1
|
Sadeghloo Z, Nabavi-Rad A, Zali MR, Klionsky DJ, Yadegar A. The interplay between probiotics and host autophagy: mechanisms of action and emerging insights. Autophagy 2024:1-23. [PMID: 39291740 DOI: 10.1080/15548627.2024.2403277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 09/19/2024] Open
Abstract
Autophagy, a lysosome-dependent protein degradation mechanism, is a highly conserved catabolic process seen in all eukaryotes. This cell protection system, which is present in all tissues and functions at a basic level, can be up- or downregulated in response to various stresses. A disruption in the natural route of the autophagy process is frequently followed by an interruption in the inherent operation of the body's cells and organs. Probiotics are live bacteria that protect the host through various mechanisms. One of the processes through which probiotics exert their beneficial effects on various cells and tissues is autophagy. Autophagy can assist in maintaining host homeostasis by stimulating the immune system and affecting numerous physiological and pathological responses. In this review, we particularly focus on autophagy impairments occurring in several human illnesses and investigate how probiotics affect the autophagy process under various circumstances.Abbreviation: AD: Alzheimer disease; AKT: AKT serine/threonine kinase; AMPK: 5'AMP-activated protein kinase; ATG: autophagy related; CCl4: carbon tetrachloride; CFS: cell-free supernatant; CMA: chaperone-mediated autophagy; CRC: colorectal cancer; EPS: L. plantarum H31 exopolysaccharide; HD: Huntington disease; HFD: high-fat diet; HPV: human papillomavirus; IFNG/IFN-γ: interferon gamma; IL6: interleukin 6; LGG: L. rhamnosus GG; LPS: lipopolysaccharide; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; NAFLD: non-alcoholic fatty liver disease; NASH: non-alcoholic steatohepatitis; PD: Parkinson disease; Pg3G: pelargonidin-3-O-glucoside; PI3K: phosphoinositide 3-kinase; PolyQ: polyglutamine; ROS: reactive oxygen species; SCFAs: short-chain fatty acids; SLAB51: a novel formulation of lactic acid bacteria and bifidobacteria; Slp: surface layer protein (of acidophilus NCFM); SNCA: synuclein alpha; ULK1: unc-51 like autophagy-activating kinase 1; YB: B. longum subsp. infantis YB0411; YFP: yeast fermentate prebiotic.
Collapse
Affiliation(s)
- Zahra Sadeghloo
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Sepehr A, Aghamohammad S, Ghanavati R, Talebi M, Pourshafie MR, Rohani M. Role of Native Probiotic Lactobacillus Species via TGF-β Signaling Pathway Modulation in CRC. IRANIAN BIOMEDICAL JOURNAL 2024; 28:168-78. [PMID: 39279541 PMCID: PMC11444483 DOI: 10.61186/ibj.4012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/12/2023] [Indexed: 09/18/2024]
Abstract
Background Colon microbiome composition in colorectal cancer (CRC) patients undergoes remarkable changes. The present study was designed to assess the impact of Lactobacillus mixture on the regulating the CRC by influencing the transforming growth factor beta (TGF-β) signaling pathway in both in vitro (HT-29 cancer cells) and in vivo (BALB/c mice) models. Methods In this study, the antiproliferative effect of a native potential probiotic Lactobacillus mixture on HT-29 cancer cells was evaluated using the MTT assay method. Also, qRT-PCR was performed to assess the RNA expression level of genes associated with the TGF-β signaling pathway at three levels: receptor, regulatory, and inhibitory SMADs. Finally, the in vivo assays were investigated by three groups of mice: a naive group (PBS), a disease group (azoxymethane [AOM]/ dextran sulfate sodium [DSS] + PBS), and a treatment group (AOM/DSS + Lactobacillus mixture in PBS). Results The MTT results showed a significant decrease in proliferation of HT-29 cancer cells after 120 h of treatment. Furthermore, qRT-PCR demonstrated the downregulation of the smad2/3 gene expression in HT-29-treated cells and also reduction in the level of smad4 gene expression. In addition, in the mouse model, the tgf-βR1 gene was downregulated in the group treated with AOM/DSS/Lactobacillus, but not the AOM/DSS group. A downregulation of smad4 gene expression was also observed in in vivo models. Conclusion The obtained results suggest that our novel probiotic Lactobacillus mixture could have a positive impact on the inhibition of the CRC progression by downregulating the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Amin Sepehr
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Malihe Talebi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mahdi Rohani
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
3
|
Zare H, Izadi Amoli R, Rezapour M, Zaboli F, Kaboosi H. Characterization of Vaginal Lactobacilli with Potential Probiotic Properties Isolated from Healthy Women in Northern Iran. Indian J Microbiol 2024; 64:529-539. [PMID: 39011013 PMCID: PMC11246308 DOI: 10.1007/s12088-023-01186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/28/2023] [Indexed: 07/17/2024] Open
Abstract
Vaginal lactobacilli protect against bacterial vaginosis and vaginal candidiasis. They may have probiotic properties and help maintain the balance and health of the vaginal ecosystem while the loss of these bacteria predisposes females to urinary and genital infections. The aim of this study was to investigate the probiotic potential of vaginal Lactobacillus among healthy females in northern Iran. The Lactobacillus strains were isolated from vaginal samples and were identified by sequencing of the 16S rRNA fragment. Functional properties such as tolerance to low pH, H2O2 production, adherence ability to Hela cells and antagonistic activity against Candida albicans was examined. A total of 38 vaginal lactobacilli strains from five species, including Lactobacillus crispatus (n = 13), Lactobacillus gasseri (n = 10), Lactobacillus acidophilus (n = 6), Lactobacillus jensenii (n = 5) and Lactobacillus johnsonii (n = 4), were identified. All of the species showed significant tolerance to low pH over 24 h (p < 0.001). The best adherence ability to Hela cells was seen in Lactobacillus gasseri strains. Nearly 17 of the strains had higher anti-candida activity compared to the other strains. According to the findings, four lactobacilli strains isolated in the vaginal samples of healthy Iranian women had the best probiotic potential.
