1
|
Faizah Z, Hendarto H. The effect of aluminum chloride on testicular biometry, hormonal profiles, spermatozoa quality, and spermatogenic cell morphology in mice. Open Vet J 2024; 14:2315-2324. [PMID: 39553750 PMCID: PMC11563619 DOI: 10.5455/ovj.2024.v14.i9.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/11/2024] [Indexed: 11/19/2024] Open
Abstract
Background Infertility is defined as failure to achieve a pregnancy after 12 months or more of regular unprotected sexual intercourse. The prevalence of couples with infertility increases every year. Treatment success for male infertility remains suboptimal despite the advancements of the therapies. Hence, a comprehensive understanding of spermatogenesis is needed to improve existing infertility treatments. Animal models are commonly used in studies regarding male infertility. Aluminum chloride (AlCl3) has been established as an infertility-inducing agent. Aim This study investigates the optimal dosage of AlCl3 in infertility mice models. Method Male Balb/c mice, aged 3 months and have proven to be fertile with an average body weight of 26, 96, randomly assigned to four groups. The control group received oral gavage with sterile aquadest, while the treatment groups were administrated AlCl3 at doses of 100, 150, and 200 mg/kg BW orally over a 53-day period. Assessment of the sperm motility, concentration, morphology, viability, hormone levels, and testicular histopathology were included in this study. Results Administration of AlCl3 did not significantly affect body weight, testicular weight, and hormone levels. However, semen analysis showed a reduction in seminal parameters among treatment groups, supported by testicular histopathology. Conclusion Utilizing AlCl3 to induce infertility in mice models is not quite effective and displayed variable efficacy across different dosages. Further investigations are needed to elucidate optimal dosage, route of administration, and timing to establish reliable mice infertility models.
Collapse
Affiliation(s)
- Zakiyatul Faizah
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Biomedical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Hendy Hendarto
- Department of Obsetric and Gynaecology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
2
|
Deiab NS, Kodous AS, Mahfouz MK, Said AM, Ghobashy MM, Abozaid OAR. Smart Hesperidin/Chitosan Nanogel Mitigates Apoptosis and Endoplasmic Reticulum Stress in Fluoride and Aluminum-Induced Testicular Injury. Biol Trace Elem Res 2024; 202:4106-4124. [PMID: 38087036 PMCID: PMC11252208 DOI: 10.1007/s12011-023-03991-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/29/2023] [Indexed: 07/18/2024]
Abstract
Fluoride and aluminum are ubiquitous toxic metals with adverse reproductive effects. The citrus flavonoid hesperidin has protective activities but poor solubility and bioavailability. Nanoparticulate delivery systems can improve flavonoid effectiveness. We conducted this study to prepare a pH-responsive chitosan-based nanogel for hesperidin delivery and evaluate its effectiveness against sodium fluoride (NaF) and aluminum chloride (AlCl3) induced testicular toxicity in mice. The nanogel was synthesized using 2 kGy gamma irradiation, enabling a size under 200 nm and enhanced hesperidin release at pH 6 matching testicular acidity. Male mice received 200 mg/kg AlCl3 and 10 mg/kg NaF daily for 30 days. Hesperidin nanogel at 20 mg/kg was administered orally either prophylactically (pretreatment) or after intoxication (posttreatment). The results showed that AlCl3 + NaF induced severe oxidative stress, hormonal disturbance, apoptosis, and endoplasmic reticulum stress, evidenced by significant changes in the studied parameters and testicular histological damage. Hesperidin nanogel administration significantly inhibited oxidative stress markers, restored luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone levels, and alleviated tissue damage compared to the intoxicated group. It also downregulated the expression level of pro-apoptotic genes Bax, caspase-3, caspase-9, and P38MAPK, while upregulating the expression level of the anti-apoptotic BCL2 gene. Endoplasmic reticulum stress sensors PERK, ATF6, and IRE-α were also downregulated by the nanogel. The chitosan-based nanogel enhanced the delivery and efficacy of poorly bioavailable hesperidin, exhibiting remarkable protective effects against AlCl3 and NaF reproductive toxicity. This innovative nanosystem represents a promising approach to harnessing bioactive phytochemicals with delivery challenges, enabling protective effects against chemical-induced testicular damage.
