1
|
Sultan S, Alharbi M, Alrayes N, Makki N, Faruqui H, Basuni L, Alhozali A, Abdulnoor R, Borai A, Almalki A, Alzahrani A, Alamoudi R, Almaghrabi M. Association of a single nucleotide polymorphism in SOD2 with susceptibility for the development of diabetic nephropathy in patients with type 2 diabetes: A Saudi population study. Endocrinol Diabetes Metab 2023; 6:e449. [PMID: 37698290 PMCID: PMC10638619 DOI: 10.1002/edm2.449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023] Open
Abstract
INTRODUCTION One of the complications of diabetes mellitus (DM) is diabetic nephropathy (DN), which plays a significant role in the progression of end-stage renal disease. Oxidative stress is implicated in DN pathogenesis, and genetic variations in antioxidant enzymes such as superoxide dismutase 2 (SOD2) and catalase (CAT) may contribute to the susceptibility. This study aimed to investigate the potential association between single nucleotide polymorphisms (SNPs) in antioxidant enzymes, specifically SOD2 rs4880 and CAT rs769217, and the risk of T2D and susceptibility to DN within the Saudi population. METHODS This case-control study included 150 participants, comprising 50 patients with T2D without DN (group 1), 50 patients with T2D with DN (group 2), and 50 healthy participants (group 3). The samples were genotyped using real-time PCR for SOD2 rs4880 and CAT rs769217 SNPs. Sanger sequencing was used for validation. Statistical analyses were performed to explore associations between these SNPs and T2D with or without DN. RESULTS No significant difference was observed in CAT rs769217 expression between the groups. However, a significant difference was observed in SOD2 rs4880 expression between the healthy controls and patients with T2D with DN (p = .028). Furthermore, SOD2 rs4880 was associated with approximately threefold increased risk of DN in patients with T2D compared to that in healthy participants (odds ratio [OR] = 2.99 [1.31-6.83]). Validation through Sanger sequencing further confirmed these findings. CONCLUSIONS The findings of this study provide evidence that SOD2 rs4880 SNP may contribute to inadequate defence by the antioxidant enzyme, SOD2, against DM-induced oxidative stress and thus cause DN in Saudi patients with T2D. Therefore, SOD2 rs4880 may serve as a predictive marker to prevent the development and progression of DN in patients with T2D.
Collapse
Affiliation(s)
- Samar Sultan
- Medical Laboratory Sciences, Faculty of Applied Medical SciencesKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Meshari Alharbi
- Medical Laboratory Sciences, Faculty of Applied Medical SciencesKing Abdulaziz UniversityJeddahSaudi Arabia
- King Abdulaziz Medical CityNational Guard HospitalJeddahSaudi Arabia
| | - Nuha Alrayes
- Medical Laboratory Sciences, Faculty of Applied Medical SciencesKing Abdulaziz UniversityJeddahSaudi Arabia
- Princes Al‐Jawhara center of excellence in research of hereditary disorders, King Abdulaziz UniversityJeddahSaudi Arabia
| | - Nehad Makki
- Department of Medicine, Faculty of MedicineKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Hanan Faruqui
- Department of Medicine, Faculty of MedicineKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Lama Basuni
- Department of Medicine, Faculty of MedicineKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Amani Alhozali
- Department of Medicine, Faculty of MedicineKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Reham Abdulnoor
- Department of Medicine, Faculty of MedicineKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Anwar Borai
- King Abdullah International Medical Research Center (KAIMRC)King Saud bin Abdulaziz University for Health Sciences (KSAU‐HS), King Abdulaziz Medical City, Ministry of National GuardJeddahSaudi Arabia
| | - Abdullah Almalki
- King saud bin Abdulaziz university for health sciences, king abdulaziz medical cityking Abdullah international research center (KAIMRC)JeddahSaudi Arabia
| | - Abdullah Alzahrani
- King Abdulaziz Medical city, College of MedicineKing Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research centerJeddahSaudi Arabia
| | - Reem Alamoudi
- King Abdulaziz Medical city, College of MedicineKing Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research centerJeddahSaudi Arabia
| | - Mazin Almaghrabi
- King Abdulaziz Medical CityNational Guard HospitalJeddahSaudi Arabia
- Department of Internal Medicine/EndocrinologyKing Abdulaziz Medical CityJeddahSaudi Arabia
| |
Collapse
|
2
|
Orlewska K, Klusek J, Głuszek S, Klusek J, Witczak B, Wawszczak M, Madej Ł, Marzec MT, Orlewska E. Glutathione S-Transferase P1 Genetic Variant's Influence on the HbA1c Level in Type Two Diabetic Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1520. [PMID: 36674274 PMCID: PMC9859603 DOI: 10.3390/ijerph20021520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