Collapse
Affiliation(s)
- Hakimeh Zare
- Department of Microbiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Rabeeh Izadi Amoli
- Department of Microbiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Maysam Rezapour
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Zaboli
- Department of Microbiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Hami Kaboosi
- Department of Microbiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| |
Collapse
|
4
|
Dameshghian M, Tafvizi F, Tajabadi Ebrahimi M, Hosseini Doust R. Anticancer Potential of Postbiotic Derived from Lactobacillus brevis and Lactobacillus casei: In vitro Analysis of Breast Cancer Cell Line. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10288-2. [PMID: 38758482 DOI: 10.1007/s12602-024-10288-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Breast cancer has emerged as the most widespread and dangerous type of malignancy among women worldwide. Postbiotics have recently emerged as a promising novel adjunct in breast cancer therapy, due to their immunomodulatory effects and the potential to mitigate the adverse effects of conventional treatments. This study aims to investigate the therapeutic effects of postbiotics derived from Lactobacillus brevis (CSF2) and Lactobacillus casei (CFS5), specifically examining their ability to inhibit cell proliferation and induce apoptosis in MCF-7 breast cancer cells. In the current study, the anticancer activity of the cell-free supernatant of L. brevis and L. casei was investigated against MCF-7 cells using MTT assay, flow cytometry, and qRT-PCR technique. Both bacteria showed a high potential for the induction of cell death in MCF-7 cells. However, CFS2 cytotoxicity was significantly higher than CFS5. Flow cytometry results showed significant induction of early apoptosis in cells treated with both CFS2 and CFS5 within 48 h. The induction was notably higher in cells treated with CFS2 compared to CFS5. Overall, CFS2 therapy resulted in a greater increase in BAX and CASP9 gene expression, as well as an elevated BAX/BCL2 ratio within 48 h. These findings indicate that the CFS2 treatment showed a higher level of apoptotic activity than the CFS5 treatment. High biocompatibility was demonstrated following treatment with CFS2 and CFS5. These CFSs may serve as adjunctive medications for suppressing the proliferation of cancer cells. The results of the current study highlight the potential of postbiotics in cancer treatment and suggest that supernatants may serve as effective agents for suppressing cancer cell growth and viability.
Collapse
Affiliation(s)
- Mahsa Dameshghian
- Department of Microbiology, Faculty of Advanced Science & Technology Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farzaneh Tafvizi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran.
| | | | - Reza Hosseini Doust
- Department of Microbiology, Faculty of Advanced Science & Technology Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Li D, Wang X, Park DJ, Lee DH, Oh S. Inhibitory Effects of Latilactobacillus curvatus BYB3 Cell-Free Extract on Human Melanoma B16F10 Cells and Tumorigenic Mice. J Microbiol Biotechnol 2024; 34:589-595. [PMID: 38044715 PMCID: PMC11016762 DOI: 10.4014/jmb.2309.09002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 12/05/2023]
Abstract
Latilactobacillus curvatus BYB3 (BYB3) is a species of lactic acid bacteria, formerly named Lactobacillus curvatus, which is isolated from kimchi. In this study, the effect of BYB3, Lactobacillus rhamnosus GG, and Lactobacillus acidophilus GP1B strain extracts at various concentrations was examined on B16F10, a mouse melanoma cell line. Cell viability was examined via MTT assay, and the results indicated that compared to the other two probiotics, BYB3 significantly decreased the total percentages of viable cells. The effects of BYB3 on cell migration and proliferation in B16F10 cells were evaluated using wound healing mobility and proliferation assays, respectively; the results indicated that BYB3 inhibits cell migration and proliferation in a concentration-dependent manner. Using human dermal fibroblast cells to investigate BYB3 extract in vivo had no effect on skin-related cells. Nonetheless, the BYB3 extract inhibited tumor growth in a mouse model, as demonstrated by liver slices. Therefore, this suggests that using BYB3 extract to inhibit melanoma may be a novel approach.
Collapse
Affiliation(s)
- Dingyun Li
- Division of Animal Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Xing Wang
- Division of Animal Science, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Biochemistry Microbiology and Immunology, Wayne State University, Detroit, MI 48202, USA
| | - Dong-June Park
- Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea
| | - Dong Hun Lee
- Department of Biological Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sejong Oh
- Division of Animal Science, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
6
|
Adumuah NN, Quarshie JT, Danwonno H, Aikins AR, Ametefe EN. Exploring Anti-Breast Cancer Effects of Live Pediococcus acidilactici and Its Cell-Free Supernatant Isolated from Human Breast Milk. Int J Breast Cancer 2024; 2024:1841909. [PMID: 38314029 PMCID: PMC10838206 DOI: 10.1155/2024/1841909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/06/2024] Open
Abstract
Current breast cancer treatment options are limited by drug resistance and adverse side effects, which calls for the need for alternatives or complementary remedies. Probiotic bacteria isolated from human breast milk have been shown to possess proapoptotic and anti-inflammatory properties against breast mastitis in breastfeeding mothers and are being studied as possible anticancer regimens. Thus, this study aimed at exploring the effect of lactic acid bacteria isolated from human breast milk on MDA-MB 231 breast cancer cells. A total of twenty-two bacteria were isolated from four human breast milk samples. The isolates were characterized and identified using biochemical tests and Sanger sequencing, respectively. For in vitro experiments, we used isolated P. acidilactici to treat MDA-MB-231 cells, and an MTT assay was used to detect proliferation. RT-qPCR and wound healing assays were performed to determine the effect of the isolated P. acidilactici on breast cancer cytokine expression and migration. Exposure of MDA-MB 231 breast cancer cells to live P. acidilactici and its cell-free supernatant (CFS) for 24 h resulted in a reduction in cancer cell viability. Also, the expression of the cytokines IL-6, IL-8, and IL-10 in the breast cancer cells increased following exposure to P. acidilactici and its CFS for 24 and 72 h. Additionally, the levels of the SLUG gene remained unchanged while the TWIST1 gene was upregulated following exposure of the cancer cells to bacteria, indicating that P. acidilactici may promote epithelial-mesenchymal transition in breast cancer. Finally, the CFS significantly inhibited cancer cell mobility. These findings serve as a foundation to further investigate the usefulness of P. acidilactici as a potential therapeutic agent in breast cancer therapy.