Collapse
Affiliation(s)
- Nora S Deiab
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Benha University, Benha, Al Qalyubiyah, Egypt.
| | - Ahmad S Kodous
- Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt
- Department of Molecular Oncology, Cancer Institute (WIA), P.O. Box 600036, 38, Sardar Patel Road, Chennai, Tamilnadu, India
| | - Mohamed K Mahfouz
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Benha University, Benha, Al Qalyubiyah, Egypt
| | - Alshaimaa M Said
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Benha University, Benha, Al Qalyubiyah, Egypt
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Omayma A R Abozaid
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Benha University, Benha, Al Qalyubiyah, Egypt
| |
Collapse
|
3
|
Nong W, Wei G, Wang J, Lei X, Wang J, Wei Y, Dong M, He L. Nicotinamide Mononucleotide Improves Spermatogenic Disorders in Aluminum-Exposed Rats by Modulating the Glycolytic Pathway. Biol Trace Elem Res 2024; 202:3180-3192. [PMID: 37851298 DOI: 10.1007/s12011-023-03904-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
This study aimed to investigate the protective effect of nicotinamide mononucleotide (NMN) on testicular spermatogenesis in aluminum chloride (AlCl3)-exposed rats and to elucidate the potential underlying mechanism. The results indicated that AlCl3-induced testicular damage, leading to reduced sperm quality, increased apoptosis, decreased cell proliferation, and impaired Sertoli cell function in rats. Additionally, glycolytic metabolism was observed to be hindered. However, after NMN treatment, there was a noticeable improvement in testicular damage among the rats, marked by increased sperm quality, reduced apoptosis, enhanced cell proliferation, improved Sertoli cell function, and an activated glycolytic metabolism. The findings of this study suggest that NMN alleviates testicular spermatogenesis impairment induced by AlCl3 exposure through the inhibition of spermatogenic cell apoptosis, promotion of spermatogenic cell proliferation, and activation of glycolytic pathways. The study contributes an experimental foundation for potential future clinical applications of NMN in cases of AlCl3-exposed spermatogenic dysfunction.
Collapse
Affiliation(s)
- Weihua Nong
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Zhongshan Second Road, Baise, 533300, Guangxi, China
- Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project of the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Chengxiang Road 98, Baise, 533300, Guangxi, China
| | - Gaomeng Wei
- Department of Urology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Junli Wang
- Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project of the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xiaocan Lei
- Department of Histology and Embryology, Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Jinyuan Wang
- Department of Histology and Embryology, Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Yanhong Wei
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Chengxiang Road 98, Baise, 533300, Guangxi, China
| | - Mingyou Dong
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Chengxiang Road 98, Baise, 533300, Guangxi, China.
| | - Liqiao He
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Zhongshan Second Road, Baise, 533300, Guangxi, China.
| |
Collapse
|
4
|
Yalçın T, Kaya S, Kuloğlu T, Yiğin A. N-Acetylcysteine May Regulate Altered Meteorin-Like Levels in Testicular Tissue due to Aluminum Exposure. Biol Trace Elem Res 2023; 201:5335-5345. [PMID: 37016183 DOI: 10.1007/s12011-023-03656-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/30/2023] [Indexed: 04/06/2023]
Abstract
Aluminum (AL) is a heavy metal known to have toxic effects on the reproductive system. It is known that N-acetylcysteine (NAC), which has an antioxidant effect, is a useful chelator for heavy metals. This study aimed to determine whether NAC may reduce AL-induced oxidative stress, inflammation, and germ cell apoptosis in testicular tissues and its effects on meteorin-like (METRNL) levels, which are known to play a role in energy metabolism. In this experimental study, 28 Sprague-Dawley male rats were randomly divided into 4 groups (n = 7): control, AL (30 mg/kg/day AL), AL + NAC (30 mg/kg/day AL + 150 mg/kg/day NAC), and NAC (150 mg/kg/day NAC). All AL and NAC applications were performed intraperitoneally for 14 days. At the end of the experiment, the effects of AL and/or NAC applications on testicular tissue were examined histomorphometrically, histopathologically, immunohistochemically, and biochemically. It was determined that AL exposure caused histomorphometric and histopathological changes, oxidative stress, apoptosis of germ cells, and inflammation in testicular tissues. In addition, AL caused an increase in METRNL levels. It was determined that NAC treatment significantly reduced the negative effects of AL. NAC therapy may be a protective strategy in reproductive toxicity due to AL exposure.