GST (glutathione S-transferases) are capable of influencing glucose homeostasis, probably through regulation of the response to oxidant stress. The aim of our study was to investigate the relationship between GSTP1 gene polymorphism and glycated hemoglobin (HbA1c) levels in type two diabetic (T2D) patients. A total of 307 T2D patients were included. Analysis of the GSTP1 gene polymorphism (rs1695) was conducted using the TaqMan qPCR method endpoint genotyping. HbA1c was determined using a COBAS 6000 autoanalyzer. A univariable linear regression and multivariable linear regression model were used to investigate the association between mean HbA1c level and GSTP1 gene polymorphism, age at T2D diagnosis, T2D duration, therapy with insulin, gender, BMI, smoking status. GSTP1 Val/Val genotype, age at T2D diagnosis, T2D duration and therapy with insulin were statistically significant contributors to HbA1c levels (p < 0.05). Multivariable regression analysis revealed that GSTP1 (Val/Val vs. Ile/Ile) was associated with higher HbA1c even after adjustment for variables that showed a statistically significant relationship with HbA1c in univariable analyses (p = 0.024). The results suggest that GSTP polymorphism may be one of the risk factors for higher HbA1c in T2D patients. Our study is limited by the relatively small sample size, cross-sectional design, and lack of inclusion of other oxidative stress-related genetic variants.
Collapse
Affiliation(s)
| | - Justyna Klusek
- Collegium Medicum, Jan Kochanowski University, 25-516 Kielce, Poland
| | - Stanisław Głuszek
- Collegium Medicum, Jan Kochanowski University, 25-516 Kielce, Poland
- Department of General, Oncological and Endocrinological Surgery, Voivodeship Hospital, 25-736 Kielce, Poland
| | - Jolanta Klusek
- Institute of Biology, Jan Kochanowski University, 25-406 Kielce, Poland
| | - Bartosz Witczak
- Collegium Medicum, Jan Kochanowski University, 25-516 Kielce, Poland
| | - Monika Wawszczak
- Collegium Medicum, Jan Kochanowski University, 25-516 Kielce, Poland
| | - Łukasz Madej
- Collegium Medicum, Jan Kochanowski University, 25-516 Kielce, Poland
| | - Michał Tomasz Marzec
- Collegium Medicum, Jan Kochanowski University, 25-516 Kielce, Poland
- Department of Biomedical Sciences, University of Copenhagen, 1017 Copenhagen, Denmark
| | - Ewa Orlewska
- Collegium Medicum, Jan Kochanowski University, 25-516 Kielce, Poland
| |
Collapse
|
3
|
Liu LS, Wang D, Tang R, Wang Q, Zheng L, Wei J, Li Y, He XF. Individual and combined effects of the GSTM1, GSTT1, and GSTP1 polymorphisms on type 2 diabetes mellitus risk: A systematic review and meta-analysis. Front Genet 2022; 13:959291. [PMID: 36419826 PMCID: PMC9676647 DOI: 10.3389/fgene.2022.959291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/14/2022] [Indexed: 10/13/2023] Open
Abstract
Backgrounds: Compared with previously published meta-analyses, this is the first study to investigate the combined effects of glutathione-S-transferase polymorphisms (GSTM1, GSTT1 and GSTP1 IIe105Val) and type 2 diabetes mellitus (T2DM) risk; moreover, the credibility of statistically significant associations was assessed; furthermore, many new original studies were published. Objectives: To determine the relationship between GSTM1, GSTT1, and GSTP1 polymorphisms with T2DM risk. Methods: PubMed, Embase, Wanfang, and China National Knowledge Infrastructure Databases were searched. We quantify the relationship using crude odds ratios and their 95% confidence intervals Moreover, the Venice criteria, false-positive report probability (FPRP), and Bayesian false discovery probability (BFDP) were used to validate the significance of the results. Results: Overall, significantly increased T2DM risk was found between individual and combined effects of GSTM1, GSTT1, and GSTP1 polymorphisms on T2DM risk, but, combined effects of the GSTT1 and GSTP1 polymorphisms was not statistically significant. GSTT1 gene polymorphism significantly increases the risk of T2DM complications, while GSTM1 and GSTP1 polymorphisms had no statistical significance. The GSTM1 null genotype was linked to a particularly increased risk of T2DM in Caucasians; the GSTT1 null genotype was connected to a significantly higher risk of T2DM in Asians and Indians; and the GSTP1 IIe105Val polymorphism was related to a substantially increased T2DM risk in Indians. Moreover, the GSTM1 and GSTT1 double null genotype was associated with substantially increased T2DM risk in Caucasians and Indians; the combined effects of GSTM1 and GSTP1 polymorphisms was associated with higher T2DM risk in Caucasians. However, all significant results were false when the Venice criteria, FPRP, and BFDP test were used (any FPRP >0.2 and BFDP value >0.8). Conclusion: The current analysis strongly suggests that the individual and combined effects of GSTM1, GSTT1 and GSTP1 polymorphisms might not be connected with elevated T2DM risk.