Collapse
Affiliation(s)
- Naa N. Adumuah
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Jude T. Quarshie
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Harry Danwonno
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Anastasia R. Aikins
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Elmer N. Ametefe
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry Cell and Molecular Biology, University of Ghana, Accra, Ghana
| |
Collapse
|
7
|
Hoseinzadeh A, Mahmoudi M, Rafatpanah H, Rezaieyazdi Z, Tavakol Afshari J, Hosseini S, Esmaeili SA. A new generation of mesenchymal stromal/stem cells differentially trained by immunoregulatory probiotics in a lupus microenvironment. Stem Cell Res Ther 2023; 14:358. [PMID: 38072921 PMCID: PMC10712058 DOI: 10.1186/s13287-023-03578-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Increasing evidence suggests that multipotent mesenchymal stem/stromal cells (MSCs) are a promising intervention strategy in treating autoimmune inflammatory diseases. It should be stated that systemic immunoregulation is increasingly recognized among the beneficial effects of MSCs and probiotics in treating morbid autoimmune disorders such as lupus. This study aimed to determine if immunoregulatory probiotics L. rhamnosus or L. delbrueckii can change the immunomodulatory effects of MSCs in lupus-like disease. METHODS Pristane-induced lupus (PIL) mice model was created via intraperitoneal injection of Pristane and then confirmed. Naïve MSCs (N-MSCs) were coincubated with two Lactobacillus strains, rhamnosus (R-MSCs) or delbrueckii (D-MSCs), and/or a combination of both (DR-MSCs) for 48 h, then administrated intravenously in separate groups. Negative (PBS-treated normal mice) and positive control groups (PBS-treated lupus mice) were also investigated. At the end of the study, flow cytometry and enzyme-linked immunosorbent assay (ELISA) analysis were used to determine the percentage of Th cell subpopulations in splenocytes and the level of their master cytokines in sera, respectively. Moreover, lupus nephritis was investigated and compared. Analysis of variance (ANOVA) was used for multiple comparisons. RESULTS Abnormalities in serum levels of anti-dsDNA antibodies, creatinine, and urine proteinuria were significantly suppressed by MSCs transplantation, whereas engrafted MSCs coincubation with both L. strains did a lesser effect on anti-dsDNA antibodies. L. rhamnosus significantly escalated the ability of MSCs to scale down the inflammatory cytokines (IFN-ɣ, IL-17), while L. delbrueckii significantly elevated the capacity of MSCs to scale down the percentage of Th cell subpopulations. However, incubation with both strains induced MSCs with augmented capacity in introducing inflammatory cytokines (IFN-ɣ, IL-17). Strikingly, R-MSCs directly restored the serum level of TGF-β more effectively and showed more significant improvement in disease parameters than N-MSCs. These results suggest that R-MSCs significantly attenuate lupus disease by further skew the immune phenotype of MSCs toward increased immunoregulation. CONCLUSIONS Results demonstrated that Lactobacillus strains showed different capabilities in training/inducing new abilities in MSCs, in such a way that pretreated MSCs with L. rhamnosus might benefit the treatment of lupus-like symptoms, given their desirable properties.
Collapse
Affiliation(s)
- Akram Hoseinzadeh
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Centre, Division of Inflammation and Inflammatory Diseases, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Rezaieyazdi
- Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol Afshari
- Faculty of Medicine, Department of Immunology, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Hosseini
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Banakar M, Etemad-Moghadam S, Haghgoo R, Mehran M, Yazdi MH, Mohamadpour H, Iravani Saadi M, Alaeddini M. Anticancer Activity of Postbiotic Mediators Derived from Lactobacillus Rhamnosus GG and Lactobacillus Reuteri on Acute Lymphoblastic Leukemia Cells. Galen Med J 2023; 12:1-9. [PMID: 38774842 PMCID: PMC11108661 DOI: 10.31661/gmj.v12i.3096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Leukemia remains a global health challenge, requiring the exploration of alternative therapies with reduced side effects. Probiotics, particularly Lactobacillus species, have gained attention because of their potential anticancer properties. This study investigated the anticancer and cytotoxic effects of postbiotic mediators (PMs) derived from Lactobacillus rhamnosus GG (LGG) and Lactobacillus reuteri (LR) on acute lymphoblastic leukemia (ALL) cells and peripheral blood mononuclear cells (PBMCs). MATERIALS AND METHODS The PMs were prepared by culturing LGG and LR strains and isolating the supernatant. The MTT assay assessed cell viability on ALL Jurkat cells and PBMCs, and apoptosis analysis was conducted using flow cytometry. Quantitative real-time PCR was also performed to analyze BAX, BCL-2, BCLX, FAS, and p27 gene expression levels. RESULTS The results showed that PMs derived from LGG and LR significantly reduced cell viability in Jurkat cells (P0.05) but not PBMCs (P0.05). Apoptosis analysis revealed an increase in apoptotic cells after PMs treatment. Nevertheless, gene expression analysis revealed no statistically significant difference between the treated and untreated groups in BAX, BCL-2, BCLX, FAS, and p27 gene expression levels (P0.05). CONCLUSION Findings suggest that specific PMs derived from LGG and LR possess anticancer properties against ALL cells. This research highlighted the promise of PMs as a cutting-edge and less toxic adjuvant therapeutic strategy in cancer treatment.
Collapse
Affiliation(s)
- Morteza Banakar
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical
Sciences, Tehran, Iran
- Department of Pediatric Dentistry, Faculty of Dentistry, Shahed University, Tehran,
Iran
| | - Shahroo Etemad-Moghadam
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical
Sciences, Tehran, Iran
| | - Roza Haghgoo
- Department of Pediatric Dentistry, Faculty of Dentistry, Shahed University, Tehran,
Iran
| | - Majid Mehran
- Department of Pediatric Dentistry, Faculty of Dentistry, Shahed University, Tehran,
Iran
| | | | - Hadiseh Mohamadpour
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical
Sciences, Tehran, Iran
| | | | - Mojgan Alaeddini
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical
Sciences, Tehran, Iran
| |
Collapse
|
9
|
Biodetoxification and Protective Properties of Probiotics. Microorganisms 2022; 10:microorganisms10071278. [PMID: 35888997 PMCID: PMC9319832 DOI: 10.3390/microorganisms10071278] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Probiotic consumption is recognized as being generally safe and correlates with multiple and valuable health benefits. However, the mechanism by which it helps detoxify the body and its anti-carcinogenic and antimutagenic potential is less discussed. A widely known fact is that globalization and mass food production/cultivation make it impossible to keep all possible risks under control. Scientists associate the multitude of diseases in the days when we live with these risks that threaten the population’s safety in terms of food. This review aims to explore whether the use of probiotics may be a safe, economically viable, and versatile tool in biodetoxification despite the numerous risks associated with food and the limited possibility to evaluate the contaminants. Based on scientific data, this paper focuses on the aspects mentioned above and demonstrates the probiotics’ possible risks, as well as their anti-carcinogenic and antimutagenic potential. After reviewing the probiotic capacity to react with pathogens, fungi infection, mycotoxins, acrylamide toxicity, benzopyrene, and heavy metals, we can conclude that the specific probiotic strain and probiotic combinations bring significant health outcomes. Furthermore, the biodetoxification maximization process can be performed using probiotic-bioactive compound association.
