatments yielded surprising collaborations from previously segregated fields of science and technology. The long-standing pharmaceutical industry's aversion to repurposing existing drugs due to a lack of exponential financial gain was overrun by the health crisis and pressures created by front-line researchers and providers. Effective vaccine development even at an unprecedented pace took more than a year to develop and commence trials. Now the emergence of variants and waning protections during the booster shots is resulting in breakthrough infections that continue to strain health care systems. As of now, every protein of SARS-CoV-2 has been structurally characterized and related host pathways have been extensively mapped out. The research community has addressed the druggability of a multitude of possible targets. This has been made possible due to existing technology for virtual computer-assisted drug development as well as new tools and technologies such as artificial intelligence to deliver new leads. Here in this article, we are discussing advances in the drug discovery field related to target-based drug discovery and exploring the implications of known target-specific agents on COVID-19 therapeutic management. The current scenario calls for more personalized medicine efforts and stratifying patient populations early on for their need for different combinations of prognosis-specific therapeutics. We intend to highlight target hotspots and their potential agents, with the ultimate goal of using rational design of new therapeutics to not only end this pandemic but also uncover a generalizable platform for use in future pandemics.
Collapse
Affiliation(s)
- Yash Gupta
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | - Oleksandr V Savytskyi
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; In Vivo Biosystems, Eugene, OR, USA
| | - Matt Coban
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Vasili Pleqi
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | - Caleb A Weber
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Rohit Chitale
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA; The Council on Strategic Risks, 1025 Connecticut Ave NW, Washington, DC, USA
| | - Ravi Durvasula
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | | | - Prakasha Kempaiah
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | - Thomas R Caulfield
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of QHS Computational Biology, Mayo Clinic, Jacksonville, FL, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA; Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
4
|
Firouzabadi N, Ghasemiyeh P, Moradishooli F, Mohammadi-Samani S. Update on the effectiveness of COVID-19 vaccines on different variants of SARS-CoV-2. Int Immunopharmacol 2023; 117:109968. [PMID: 37012880 PMCID: PMC9977625 DOI: 10.1016/j.intimp.2023.109968] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
It has been more than three years since the first emergence of coronavirus disease 2019 (COVID-19) and millions of lives have been taken to date. Like most pandemics caused by viral infections, massive public vaccination is the most promising approach to cease COVID-19 infection. In this regard, several vaccine platforms including inactivated virus, nucleic acid-based (mRNA and DNA vaccines), adenovirus-based, and protein-based vaccines have been designed and developed for COVID-19 prevention and many of them have received FDA or WHO approval. Fortunately, after global vaccination, the transmission rate, disease severity, and mortality rate of COVID-19 infection have diminished significantly. However, a rapid increase in COVID-19 cases due to the omicron variant in vaccinated countries has raised concerns about the effectiveness of these vaccines. In this review, articles published between January 2020 and January 2023 were reviewed using PubMed, Google Scholar, and Web of Science search engines with appropriate related keywords. The related papers were selected and discussed in detail. The current review mainly focuses on the effectiveness and safety of COVID-19 vaccines against SARS-CoV-2 variants. Along with discussing the available and approved vaccines, characteristics of different variants of COVID-19 have also been discussed in brief. Finally, the currently circulating COVID-19 variant i.e Omicron, along with the effectiveness of available COVID-19 vaccines against these new variants are discussed in detail. In conclusion, based on the available data, administration of newly developed bivalent mRNA COVID-19 vaccines, as booster shots, would be crucial to prevent further circulation of the newly developed variants.
Collapse
Affiliation(s)
- Negar Firouzabadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Ghasemiyeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moradishooli
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soliman Mohammadi-Samani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|