Collapse
Affiliation(s)
- Tuba Yalçın
- Vocational Higher School of Healthcare Studies, Batman University, Batman, Turkey
| | - Sercan Kaya
- Vocational Higher School of Healthcare Studies, Batman University, Batman, Turkey.
| | - Tuncay Kuloğlu
- Department of Histology and Embryology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Akın Yiğin
- Department of Genetics, Faculty of Veterinary Medicine, Harran University, Sanliurfa, Turkey
| |
Collapse
|
5
|
Curcumin Ameliorates Age-Induced Tight Junction Impaired in Porcine Sertoli Cells by Inactivating the NLRP3 Inflammasome through the AMPK/SIRT3/SOD2/mtROS Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:1708251. [PMID: 36846717 PMCID: PMC9957632 DOI: 10.1155/2023/1708251] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 02/19/2023]
Abstract
Blood-testis barrier (BTB) made of concomitant junction apparatus between Sertoli cells (SCs) is crucial for spermatogenesis. The tight junction (TJ) function is impaired in SCs with age, exhibiting an intimate relationship to testicular dysfunction induced by age. In this study, compared with those in young boars, TJ proteins (i.e., Occludin, ZO-1, and plus Claudin-11) were discovered to have reduced expressions in testes, and spermatogenesis ability declined in old boars. An in vitro age model for D-gal-treated porcine SCs was established, the performance of Curcumin as a natural antioxidant and anti-inflammatory compound in affecting the TJ function of SCs was appraised, and related molecular mechanisms were exploited. The results manifested that 40 g/L D-gal downregulated ZO-1, Claudin-11, and Occludin in terms of the expression in SCs, whereas Curcumin restored such expressions in D-gal-treated SCs. Using the AMPK and SIRT3 inhibiters demonstrated that activation of the AMPK/SIRT3 pathway was associated with Curcumin, which not only rescued the expression of ZO-1, Occludin, Claudin-11, and SOD2 but also inhibited the production of mtROS and ROS and the activation of NLRP3 inflammasome and release of IL-1β in D-gal-treated SCs. Furthermore, with mtROS scavenger (mito-TEMPO), NLRP3 inhibitor (MCC950) plus IL-1Ra treatment ameliorated D-gal-caused TJ protein decline in SCs. In vivo data also showed that Curcumin alleviated TJ impairment in murine testes, improved D-gal-triggered spermatogenesis ability, and inactivated the NLRP3 inflammasome by virtue of the AMPK/SIRT3/mtROS/SOD2 signal transduction pathway. Given the above findings, a novel mechanism where Curcumin modulates BTB function to improve spermatogenesis ability in age-related male reproductive disorder is characterized.
Collapse
|
6
|
Wei X, Li D, Luo Y, Wu B. Role of Autophagy and Apoptosis in Aluminum Exposure-Induced Liver Injury in Rats. Biol Trace Elem Res 2023:10.1007/s12011-022-03497-9. [PMID: 36600167 DOI: 10.1007/s12011-022-03497-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/17/2022] [Indexed: 01/06/2023]
Abstract
Aluminum (Al) exposure can lead to different degrees of damage to various organ systems of the body. It has been previously revealed that Al exposure can damage the liver, causing liver dysfunction. However, the specific mechanism remains unclear. This research aims to uncover the damaging effect of Al exposure on rat liver and to demonstrate the role of autophagy and apoptosis in this effect. Thirty-two Wistar rats were randomly divided into the control group (C group), low-dose Al exposure group (L group), middle-dose Al exposure group (M group), and high-dose Al exposure group (H group) (n = 8). The rats, respectively, received intraperitoneal injections of 0, 5, 10, and 20 mg/kg·day AlCl3 solution for 4 weeks (5 times/week). After the experiment, changes in the ultrastructure and autolysosome in rat liver were observed; the liver function, apoptosis rate, as well as levels of apoptosis-associated proteins and autophagy-associated proteins were detected. The results indicated that Al exposure damaged rat liver function and structure and resulted in an increase in autolysosomes. TUNEL staining revealed an elevated number of apoptotic hepatocytes after Al exposure. Moreover, we found from Western blotting that the levels of autophagy-associated proteins Beclin1 and LC3-II were increased; apoptotic protein Caspase-3 level was elevated and the Bcl-2/Bax ratio was reduced. Our research suggested that Al exposure can lead to high autophagy and apoptosis levels of rat hepatocytes, accompanied by hepatocyte injury and impaired liver function. This study shows that autophagy and apoptosis pathways participate in Al toxication-induced hepatocyte injury.