Collapse
|
10
|
Zhang Q, Zhao W, Zhao Y, Duan S, Liu WH, Zhang C, Sun S, Wang T, Wang X, Hung WL, Wang R. In vitro Study of Bifidobacterium lactis BL-99 With Fructooligosaccharide Synbiotics Effected on the Intestinal Microbiota. Front Nutr 2022; 9:890316. [PMID: 35571919 PMCID: PMC9096902 DOI: 10.3389/fnut.2022.890316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 03/29/2022] [Indexed: 12/12/2022] Open
Abstract
Probiotics and prebiotics relieve constipation by altering the composition of the intestinal microbiota. However, their synergistic mechanism of action remains unclear. Herein, an in vitro fermentation model was constructed to examine the synergistic effects of Bifidobacterium lactis BL-99 and fructooligosaccharide (FOS) on the regulation of intestinal microbiota from a population with constipation. The utilization of FOS was promoted by BL-99, and the increase rate being 22.33%. Relative to the BL-99 and the FOS groups, the BL-99_FOS group showed a highly significant increase in acetic acid content (P < 0.01) and a marked decrease in CO2 and H2S contents (P < 0.01) in the fermentation broth. In addition, the BL-99_FOS combination significantly changed the structure of the intestinal microbiota, enhanced the relative abundances of beneficial bacteria that relieved constipation, including Bifidobacterium, Fecalibacterium, Lactobacillus, Subdoligranulum, and Blautia, and decreased those of the harmful bacteria, including Bilophila and Escherichia-Shigella. These findings suggested that BL-99 and FOS synergistically regulated the composition and structure of the intestinal microbiota from the population with constipation and increased acetic acid and decreased CO2 and H2S levels, thereby providing a theoretical basis for the application of synbiotics.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Wen Zhao
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Yuyang Zhao
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Sufang Duan
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China.,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Wei-Hsien Liu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China.,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Chao Zhang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Siyuan Sun
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Tingting Wang
- Hangzhou Hailu Medical Technology Co., Ltd., Hangzhou, China
| | - Xin Wang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wei-Lian Hung
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China.,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Ran Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Zhang Q, Zhao W, Zhao Y, Duan S, Liu WH, Zhang C, Sun S, Wang T, Wang X, Hung WL, Wang R. In vitro Study of Bifidobacterium lactis BL-99 With Fructooligosaccharide Synbiotics Effected on the Intestinal Microbiota. Front Nutr 2022; 9:890316. [PMID: 35571919 DOI: 10.3389/fnut.2022.890316if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 03/29/2022] [Indexed: 07/26/2024] Open
Abstract
Probiotics and prebiotics relieve constipation by altering the composition of the intestinal microbiota. However, their synergistic mechanism of action remains unclear. Herein, an in vitro fermentation model was constructed to examine the synergistic effects of Bifidobacterium lactis BL-99 and fructooligosaccharide (FOS) on the regulation of intestinal microbiota from a population with constipation. The utilization of FOS was promoted by BL-99, and the increase rate being 22.33%. Relative to the BL-99 and the FOS groups, the BL-99_FOS group showed a highly significant increase in acetic acid content (P < 0.01) and a marked decrease in CO2 and H2S contents (P < 0.01) in the fermentation broth. In addition, the BL-99_FOS combination significantly changed the structure of the intestinal microbiota, enhanced the relative abundances of beneficial bacteria that relieved constipation, including Bifidobacterium, Fecalibacterium, Lactobacillus, Subdoligranulum, and Blautia, and decreased those of the harmful bacteria, including Bilophila and Escherichia-Shigella. These findings suggested that BL-99 and FOS synergistically regulated the composition and structure of the intestinal microbiota from the population with constipation and increased acetic acid and decreased CO2 and H2S levels, thereby providing a theoretical basis for the application of synbiotics.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Wen Zhao
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Yuyang Zhao
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Sufang Duan
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Wei-Hsien Liu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Chao Zhang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Siyuan Sun
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Tingting Wang
- Hangzhou Hailu Medical Technology Co., Ltd., Hangzhou, China
| | - Xin Wang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wei-Lian Hung
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Ran Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
An Update on the Effectiveness of Probiotics in the Prevention and Treatment of Cancer. LIFE (BASEL, SWITZERLAND) 2022; 12:life12010059. [PMID: 35054452 PMCID: PMC8779143 DOI: 10.3390/life12010059] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022]
Abstract
Probiotics are living microbes that play a significant role in protecting the host in various ways. Gut microbiota is one of the key players in maintaining homeostasis. Cancer is considered one of the most significant causes of death worldwide. Although cancer treatment has received much attention in recent years, the number of people suffering from neoplastic syndrome continues to increase. Despite notable improvements in the field of cancer therapy, tackling cancer has been challenging due to the multiple properties of cancer cells and their ability to evade the immune system. Probiotics alter the immunological and cellular responses by enhancing the epithelial barrier and stimulating the production of anti-inflammatory, antioxidant, and anticarcinogenic compounds, thereby reducing cancer burden and growth. The present review focuses on the various mechanisms underlying the role of probiotics in the prevention and treatment of cancer.
Collapse
|
13
|
Singh RP, Shadan A, Ma Y. Biotechnological Applications of Probiotics: A Multifarious Weapon to Disease and Metabolic Abnormality. Probiotics Antimicrob Proteins 2022; 14:1184-1210. [PMID: 36121610 PMCID: PMC9483357 DOI: 10.1007/s12602-022-09992-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2022] [Indexed: 12/25/2022]
Abstract
Consumption of live microorganisms "Probiotics" for health benefits and well-being is increasing worldwide. Their use as a therapeutic approach to confer health benefits has fascinated humans for centuries; however, its conceptuality gradually evolved with methodological advancement, thereby improving our understanding of probiotics-host interaction. However, the emerging concern regarding safety aspects of live microbial is enhancing the interest in non-viable or microbial cell extracts, as they could reduce the risks of microbial translocation and infection. Due to technical limitations in the production and formulation of traditionally used probiotics, the scientific community has been focusing on discovering new microbes to be used as probiotics. In many scientific studies, probiotics have been shown as potential tools to treat metabolic disorders such as obesity, type-2 diabetes, non-alcoholic fatty liver disease, digestive disorders (e.g., acute and antibiotic-associated diarrhea), and allergic disorders (e.g., eczema) in infants. However, the mechanistic insight of strain-specific probiotic action is still unknown. In the present review, we analyzed the scientific state-of-the-art regarding the mechanisms of probiotic action, its physiological and immuno-modulation on the host, and new direction regarding the development of next-generation probiotics. We discuss the use of recently discovered genetic tools and their applications for engineering the probiotic bacteria for various applications including food, biomedical applications, and other health benefits. Finally, the review addresses the future development of biological techniques in combination with clinical and preclinical studies to explain the molecular mechanism of action, and discover an ideal multifunctional probiotic bacterium.