Collapse
Affiliation(s)
| | - Di Wang
- Changzhi Medical College, Changzhi, Shanxi, China
| | - Ru Tang
- Changzhi Medical College, Changzhi, Shanxi, China
| | - Qi Wang
- Changzhi Medical College, Changzhi, Shanxi, China
| | - Lu Zheng
- Department of Endocrinology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Jian Wei
- Department of Endocrinology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Yan Li
- Department of Endocrinology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Xiao-feng He
- Department of Epidemiology, School of Public Health to Southern Medical University, Guangzhou, Guangdong, China
- Institute of Evidence-Based Medicine, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| |
Collapse
|
4
|
Oxidative Stress in Type 2 Diabetes: The Case for Future Pediatric Redoxomics Studies. Antioxidants (Basel) 2022; 11:antiox11071336. [PMID: 35883827 PMCID: PMC9312244 DOI: 10.3390/antiox11071336] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 01/27/2023] Open
Abstract
Considerable evidence supports the role of oxidative stress in adult type 2 diabetes (T2D). Due to increasing rates of pediatric obesity, lack of physical activity, and consumption of excess food calories, it is projected that the number of children living with insulin resistance, prediabetes, and T2D will markedly increase with enormous worldwide economic costs. Understanding the factors contributing to oxidative stress and T2D risk may help develop optimal early intervention strategies. Evidence suggests that oxidative stress, triggered by excess dietary fat consumption, causes excess mitochondrial hydrogen peroxide emission in skeletal muscle, alters redox status, and promotes insulin resistance leading to T2D. The pathophysiological events arising from excess calorie-induced mitochondrial reactive oxygen species production are complex and not yet investigated in children. Systems medicine is an integrative approach leveraging conventional medical information and environmental factors with data obtained from “omics” technologies such as genomics, proteomics, and metabolomics. In adults with T2D, systems medicine shows promise in risk assessment and predicting drug response. Redoxomics is a branch of systems medicine focusing on “omics” data related to redox status. Systems medicine with a complementary emphasis on redoxomics can potentially optimize future healthcare strategies for adults and children with T2D.
Collapse
|
5
|
Yan SQ, Adi D, Liu C, Wang MM, Abuzhalihana J, Wu Y, Fu ZY, Yang YN, Li XM, Xie X, Liu F, Chen BD, Ma YT. FBXW7 gene polymorphism is associated with type 2 diabetes in the Uygur population in Xinjiang, China. Hereditas 2021; 158:27. [PMID: 34372947 PMCID: PMC8351158 DOI: 10.1186/s41065-021-00191-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/19/2021] [Indexed: 11/22/2022] Open
Abstract
Background FBXW7 gene expression is positively correlated with glycolipid metabolism and is associated with diabetes in animal models. In the current study, we focused on exploring whether genetic variants of the FBXW7 gene were associated with type 2 diabetes (T2DM) and the risk factors for T2DM in Uygur people in Xinjiang, China. Methods A total of 2164 Chinese Uygur subjects (673 T2DM patients and 1491 controls) were recruited for our case–control study, and four SNPs (rs10033601, rs2255137, rs2292743 and rs35311955) of the FBXW7 gene were genotyped using the improved multiplex ligation detection reaction (iMLDR) technique. Results Our study showed that the genotypes using the overdominant model (GA vs AA + GG) of rs10033601 and using the overdominant model (TA vs TT + AA) of rs2292743 were significantly different between T2DM patients and the controls (P = 0.005 and P = 0.012, respectively). After multivariate adjustments for confounders, the rs10033601 and rs2292743 SNPs were still independent risk factors for T2DM [GA vs AA + GG: odds ratio = 1.35, 95% confidence interval (CI) = 1.12–1.64, P = 0.002; TA vs TT + AA: OR = 1.28, 95% CI = 1.06–1.55, P = 0.011]. Participants within the Chinese Uygur populations and who with the GA genotype of rs10033601 and the TA genotype of rs2292743 were associated with significantly elevated glucose levels. Conclusions Our study revealed that both rs10033601 and rs2292743 of the FBXW7 gene were associated with T2DM in the Uygur populations in Xinjiang.
