1
|
Liu X, Zhang Y, Liu Z, Gao Y, Yuan L, Zeng D, Tan F, Wan H, Pei Z. METTL3 as a novel diagnosis and treatment biomarker and its association with glycolysis, cuproptosis and ceRNA in oesophageal carcinoma. J Cell Mol Med 2024; 28:e18195. [PMID: 38429907 PMCID: PMC10907846 DOI: 10.1111/jcmm.18195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/22/2023] [Accepted: 02/09/2024] [Indexed: 03/03/2024] Open
Abstract
METTL3 has been shown to be involved in regulating a variety of biological processes. However, the relationship between METTL3 expression and glycolysis, cuproptosis-related genes and the ceRNA network in oesophageal carcinoma (ESCA) remains unclear. ESCA expression profiles from databases were obtained, and target genes were identified using differential analysis and visualization. Immunohistochemistry (IHC) staining assessed METTL3 expression differences. Functional enrichment analysis using GO, KEGG and GSEA was conducted on the co-expression profile of METTL3. Cell experiments were performed to assess the effect of METTL3 interference on tumour cells. Correlation and differential analyses were carried out to assess the relationship between METTL3 with glycolysis and cuproptosis. qRT-PCR was used to validate the effects of METTL3 interference on glycolysis-related genes. Online tools were utilized to screen and construct ceRNA networks based on the ceRNA theory. METTL3 expression was significantly higher in ESCA compared to the controls. The IHC results were consistent with the above results. Enrichment analysis revealed that METTL3 is involved in multiple pathways associated with tumour development. Significant correlations were observed between METTL3 and glycolysis-related genes and cuproptosis-related gene. Experiments confirmed that interfered with METTL3 significantly inhibited glucose uptake and lactate production in tumour cells, and affected the expression of glycolytic-related genes. Finally, two potential ceRNA networks were successfully predicted and constructed. Our study establishes the association between METTL3 overexpression and ESCA progression. Additionally, we propose potential links between METTL3 and glycolysis, cuproptosis and ceRNA, presenting a novel targeted therapy strategy for ESCA.
Collapse
Affiliation(s)
- Xu‐Sheng Liu
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for precision Diagnosis and Treatment of liver cancerTaihe Hospital, Hubei University of MedicineShiyanChina
- Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem CellsTaihe Hospital, Hubei University of MedicineShiyanChina
| | - Yu Zhang
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for precision Diagnosis and Treatment of liver cancerTaihe Hospital, Hubei University of MedicineShiyanChina
| | - Zi‐Yue Liu
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for precision Diagnosis and Treatment of liver cancerTaihe Hospital, Hubei University of MedicineShiyanChina
| | - Yan Gao
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for precision Diagnosis and Treatment of liver cancerTaihe Hospital, Hubei University of MedicineShiyanChina
| | - Ling‐Ling Yuan
- Department of PathologyTaihe Hospital, Hubei University of MedicineShiyanChina
| | - Dao‐Bing Zeng
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for precision Diagnosis and Treatment of liver cancerTaihe Hospital, Hubei University of MedicineShiyanChina
| | - Fan Tan
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for precision Diagnosis and Treatment of liver cancerTaihe Hospital, Hubei University of MedicineShiyanChina
| | - Hua‐Bing Wan
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for precision Diagnosis and Treatment of liver cancerTaihe Hospital, Hubei University of MedicineShiyanChina
| | - Zhi‐Jun Pei
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for precision Diagnosis and Treatment of liver cancerTaihe Hospital, Hubei University of MedicineShiyanChina
- Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem CellsTaihe Hospital, Hubei University of MedicineShiyanChina
| |
Collapse
|
2
|
Saiding A, Maimaitiyiming D, Chen M, Yan F, Chen D, Hu X, Shi P. PCMT1 knockdown attenuates malignant properties by globally regulating transcriptome profiles in triple-negative breast cancer cells. PeerJ 2023; 11:e16006. [PMID: 37953789 PMCID: PMC10634331 DOI: 10.7717/peerj.16006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/09/2023] [Indexed: 11/14/2023] Open
Abstract