Collapse
Affiliation(s)
- Rajnish Prakash Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand India
| | - Afreen Shadan
- Dr. Shyama Prasad Mukherjee University, Ranchi, Jharkhand India
| | - Ying Ma
- College of Resource and Environment, Southwest University, Chongqing, China
| |
Collapse
|
14
|
Katkowska M, Garbacz K, Kusiak A. Probiotics: Should All Patients Take Them? Microorganisms 2021; 9:2620. [PMID: 34946221 PMCID: PMC8706842 DOI: 10.3390/microorganisms9122620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
The usefulness of probiotics in the treatment as well as prevention of many infections and disorders has been confirmed by previous clinical studies. They can protect not only against gastrointestinal diseases such as diarrhea or enteritis but they have proven efficacy against pneumonia, urogenital infection, depression/anxiety, cancer metastasis, obesity, and others. However, it should be mentioned that not all clinical trials have shown improvement of health in patients undergoing probiotic treatment, and very rarely have even reported that probiotic strains may be the causative agents of opportunistic infections. Studies have documented cases of sepsis/bacteremia, endocarditis, liver abscess, pneumonia, and fungemia caused by probiotic strains, mainly in high-risk groups. This review summarizes the cases of infections caused by probiotic strains and the potential hazard associated with the supplementation of probiotics in seriously ill and hospitalized patients.
Collapse
Affiliation(s)
- Marta Katkowska
- Department of Oral Microbiology, Medical Faculty, Medical University of Gdańsk, 80-204 Gdańsk, Poland;
| | - Katarzyna Garbacz
- Department of Oral Microbiology, Medical Faculty, Medical University of Gdańsk, 80-204 Gdańsk, Poland;
| | - Aida Kusiak
- Department of Periodontology and Oral Mucosa Diseases, Medical Faculty, Medical University of Gdańsk, 80-204 Gdańsk, Poland;
| |
Collapse
|
15
|
Gigola G, Carriere P, Novoa Díaz MB, Perdigon G, Zwenger AO, Gentili C. Survival effect of probiotics in a rat model of colorectal cancer treated with capecitabine. World J Gastrointest Oncol 2021; 13:1518-1531. [PMID: 34721782 PMCID: PMC8529932 DOI: 10.4251/wjgo.v13.i10.1518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/28/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Probiotics are used to manage a number of gastrointestinal disorders due to their beneficial properties. Clinical reports showed that probiotics also improve the life quality of patients with colorectal cancer (CRC) subjected to oncologic treatment. In a CRC animal model, probiotics supplementation has the potential to decrease the formation of aberrant crypts and ameliorate tumor malignancy, enhancing the antitumor effect of 5-fluorouracil (5-FU) chemotherapy. Based on these data, we hypothesize that the administration of probiotics impact positively in the overall survival and life quality of rats with CRC under the treatment of capecitabine, which is the pro drug of 5-FU.
AIM To evaluate the probiotics effects in a rat CRC model treated with capecitabine and followed until the end of life.
METHODS 1,2-Dimethylhidrazine dihydrochloride (1,2-DMH) was employed as carcinogen inductor of CRC. Fifty male Wistar-Lewis rats were randomly assigned to one of five following groups: Control (n = 5), Control + probiotics (Control-P group, n = 5), 1,2-DMH alone (DMH group, n = 10), 1,2-DMH + capecitabine (DMH-C group, n = 10), 1,2-DMH + probiotics (DMH-P group, n = 10) and 1,2-DMH + capecitabine + probiotics (DMH-C-P group, n = 10). All parametric data were expressed as the mean ± SD. The statistical significance of differences was analyzed using one-way ANOVA. Data were analyzed with InfoStat software. The results were considered statistically significant at P < 0.05. Overall survival was evaluated with the Kaplan-Meier estimator with the log-rank test.
RESULTS The data of mean overall survival for DMH, DMH-P, DMH-C, DMH-C-P, Control and Control-P groups were 250 d [95% confidence interval (CI): 242.5-253.1], 268 d (95%CI: 246.3-271.4), 380 d (95%CI: 337.8-421.9), 480 d (95%CI: 436.9-530.7), 588 d (95%CI: 565.8-609.3) and 590 d (95%CI: 564.3-612.9), respectively, with a significant difference between DMH-C and DMH-C-P groups (P = 0.001). Comparing all groups by Kaplan-Meier estimator, we found a significantly different in the overall survival of DMH and DMH-P groups respect to DMH-C (P = 0.001) and DMH-C-P (P = 0.001) groups; interestingly, there were no meaningful differences between Control, Control-P and DMH-C-P groups (P = 0.012). The tendency of change in body weight gain of the rats at 90 d of finishing DMH administration was similar in Control group compared with DMH-C and DMH-C-P groups; however, and of relevance, DMH-C-P group has experienced a higher body weight gain at the end of animal’s life than DMH-C group (P = 0.001). In DMH-C-P group we found a positive effect of probiotics in clinical manifestations since diarrhea, constipation and blood stool were absenting. Also, the tumor burden was lower in DMH-C-P than DMH-C, DMH-P or DMH groups (1.25 vs 1.81 vs 3.9 vs 4.8 cm2, respectively). DMH-C and DMH-C-P groups showed only mucinous carcinoma type while in other DMH groups the tumor types were variable. However, mucinous carcinoma from DMH-C-P group showed invasion until muscularis propria layer. Interestingly, metastatic lymph node was observed in DMH, DMH-C and DMH-P groups but not in DMH-C-P. All animals in Control group died from natural causes without objective injuries. All animals of DMH and DMH-P groups died from tumor complications (i.e., obstruction or intestinal perforation); however, this cause was seen only in 44.5% of DMH-C and DMH-C-P groups
CONCLUSION Probiotics administration improves life quality of rats with CRC under capecitabine treatment and also has a positive effect in the overall survival of these animals treated with this drug.