Collapse
Affiliation(s)
- Xi Wei
- The First Clinical Medical College of Jinan University, Guangzhou, 510000, China
- Department of Health Supervision Center, the Affiliated Hospital of YouJiang Medical University for Nationalities, Baise, 533000, China
| | - Dong Li
- Department of Oncology, the Affiliated Hospital of YouJiang Medical University for Nationalities, Baise, 533000, China
| | - Yueling Luo
- Department of Health Supervision Center, the Affiliated Hospital of YouJiang Medical University for Nationalities, Baise, 533000, China
| | - Biaoliang Wu
- The First Clinical Medical College of Jinan University, Guangzhou, 510000, China.
- Department of Endocrinology, the Affiliated Hospital of YouJiang Medical University for Nationalities, Zhongshan No 2 Road 18, Baise, 533000, China.
| |
Collapse
|
7
|
In Vitro and In Vivo Neuroprotective Effects of Sarcosine. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5467498. [PMID: 36281465 PMCID: PMC9587910 DOI: 10.1155/2022/5467498] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/31/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by behavioral and psychological symptoms in addition to cognitive impairment and loss of memory. The exact pathogenesis and genetic background of AD are unclear and there remains no effective treatment option. Sarcosine, an n-methyl derivative of glycine, showed a promising therapeutic strategy for some cognitive disorders. To our knowledge, the impacts of sarcosine supplementation against AD have not yet been elucidated. Therefore, we aimed to determine the neuroprotective potential of sarcosine in in vitro and in vivo AD model. In vitro studies have demonstrated that sarcosine increased the percentage of viable cells against aluminum induced neurotoxicity. In AlCl3-induced rat model of AD, the level of antioxidant capacity was significantly decreased and expression levels of APP, BACE1, TNF-α, APH1A, and PSENEN genes were elevated compared to the control group. Additionally, histopathological examinations of the hippocampus of AlCl3-induced rat brains showed the presence of neurofibrillary tangles (NFTs). However, the administration of sarcosine produced marked improvement and protection of AD-associated pathologies induced by AlCl3 in experimental rats. Therefore, this investigation may contribute to design novel therapeutic strategies using sarcosine for the management of AD pathologies.
Collapse
|
8
|
Lokman M, Ashraf E, Kassab RB, Abdel Moneim AE, El-Yamany NA. Aluminum Chloride-Induced Reproductive Toxicity in Rats: the Protective Role of Zinc Oxide Nanoparticles. Biol Trace Elem Res 2022; 200:4035-4044. [PMID: 34741695 DOI: 10.1007/s12011-021-03010-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/31/2021] [Indexed: 12/30/2022]
Abstract
Reproductive toxicity is a major challenge associated with aluminum (Al) exposure. Therefore, this study aimed to investigate the effects of zinc oxide nanoparticle (ZnONP) treatment on Al-induced reproductive toxicity in rats. Thirty-two adult male albino rats were allocated into four equal groups as follows: control, AlCl3 orally administered group (100 mg/kg bwt), ZnONPs injected intraperitoneally (i.p.) group (4 mg/kg bwt), and ZnONPs + AlCl3-treated group. The treatment was daily extended for 42 consecutive days. Oral administration of AlCl3 showed an oxidative damage confirmed by an increase in malondialdehyde and nitric oxide levels and superoxide dismutase activity and accompanied by a decrease in glutathione content and catalase activity. Also, AlCl3 administration increased the pro-inflammatory mediator tumor necrosis factor-alpha. Furthermore, significant declines in the levels of serum male reproductive hormones testosterone, luteinizing hormone, and follicle-stimulating hormone in AlCl3-intoxicated rats were noticed. In parallel, severe histopathological alterations were observed in testis tissues. Additionally, the immunohistochemical analysis showed that AlCl3 administration potentiates cell death in the testicular tissue by elevating the immunostaining intensity signal for the pro-apoptotic protein, cysteinyl aspartate specific protease-3 (caspase-3) and a marked depletion in the cell proliferation expression marker, Ki-67, in germinal cells of AlCl3-treated group. On the other hand, the daily i.p. injection to rats with ZnONPs before AlCl3 was found to ameliorate the reproductive toxicity induced by Al administration through reducing the testicular oxidative stress and improving the inflammatory, apoptotic, and reproductive markers as well as histopathological alterations in the testis. These results suggest that ZnONPs could be used as an alternative agent to minimize the reproductive toxicity associated with Al exposure through its antioxidant, anti-inflammatory, anti-apoptotic, and reproductive modulatory activities.