Background As the most frequently diagnosed cancer in women, Breast cancer has high mortality and metastasis rate, especially triple-negative breast cancer (TNBC). As an oncogene, protein-L-isoaspartate (D-aspartate) O-methyltransferase (PCMT1) is a prognostic biomarker in breast cancer and is highly expressed, while its underlying functions remain unknown. Methods In this study, we silenced PCTM1 in TNBC MDA-MB-231 cells by short hairpin RNA (shPCMT1) to investigate its cellular functions using cell proliferation, apoptosis, migration, and invasion experiments. Following this, the transcriptome sequencing (RNA-seq) experiment was conducted to explore the molecular targets of PCMT1, including differentially expressed genes (DEGs) and regulated alternative splicing events (RASEs). Results The results showed that shPCMT1 inhibited the proliferation, migration, and invasion of MDA-MB-231 cells. We obtained 1,084 DEGs and 2,287 RASEs between shPCMT1 and negative control (NC) groups through RNA-seq. The DEGs were significantly enriched in immune or inflammation response and cell adhesion-associated pathways, pathways associated with PCMT1 cellular function in cell migration. The RASE genes were enriched in cell cycle-associated pathways and were associated with the altered cell proliferation rate. We finally validated the changed expression and splicing levels of DEGs and RASEs. We found that 34 RNA binding protein (RBP) genes were dysregulated by shPCMT1, including NQO1, S100A4, EEF1A2, and RBMS2. The dysregulated RBP genes could partially explain how PCMT1 regulates the global transcriptome profiles. Conclusion In conclusion, our study identified the molecular targets of PCMT1 in the TNBC cell line, expands our understanding of the regulatory mechanisms of PCMT1 in cancer progression, and provides novel insights into the progression of TNBC. The identified molecular targets are potential therapeutic targets for future TNBC treatment.
Collapse
Affiliation(s)
| | | | | | - Futian Yan
- Guangyuan Central Hospital, Guangyuan, China
| | - Dong Chen
- Center for Genome Analysis, Wuhan Ruixing Biotechnology Co., Ltd., Wuhan, China
| | - Xinyu Hu
- Center for Genome Analysis, Wuhan Ruixing Biotechnology Co., Ltd., Wuhan, China
- Biochemistry & Molecular Biology, Graduate School, Georgetown university, Washington DC, The United States of America
| | - Ping Shi
- Guangyuan Central Hospital, Guangyuan, China
| |
Collapse
|
3
|
Cai J, Xie H, Yan Y, Huang Z, Tang P, Cao X, Wang Z, Yang C, Wen J, Tan M, Zhang F, Shen B. A novel cuproptosis-related lncRNA signature predicts prognosis and therapeutic response in bladder cancer. Front Genet 2023; 13:1082691. [PMID: 36685947 PMCID: PMC9845412 DOI: 10.3389/fgene.2022.1082691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Bladder cancer (BC) ranks the tenth in the incidence of global tumor epidemiology. LncRNAs and cuproptosis were discovered to regulate the cell death. Herein, we downloaded transcriptome profiling, mutational data, and clinical data on patients from The Cancer Genome Atlas (TCGA). High- and low-risk BC patients were categorized. Three CRLs (AL590428.1, AL138756.1 and GUSBP11) were taken into prognostic signature through least absolute shrinkage and selection operator (LASSO) Cox regression. Worse OS and PFS were shown in high-risk group (p < 0.05). ROC, independent prognostic analyses, nomogram and C-index were predicted via CRLs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated IncRNAs play a biological role in BC progression. Immune-related functions showed the high-risk group received more benefit from immunotherapy and had stronger immune responses, and the overall survival was better (p < 0.05). Finally, a more effective outcome (p < 0.05) was found from clinical immunotherapy via the TIDE algorithm and many potential anti-tumor drugs were identified. In our study, the cuproptosis-related signature provided a novel tool to predict the prognosis in BC patients accurately and provided a novel strategy for clinical immunotherapy and clinical applications.
Collapse
Affiliation(s)
- Jinming Cai
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haoran Xie
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yilin Yan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengnan Huang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengfei Tang
- Department of Urology, Shanghai General Hospital Affiliated to Nanjing Medical University, Shanghai, China
| | - Xiangqian Cao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeyi Wang
- Department of Urology, Shanghai General Hospital Affiliated to Nanjing Medical University, Shanghai, China
| | - Chenkai Yang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiling Wen
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China,*Correspondence: Jiling Wen, ; Mingyue Tan, ; Fang Zhang, ; Bing Shen,
| | - Mingyue Tan
- Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Jiling Wen, ; Mingyue Tan, ; Fang Zhang, ; Bing Shen,
| | - Fang Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Jiling Wen, ; Mingyue Tan, ; Fang Zhang, ; Bing Shen,
| | - Bing Shen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Jiling Wen, ; Mingyue Tan, ; Fang Zhang, ; Bing Shen,
| |
Collapse
|