Collapse
Affiliation(s)
- Graciela Gigola
- Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Buenos Aires Provincia, Argentina
| | - Pedro Carriere
- Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Buenos Aires Provincia, Argentina
| | - María Belén Novoa Díaz
- Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Buenos Aires Provincia, Argentina
| | - Gabriela Perdigon
- [CERELA] Centro de referencia para lactobacilos - [CCT CONICET NOA SUR], San Miguel de Tucumán 4000, Argentina
| | | | - Claudia Gentili
- Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Buenos Aires Provincia, Argentina
| |
Collapse
|
16
|
Zong Y, Zhou Y, Liao B, Liao M, Shi Y, Wei Y, Huang Y, Zhou X, Cheng L, Ren B. The Interaction Between the Microbiome and Tumors. Front Cell Infect Microbiol 2021; 11:673724. [PMID: 34532297 PMCID: PMC8438519 DOI: 10.3389/fcimb.2021.673724] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/09/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is a significant global health problem and is characterized by a consistent increase in incidence and mortality rate. Deciphering the etiology and risk factors are essential parts of cancer research. Recently, the altered microbiome has been identified within the tumor microenvironment, tumor tissue, and even nonadjacent environments, which indicates a strong correlation between the microbiome and tumor development. However, the causation and mechanisms of this correlation remain unclear. Herein, we summarized and discussed the interaction between the microbiome and tumor progression. Firstly, the microbiome, which can be located in the tumor microenvironment, inside tumor tissues and in the nonadjacent environment, is different between cancer patients and healthy individuals. Secondly, the tumor can remodel microbial profiles by creating a more beneficial condition for the shifted microbiome. Third, the microbiome can promote tumorigenesis through a direct pathogenic process, including the establishment of an inflammatory environment and its effect on host immunity. The interactions between the microbiome and tumors can promote an understanding of the carcinogenesis and provide novel therapeutic strategies for cancers.
Collapse
Affiliation(s)
- Yawen Zong
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yujie Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Binyou Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Min Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yangyang Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yu Wei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yuyao Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Sanikhani NS, Modarressi MH, Jafari P, Vousooghi N, Shafei S, Akbariqomi M, Heidari R, Lavasani PS, Yazarlou F, Motevaseli E, Ghafouri-Fard S. The Effect of Lactobacillus casei Consumption in Improvement of Obsessive-Compulsive Disorder: an Animal Study. Probiotics Antimicrob Proteins 2021; 12:1409-1419. [PMID: 32124236 DOI: 10.1007/s12602-020-09642-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Obsessive-compulsive disorder (OCD) is an important neuropsychiatric disorder worldwide. Common treatments of OCD include serotonergic antidepressants, which can cause potentially serious side effects. We assessed the effects of Lactobacillus casei (L. casei) Shirota consumption in an animal model of OCD. OCD-like symptoms were induced in rats by the chronic injection of the D2/D3 dopamine agonist quinpirole hydrochloride. Rats were classified into five groups of 6 rats. Four groups were injected chronically with quinpirole (0.5 mg/kg, twice weekly for 5 weeks). They were fed with L. casei Shirota (109 CF/g, daily for 4 weeks) (group 1), fluoxetine (10 mg/kg, daily for 4 weeks) (group 2), combination of L. casei Shirota and fluoxetine (group 3), and normal saline (positive control group). The last group did not receive dopamine agonist and was only injected with saline (negative control group). Expression levels of brain-derived neurotrophic factor (Bdnf), solute carrier family 6 member 4 (Slc6a4), and 5-hydroxytryptamine receptor type 2A (Htr2a) were assessed in orbitofrontal cortex tissues of all rats. Behavioral tests showed improvement of OCD signs in rats treated with L. casei Shirota, fluoxetine, and a combination of drugs. Quantitative PCR analysis showed a remarkable decrease in the expression of Bdnf and an increase in the expression of Htr2a in quinpirole-treated rats. After treatment with L. casei Shirota and fluoxetine, the expression level of Bdnf was increased remarkably, whereas Htr2a expression was decreased. The current study showed the effectiveness of L. casei Shirota in the treatment of OCD in a rat model. The beneficial effects of this probiotic are possibly exerted through the modulation of serotonin-related genes expression.
Collapse
Affiliation(s)
- Nafiseh Sadat Sanikhani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Parvaneh Jafari
- Microbiology Department, Science faculty, Islamic Azad University, Arak branch, Arak, Iran
| | - Nasim Vousooghi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Shilan Shafei
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, International Campus Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Akbariqomi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Heidari
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Paria Sadat Lavasani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Yazarlou
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Dailey KM, Allgood JE, Johnson PR, Ostlie MA, Schaner KC, Brooks BD, Brooks AE. The next frontier of oncotherapy: accomplishing clinical translation of oncolytic bacteria through genetic engineering. Future Microbiol 2021; 16:341-368. [PMID: 33754804 DOI: 10.2217/fmb-2020-0245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The development of a 'smart' drug capable of distinguishing tumor from host cells has been sought for centuries, but the microenvironment of solid tumors continues to confound therapeutics. Solid tumors present several challenges for current oncotherapeutics, including aberrant vascularization, hypoxia, necrosis, abnormally high pH and local immune suppression. While traditional chemotherapeutics are limited by such an environment, oncolytic microbes are drawn to it - having an innate ability to selectively infect, colonize and eradicate solid tumors. Development of an oncolytic species would represent a shift in the cancer therapeutic paradigm, with ramifications reaching from the medical into the socio-economic. Modern genetic engineering techniques could be implemented to customize 'Frankenstein' bacteria with advantageous characteristics from several species.