Collapse
Affiliation(s)
- Maha Lokman
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdul Aziz University, Alkharj, Saudi Arabia
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Eman Ashraf
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| | - Nabil A El-Yamany
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
9
|
Ozcan Yildirim S, Colakoglu N, Ozer Kaya S. Protective effects of
L
‐arginine against aluminium chloride‐induced testicular damage in rats. Andrologia 2022; 54:e14569. [DOI: 10.1111/and.14569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/05/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Sena Ozcan Yildirim
- Department of Histology and Embryology, Fethi Sekin City Hospital University of Health Sciences Elazig Turkey
| | - Neriman Colakoglu
- Department of Histology and Embryology, Medical School Firat University Elazig Turkey
| | - Seyma Ozer Kaya
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Firat University Elazig Turkey
| |
Collapse
|
10
|
Gilani SJ, Bin-Jumah MN, Al-Abbasi FA, Imam SS, Alshehri S, Ghoneim MM, Shahid Nadeem M, Afzal M, Alzarea SI, Sayyed N, Kazmi I. Antiamnesic Potential of Malvidin on Aluminum Chloride Activated by the Free Radical Scavenging Property. ACS OMEGA 2022; 7:24231-24240. [PMID: 35874261 PMCID: PMC9301734 DOI: 10.1021/acsomega.2c01406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Objectives: Malvidin, a dietary anthocyanin can be a potent drug for the treatment of neuronal toxicity. The investigation was aimed to study the antioxidant role of malvidin against aluminum chloride (AlCl3)-induced neurotoxicity in rats. Methods: To evaluate the neuroprotective role of malvidin, the rats were divided into four different groups: group I received saline, group II received AlCl3, and groups III and IV were administered with 100 and 200 mg/kg malvidin after AlCl3 for 60 days. During the evaluation period, all the groups were subjected to a behavioral test. On the 61st day of the study, rat brains were removed and used for a neurochemical assay. Results: From the present study, malvidin ameliorated the effects of AlCl3 on behavioral parameters. Biochemical investigation revealed that oral treatment of malvidin shows neuroprotective effects through regulation of antioxidant levels and neuroinflammation in the AlCl3-exposed rats. Conclusion: The results indicate that malvidin possesses antioxidant activity via acetylcholinesterase inhibition and regulation of oxidative stress in neuronal cells. Hence, malvidin could be a potential drug in correcting Alzheimer's disease.
Collapse
Affiliation(s)
- Sadaf Jamal Gilani
- Department of Basic Health Sciences, Preparatory Year, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - May Nasser Bin-Jumah
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Nadeem Sayyed
- Glocal School of Pharmacy, Glocal University, Saharanpur, Uttar Pradesh 247121, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589, Saudi Arabia
| |
Collapse
|
11
|
Zhou L, He M, Li X, Lin E, Wang Y, Wei H, Wei X. Molecular Mechanism of Aluminum-Induced Oxidative Damage and Apoptosis in Rat Cardiomyocytes. Biol Trace Elem Res 2022; 200:308-317. [PMID: 33634365 DOI: 10.1007/s12011-021-02646-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022]
Abstract
Aluminum exposure can mediate either acute toxicity or chronic toxicity. Aluminum exerts toxic effects on the cardiovascular system, but there are few studies on its related mechanisms. In this study, we investigated the molecular mechanism of aluminum-induced oxidative damage and apoptosis in rat cardiomyocytes. Thirty-two male Wistar rats were randomly divided into four groups, including the control group (GC), low-dose group of aluminum exposure (GL), medium-dose group (GM), and high-dose group (GH), with eight rats in each group. The GL, GM, and GH groups were given 5, 10, and 20 mg/(kg·d) of AlCl3 solution by intraperitoneal injection, and the GC group received intraperitoneal injection of the same volume of normal saline (2 ml/rat/day), 5 times a week for 28 days. At the end of the experiment, the levels of aluminum, malondialdehyde (MDA), plasma lactate dehydrogenase (LDH), creatine kinase (CK), creatine kinase isoenzyme (CKMB), and alpha-hydroxybutyrate dehydrogenase (HBDH) were measured. The pathological changes of myocardium were observed by H&E staining. The apoptosis of cardiomyocytes was detected by TUNEL staining, and the expression of apoptosis-related proteins was determined by western blot. The results showed that the levels of CKMB and HBDH in the GM and GH groups were significantly higher than those in the GC group (P < 0.05). The content of aluminum in the myocardium and serum of the aluminum exposure groups was significantly higher than that of the GC group (P < 0.05). The level of MDA in the GM and GH groups was significantly higher than that in the GC group (P < 0.05). The pathological results showed that vacuolated and hypertrophied cardiomyocytes were found in aluminum exposure groups, especially in the GM and GH groups. The TUNEL staining showed that the apoptosis rate of the aluminum exposure groups was considerably higher than that of the GC group (P < 0.05). Western blot showed that the expression of Bcl-2, an anti-apoptotic protein, in cardiomyocytes of aluminum exposure groups was lower than that of the GC group (P < 0.05), while the levels of Bax and caspase-3 in the cardiomyocytes of the GM and GH groups were higher than those of the GC group (P < 0.05). The experimental results showed that aluminum could accumulate in myocardial tissues and cause damage to cardiomyocytes. It could induce oxidative stress damage by increasing the content of MDA in cardiomyocytes and trigger cardiomyocyte apoptosis by activating the pro-apoptotic proteins caspase-3 and Bax and reducing the anti-apoptotic protein Bcl-2.
Collapse
Affiliation(s)
- LiuFang Zhou
- Department of Cardiovascular Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Zhongshan No 2 Road, Baise, 18, China
| | - Mingjie He
- Department of Endocrinology, Affiliated Hospital of Youjiang Medical University for Nationalities, Zhongshan No 2 Road, Baise, 18, China
| | - XiaoLan Li
- Department of Rehabilitation Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Zhongshan No 2 Road, Baise, 18, China
| | - Erbing Lin
- Department of General Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Chengxiang Road, Baise, 98, China
| | - YingChuan Wang
- Department of General Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Chengxiang Road, Baise, 98, China
| | - Hua Wei
- Department of General Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Chengxiang Road, Baise, 98, China
| | - Xi Wei
- Department of Health Supervision Center, Affiliated Hospital of Youjiang Medical University for Nationalities, Zhongshan No 2 Road, Baise, 18, China.
| |
Collapse
|
12
|
Zangeneh AR, Takhshid MA, Ranjbaran R, Maleknia M, Meshkibaf MH. Diverse Effect of Vitamin C and N-Acetylcysteine on Aluminum-Induced Eryptosis. Biochem Res Int 2021; 2021:6670656. [PMID: 33505724 PMCID: PMC7815388 DOI: 10.1155/2021/6670656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/16/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The role of oxidative stress in Aluminum (Al)-induced apoptotic effects has been investigated and suicidal death of erythrocytes, eryptosis, is characterized by cell shrinkage and phosphatidylserine externalization (PSE) at the surface of the erythrocyte cell membrane. Eryptosis is stimulated by an increase in cytosolic Ca2+ concentration and reactive oxygen species (ROS). This ex vivo study was conducted to evaluate the effect of well-known antioxidants including vitamin C (vit C) and N-acetylcysteine (NAC), against Al-induced hemolysis and eryptosis. METHODS Isolated erythrocytes from the healthy volunteers were partitioned into various groups (6 replicates/group) and treated by various concentrations of Al (3-100 µM) in the presence and absence of vit C (0.6 mM) and NAC (1 mM). After 24 hours of treatment, hemolysis was determined from hemoglobin levels in the supernatant. Flowcytometric methods were applied to measure PSE, cell shrinkage, Ca2+ content, and ROS abundance using annexin V-binding, forward scatter, Fluo3-fluorescence, and DCFDA dependent fluorescence, respectively. Reduced glutathione (GSH) was measured by the ELISA method. RESULTS The results showed that a 24 hours' exposure of the erythrocytes to Al (10-100 µM) significantly increased hemolysis in a dose and Ca2+dependent manner. Al also dramatically decreased forward scatter. The percentage of PSE cells, Fluo3-fluorescence, and DCFDA fluorescence were increased by Al. Furthermore, cotreatment with NAC inhibited the effect of Al on hemolysis, eryptosis, and ROS production. Vit C decreased Al-induced ROS production. However, increased Al-induced eryptosis. There were no significant changes in glutathione after the ALCL3 treatment. CONCLUSIONS Al-induced eryptosis and hemolysis through triggering oxidative stress, while NAC could diverse this effect. In contrast, vit C might intensify Al-induced eryptosis at particular doses through a less known mechanism.