Collapse
Affiliation(s)
- Kaitlin M Dailey
- Cellular & Molecular Biology Program, North Dakota State University, Fargo, ND 58103, USA.,Pharmaceutical Sciences Department, North Dakota State University, Fargo, ND 58103, USA
| | - JuliAnne E Allgood
- Department of Neuroscience, University of Wyoming, Laramie, WY 82071, USA
| | - Paige R Johnson
- Pharmaceutical Sciences Department, North Dakota State University, Fargo, ND 58103, USA
| | - Mackenzie A Ostlie
- Pharmaceutical Sciences Department, North Dakota State University, Fargo, ND 58103, USA
| | - Kambri C Schaner
- Pharmaceutical Sciences Department, North Dakota State University, Fargo, ND 58103, USA
| | | | - Amanda E Brooks
- Cellular & Molecular Biology Program, North Dakota State University, Fargo, ND 58103, USA.,Pharmaceutical Sciences Department, North Dakota State University, Fargo, ND 58103, USA.,Office of Research & Scholarly Activity. Rocky Vista University, Ivins, UT 84738, USA
| |
Collapse
|
19
|
Probiotic Properties of Lactobacillus helveticus and Lactobacillus plantarum Isolated from Traditional Pakistani Yoghurt. BIOMED RESEARCH INTERNATIONAL 2021; 2020:8889198. [PMID: 33426082 PMCID: PMC7775145 DOI: 10.1155/2020/8889198] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/26/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022]
Abstract
Probiotic bacteria are of utmost importance owing to their extensive utilisation in dairy products and in the prevention of various intestinal diseases. The objective of this study was to assess the probiotic properties of bacteriocin-producing isolates of Lactobacillus helveticus and Lactobacillus plantarum isolated from traditional Pakistani yoghurt. In this study, ten bacteriocin-producing isolates were selected to screen for the probiotic property. The isolates showed resistance to acidic pH (6-6.5), bile salt (0.01-1%), and 1-7% NaCl salt and showed good growth at acidic pH and antibacterial activity against ten different foodborne pathogens. Interestingly, these isolates were proved to be effective against Actinobacter baumannii but least effective against Klebsiella pneumoniae and Pseudomonas aeruginosa. A few isolates were found to be resistant to some antibiotics like vancomycim, gentamycin, erythromycin, streptomycin, and clindamycin. Our results provide strong evidence in favour of traditional Pakistani yoghurts as a potential source of bacteriocin-producing bacteria with an added benefit of the probiotic property. Specifically, LBh5 was considered a good probiotic isolate as compared to other isolates used in the study. Further extensive research should be done on isolation and characterisation of probiotic isolates from local fermented foods, and then, these isolates should be used in the development of probiotic enriched food supplements in Pakistan.
Collapse
|
20
|
Sampsell K, Hao D, Reimer RA. The Gut Microbiota: A Potential Gateway to Improved Health Outcomes in Breast Cancer Treatment and Survivorship. Int J Mol Sci 2020; 21:E9239. [PMID: 33287442 PMCID: PMC7731103 DOI: 10.3390/ijms21239239] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most frequently diagnosed cancer in women worldwide. The disease and its treatments exert profound effects on an individual's physical and mental health. There are many factors that impact an individual's risk of developing breast cancer, their response to treatments, and their risk of recurrence. The community of microorganisms inhabiting the gastrointestinal tract, the gut microbiota, affects human health through metabolic, neural, and endocrine signaling, and immune activity. It is through these mechanisms that the gut microbiota appears to influence breast cancer risk, response to treatment, and recurrence. A disrupted gut microbiota or state of 'dysbiosis' can contribute to a biological environment associated with higher risk for cancer development as well as contribute to negative treatment side-effects. Many cancer treatments have been shown to shift the gut microbiota toward dysbiosis; however, the microbiota can also be positively manipulated through diet, prebiotic and probiotic supplementation, and exercise. The objective of this review is to provide an overview of the current understanding of the relationship between the gut microbiota and breast cancer and to highlight potential strategies for modulation of the gut microbiota that could lead to improved clinical outcomes and overall health in this population.
Collapse
Affiliation(s)
- Kara Sampsell
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada;
| | - Desirée Hao
- Department of Medical Oncology, Tom Baker Cancer Centre and Cumming School of Medicine, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada;
| | - Raylene A. Reimer
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada;
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
21
|
Xu YJ, Zhang YF, Xu CP. Effect of changes of gut microbiota in constipation on lipid metabolism. Shijie Huaren Xiaohua Zazhi 2020; 28:341-346. [DOI: 10.11569/wcjd.v28.i9.341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The stability of gut microbiota plays an important role in maintaining the health of the body. The gut microbiota is imbalanced when constipation occurs, thus affecting the process of lipid digestion and absorption by interfering with the synthesis of bile acids (BAs). The decrease of short chain fatty acids (SCFAs), a metabolite of gut microbiota, can destroy the integrity of the intestinal mucosal barrier, and their receptors cannot be activated. In addition, the increase of trimethylamine oxide (TMAO) alters the expression of key enzymes in lipid metabolism, and further affects the lipid transport and clearance. This article reviews the mechanism for changes of gut microbiota in constipation to mediate lipid metabolism disorders with regard to changes in BAs, SCFAs, and TMAO.
Collapse
Affiliation(s)
- Yu-Jie Xu
- First Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Ya-Feng Zhang
- Department of Gastroenterology, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Cui-Ping Xu
- Department of Gastroenterology, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| |
Collapse
|
22
|
Microbial Alterations and Risk Factors of Breast Cancer: Connections and Mechanistic Insights. Cells 2020; 9:cells9051091. [PMID: 32354130 PMCID: PMC7290701 DOI: 10.3390/cells9051091] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer-related mortality remains high worldwide, despite tremendous advances in diagnostics and therapeutics; hence, the quest for better strategies for disease management, as well as the identification of modifiable risk factors, continues. With recent leaps in genomic technologies, microbiota have emerged as major players in most cancers, including breast cancer. Interestingly, microbial alterations have been observed with some of the established risk factors of breast cancer, such as obesity, aging and periodontal disease. Higher levels of estrogen, a risk factor for breast cancer that cross-talks with other risk factors such as alcohol intake, obesity, parity, breastfeeding, early menarche and late menopause, are also modulated by microbial dysbiosis. In this review, we discuss the association between known breast cancer risk factors and altered microbiota. An important question related to microbial dysbiosis and cancer is the underlying mechanisms by which alterations in microbiota can support cancer progression. To this end, we review the involvement of microbial metabolites as effector molecules, the modulation of the metabolism of xenobiotics, the induction of systemic immune modulation, and altered responses to therapy owing to microbial dysbiosis. Given the association of breast cancer risk factors with microbial dysbiosis and the multitude of mechanisms altered by dysbiotic microbiota, an impaired microbiome is, in itself, an important risk factor.