Collapse
Affiliation(s)
- Ali Reza Zangeneh
- Department of Clinical Biochemistry, Fasa University of Medical Sciences, Fasa, Iran
| | - Mohammad Ali Takhshid
- Diagnostic Laboratory Sciences and Technology Research Center, Faculty of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Ranjbaran
- Diagnostic Laboratory Sciences and Technology Research Center, Faculty of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Maleknia
- Department of Clinical Biochemistry, Fasa University of Medical Sciences, Fasa, Iran
| | | |
Collapse
|
13
|
Ogunlade B, Adelakun S, Iteire K. Sulforaphane response on aluminum-induced oxidative stress, alterations in sperm characterization and testicular histomorphometry in Wistar rats. Int J Reprod Biomed 2020; 18:611-624. [PMID: 32923928 PMCID: PMC7457154 DOI: 10.18502/ijrm.v13i8.7503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/04/2019] [Accepted: 03/03/2020] [Indexed: 11/24/2022] Open
Abstract
Background The exposure of male individual to environmental toxicant is regarded as a channel that results in reduced sperm counts and infertility.
Objective This study investigated the ameliorative response of Sulforaphane (SFN) on Aluminum trichloride (AlCl3) induced testicular toxicity in adult male Wistar rats. Materials and Methods A total of 32 adult male Wistar rats (180-200 gm between 8-10 wk) were divided into four groups (n = 8/each). Group A) received distilled water orally as placebo; Group B) received 100 mg/kgbw AlCl3 only orally; Group C) received 100 mg/kgbw AlCl3 and 100 mg/kgbw SFN orally; and Group D) received 100 mg/kgbw SFN only orally. After 28 days of experiment, animals underwent cervical dislocation, blood serum was obtained for analysis, and testes were harvested for biochemical assays, histology, hormonal profile, and sperm characterization. Results The sperm parameters showed a significant difference within the AlCl3 only group compared with the control and SFN only groups (p = 0.02). However, AlCl3 and SFN co-treatment showed improvement in the motility, viability, and sperm count compared with the AlCl3 only group (p = 0.02). Furthermore, there was a significant decline in the levels of hormones profile and antioxidant status in AlCl3 only group compared to the control and SFN only (p = 0.02). The testicular histoarchitecture of the AlCl3 only group showed shrinkage of seminiferous tubules, spermatogenesis disruption, and empty lumen compared to the control and SFN only groups. Conclusion The present study revealed the ameliorative response of SFN on AlCl3-induced testicular toxicity on serum hormone profiles, antioxidant status, lipid peroxidation, and histomorphometric analysis through oxidative stress.
Collapse
Affiliation(s)
- Babatunde Ogunlade
- Department of Human Anatomy, Federal University of Technology, Akure, Ondo State, Nigeria
| | - Sunday Adelakun
- Department of Human Anatomy, Federal University of Technology, Akure, Ondo State, Nigeria
| | - Kingsley Iteire
- Department of Human Anatomy, University of Medical Sciences, Ondo city, Ondo State, Nigeria
| |
Collapse
|
14
|
Olszewska A, Hańć A, Barałkiewicz D, Rzymski P. The contribution of orthodontic braces to aluminum exposure in humans: an experimental in vitro study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:4541-4545. [PMID: 31813122 DOI: 10.1007/s11356-019-07083-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
There is limited information on whether metals such as aluminum (Al) can migrate from orthodontic braces to saliva and subsequently contribute to its exposure in humans. This study aimed to assess this experimentally by incubating elastomeric orthodontic ligatures in artificial saliva for 30 days and other components of orthodontic braces (brackets, arch wires, and retainers) up to 180 days. As demonstrated, significantly higher levels of Al were leached from elastomeric ligatures (mean ± SD 28.2 ± 6.8 μg compared with their stainless steel counterparts (3.6 ± 0.1 μg) during 30 days. The higher the incubation time, the greater levels of Al leaching to artificial saliva were observed with the highest levels found for CNA β arch wire (252 ± 12 μg), Ni-Ti-Al arch wire (224 ± 11 μg), ceramic brackets (199 ± 10 μg), stainless steel arch wire (108 ± 5 μg), and metallic brackets (81.0 ± 4.2 μg) after 180 days of incubation. However, considering the tolerable weekly intake (TWI) established by the European Food Safety Authority, the intraoral use of orthodontic braces considered in this study would in the worst case constitute 0.04% and 0.09% of TWI in 70-kg adults and 30-kg children, respectively. In conclusion, the orthodontic braces considered in this study have no contribution to Al exposure in humans and can be considered safe in this regard.
Collapse
Affiliation(s)
- Aneta Olszewska
- Department of Facial Malformation, Poznan University of Medical Sciences, Poznań, Poland
| | - Anetta Hańć
- Department of Trace Element Analysis by Spectrometry Method, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Danuta Barałkiewicz
- Department of Trace Element Analysis by Spectrometry Method, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland.
| |
Collapse
|
15
|
Grochowski C, Blicharska E, Bogucki J, Proch J, Mierzwińska A, Baj J, Litak J, Podkowiński A, Flieger J, Teresiński G, Maciejewski R, Niedzielski P, Rzymski P. Increased Aluminum Content in Certain Brain Structures is Correlated with Higher Silicon Concentration in Alcoholic Use Disorder. Molecules 2019; 24:molecules24091721. [PMID: 31058813 PMCID: PMC6539762 DOI: 10.3390/molecules24091721] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/24/2019] [Accepted: 05/01/2019] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Alcohol overuse may be related to increased aluminum (Al) exposure, the brain accumulation of which contributes to dementia. However, some reports indicate that silicon (Si) may have a protective role over Al-induced toxicity. Still, no study has ever explored the brain content of Al and Si in alcoholic use disorder (AUD). MATERIALS AND METHODS To fill this gap, the present study employed inductively coupled plasma optical emission spectrometry to investigate levels of Al and Si in 10 brain regions and in the liver of AUD patients (n = 31) and control (n = 32) post-mortem. RESULTS Al content was detected only in AUD patients at mean ± SD total brain content of 1.59 ± 1.19 mg/kg, with the highest levels in the thalamus (4.05 ± 12.7 mg/kg, FTH), inferior longitudinal fasciculus (3.48 ± 9.67 mg/kg, ILF), insula (2.41 ± 4.10 mg/kg) and superior longitudinal fasciculus (1.08 ± 2.30 mg/kg). Si content displayed no difference between AUD and control, except for FTH. Positive inter-region correlations between the content of both elements were identified in the cingulate cortex, hippocampus, and ILF. CONCLUSIONS The findings of this study suggest that AUD patients may potentially be prone to Al-induced neurodegeneration in their brain-although this hypothesis requires further exploration.
Collapse
Affiliation(s)
- Cezary Grochowski
- Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland.
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland.
| | - Eliza Blicharska
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland.
| | - Jacek Bogucki
- Department of Clinical Genetics, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland.
| | - Jędrzej Proch
- Faculty of Chemistry, Department of Analytical Chemistry, Adam Mickiewicz University in Poznań, 89B Umultowska Street, 61-614 Poznan, Poland.
| | - Aleksandra Mierzwińska
- Department of Forensic Medicine, Medical University of Lublin, 8b Jaczewskiego St, 20-090 Lublin, Poland.
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland.
| | - Jakub Litak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland.
| | - Arkadiusz Podkowiński
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland.
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland.
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, 8b Jaczewskiego St, 20-090 Lublin, Poland.
| | - Ryszard Maciejewski
- Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland.
| | - Przemysław Niedzielski
- Faculty of Chemistry, Department of Analytical Chemistry, Adam Mickiewicz University in Poznań, 89B Umultowska Street, 61-614 Poznan, Poland.
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland.
| |
Collapse
|
16
|
Hu C, Yang J, He Q, Luo Y, Chen Z, Yang L, Yi H, Li H, Xia H, Ran D, Yang Y, Zhang J, Li Y, Wang H. CysLTR1 Blockage Ameliorates Liver Injury Caused by Aluminum-Overload via PI3K/AKT/mTOR-Mediated Autophagy Activation in Vivo and in Vitro. Mol Pharm 2018; 15:1996-2006. [DOI: 10.1021/acs.molpharmaceut.8b00121] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Congli Hu
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Junqing Yang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Qin He
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Ying Luo
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Zhihao Chen
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Lu Yang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Honggang Yi
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Huan Li
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Hui Xia
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Dongzhi Ran
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Yang Yang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Jiahua Zhang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Yuke Li
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Hong Wang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| |
Collapse
|