Collapse
|
23
|
Alsahafi E, Begg K, Amelio I, Raulf N, Lucarelli P, Sauter T, Tavassoli M. Clinical update on head and neck cancer: molecular biology and ongoing challenges. Cell Death Dis 2019; 10:540. [PMID: 31308358 PMCID: PMC6629629 DOI: 10.1038/s41419-019-1769-9] [Citation(s) in RCA: 318] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 12/15/2022]
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are an aggressive, genetically complex and difficult to treat group of cancers. In lieu of truly effective targeted therapies, surgery and radiotherapy represent the primary treatment options for most patients. But these treatments are associated with significant morbidity and a reduction in quality of life. Resistance to both radiotherapy and the only available targeted therapy, and subsequent relapse are common. Research has therefore focussed on identifying biomarkers to stratify patients into clinically meaningful groups and to develop more effective targeted therapies. However, as we are now discovering, the poor response to therapy and aggressive nature of HNSCCs is not only affected by the complex alterations in intracellular signalling pathways but is also heavily influenced by the behaviour of the extracellular microenvironment. The HNSCC tumour landscape is an environment permissive of these tumours' aggressive nature, fostered by the actions of the immune system, the response to tumour hypoxia and the influence of the microbiome. Solving these challenges now rests on expanding our knowledge of these areas, in parallel with a greater understanding of the molecular biology of HNSCC subtypes. This update aims to build on our earlier 2014 review by bringing up to date our understanding of the molecular biology of HNSCCs and provide insights into areas of ongoing research and perspectives for the future.
Collapse
Affiliation(s)
- Elham Alsahafi
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK
| | - Katheryn Begg
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK
| | - Ivano Amelio
- Medical Research Council, Toxicology Unit, Leicester University, Leicester, LE1 9HN, UK
| | - Nina Raulf
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK
| | - Philippe Lucarelli
- Faculté des Sciences, de La Technologie et de La Communication, University of Luxembourg, 6, Avenue Du Swing, Belvaux, 4367, Luxembourg
| | - Thomas Sauter
- Faculté des Sciences, de La Technologie et de La Communication, University of Luxembourg, 6, Avenue Du Swing, Belvaux, 4367, Luxembourg
| | - Mahvash Tavassoli
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK.
| |
Collapse
|
24
|
Ghosh T, Beniwal A, Semwal A, Navani NK. Mechanistic Insights Into Probiotic Properties of Lactic Acid Bacteria Associated With Ethnic Fermented Dairy Products. Front Microbiol 2019; 10:502. [PMID: 30972037 PMCID: PMC6444180 DOI: 10.3389/fmicb.2019.00502] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/27/2019] [Indexed: 12/15/2022] Open
Abstract
Gut microbes and their metabolites maintain the health and homeostasis of the host by communicating with the host via various biochemical and physical factors. Changing lifestyle, chronic intake of foods rich in refined carbohydrates and fats have caused intestinal dysbiosis and other lifestyle-based diseases. Thus, supplementation with probiotics has gained popularity as biotherapies for improving gut health and treating disorders. Research shows that probiotic organisms enhance gastrointestinal health, immunomodulation, generation of essential micronutrients, and prevention of cancer. Ethnically fermented milk and dairy products are hotspots for novel probiotic organisms and bioactive compounds. These ethnic fermented foods have been traditionally prepared by indigenous populations, and have preserved unique microflora for ages. To apply these unique microflora for amelioration of human health, it is important that probiotic properties of the bacterial species are well studied. Majority of the published research and reviews focus on the probiotic organisms and their properties, fermented food products, isolation techniques, and animal studies with their health pathologies. As a consequence, there is a dearth of information about the underlying molecular mechanism behind probiotics associated with ethnically prepared dairy foods. This review is targeted at stimulating research on understanding these mechanisms of bacterial species and beneficial attributes of ethnically fermented dairy products.
Collapse
Affiliation(s)
| | | | | | - Naveen Kumar Navani
- Chemical Biology Lab, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
25
|
Melanoma-related changes in skin microbiome. Folia Microbiol (Praha) 2018; 64:435-442. [PMID: 30554379 DOI: 10.1007/s12223-018-00670-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 11/30/2018] [Indexed: 01/04/2023]
Abstract
Melanoma is the least common form of skin tumor, but it is potentially the most dangerous and responsible for the majority of skin cancer deaths. We suggest that the skin microbiome might be changed during the progression of melanoma. The aim of this study is to compare the composition of the skin microbiota between different locations (skin and melanoma) of a MeLiM (Melanoma-bearing Libechov Minipig) pig model (exophytic melanoma). Ninety samples were used for PCR-DGGE analysis with primers specifically targeting the V3 region of the 16S rRNA gene. The profiles were used for cluster analysis by UPGMA and principal coordinate analysis PCoA and also to calculate the diversity index (Simpson index of diversity). By comparing the obtained results, we found that both bacterial composition and diversity were significantly different between the skin and melanoma microbiomes. The abundances of Fusobacterium and Trueperella genera were significantly increased in melanoma samples, suggesting a strong relationship between melanoma development and skin microbiome changes.
Collapse
|
26
|
Tarrah A, de Castilhos J, Rossi RC, Duarte VDS, Ziegler DR, Corich V, Giacomini A. In vitro Probiotic Potential and Anti-cancer Activity of Newly Isolated Folate-Producing Streptococcus thermophilus Strains. Front Microbiol 2018; 9:2214. [PMID: 30283428 PMCID: PMC6156529 DOI: 10.3389/fmicb.2018.02214] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022] Open
Abstract
Most probiotic strains commercially available today are lactic acid bacteria. Within this functional group, Streptococcus thermophilus is a thermophilic species widely used as starter culture for a huge number of dairy products. Besides being rapid acidifiers, many S. thermophilus strains are able to produce and release folate during growth but, unfortunately, they are seriously impaired during passage through the human gastrointestinal tract. In this work, we studied eight S. thermophilus strains isolated from dairy environments in Italy, which already had shown good technological properties, to evaluate their possible probiotic potential and cytotoxicity against cancer cells in vitro. All strains were also evaluated for some health-related properties such as susceptibility to most common antibiotics, hemolytic activity, resistance to simulated gastrointestinal conditions, bile salts hydrolytic activity, production of folate, adhesion to HT-29 human colorectal adenocarcinoma cells and cytotoxic activity against cancer cells and production of biogenic amines. Results revealed that two fast acidifying S. thermophilus strains were found to possess in vitro probiotic properties along with anticancer activity and production of folate. These properties resulted similar and, in some cases, superior to those of Lactobacillus rhamnosus GG, a well-known commercial probiotic strain. These findings encourage further in vivo studies to evaluate the actual health benefits of these strains on the human host.
Collapse
Affiliation(s)
- Armin Tarrah
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Padua, Italy
| | - Juliana de Castilhos
- Department of Nutrition, Universidade do Vale do Rio dos Sinos, São Leopoldo, Brazil
| | | | | | | | - Viviana Corich
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Padua, Italy
| | - Alessio Giacomini
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Padua, Italy
| |
Collapse
|