Collapse
Affiliation(s)
- Shi-Qi Yan
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China
| | - Dilare Adi
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China
| | - Cheng Liu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China
| | - Meng-Meng Wang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China
| | - Jialin Abuzhalihana
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China
| | - Yun Wu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China
| | - Zhen-Yan Fu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China
| | - Yi-Ning Yang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China
| | - Xiao-Mei Li
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China
| | - Xiang Xie
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China
| | - Fen Liu
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China
| | - Bang-Dang Chen
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China
| | - Yi-Tong Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China. .,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China.
| |
Collapse
|
6
|
Gusti AMT, Qusti SY, Bahijri SM, Toraih EA, Bokhari S, Attallah SM, Alzahrani A, Alshehri WMA, Alotaibi H, Fawzy MS. Glutathione S-Transferase ( GSTT1 rs17856199) and Nitric Oxide Synthase ( NOS2 rs2297518) Genotype Combination as Potential Oxidative Stress-Related Molecular Markers for Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2021; 14:1385-1403. [PMID: 33790606 PMCID: PMC8006960 DOI: 10.2147/dmso.s300525] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Deregulation of the antioxidant enzymes was implicated in pathogenesis and complications of type 2 diabetes mellitus (T2DM). The data relate the genetic variants of these enzymes to T2DM are inconsistent among various populations. PURPOSE We aimed to explore the association of 13 genetic variants of "superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and nitric oxide synthase (NOS)" with T2DM susceptibility and the available clinical laboratory data. SUBJECTS AND METHODS A total of 384 individuals were enrolled in this work. Different genotypes of the genes mentioned above were characterized using TaqMan OpenArray Genotyping assays on a Real-Time polymerase chain reaction system. RESULTS After age- and sex-adjustment, among the studied 13 variants, GSTT1 rs17856199 was associated with T2DM under homozygote (OR=3.42; 95% CI:1.04-11.2, p=0.031), and recessive (OR=3.57; 95% CI: 1.11-11.4, p=0.029) comparison models. The NOS2 rs2297518*A allele was more frequent among the T2DM cohort (58.1% vs 35.4%, p<0.001) and showed a dose-response effect; being heterozygote was associated with higher odds for developing DM (OR=4.06, 95% CI=2.13-7.73, p<0.001), whereas being AA homozygote had double the risk (OR=9.06, 95% CI=3.41-24.1, p<0.001). Combined NOS2 rs2297518*A and either GSTT1 rs17856199*A or *C genotype carriers were more likely to develop T2DM. Different associations with sex, BMI, hyperglycemia, and/or hyperlipidemia were evident. The principal component analysis revealed NOS2 rs2297518*G, old age, dyslipidemia, high systolic blood pressure, and elevated HbA1c were the main classifiers of T2DM patients. CONCLUSION The oxidative stress-related molecular markers, GSTT1 rs17856199 and NOS2 rs2297518 variants were significantly associated with T2DM risk and phenotype in the study population.
Collapse
Affiliation(s)
- Amani M T Gusti
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory, Biochemistry, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Safaa Y Qusti
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Suhad M Bahijri
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Saudi Diabetes Research Group, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eman A Toraih
- Department of Surgery, Tulane University, School of Medicine, New Orleans, LA, USA
- Department of Histology and Cell Biology (Genetics Unit), Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Samia Bokhari
- Department of Endocrinology and Diabetes, King Fahd Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Sami M Attallah
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Clinical Pathology, King Fahd Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Abdulwahab Alzahrani
- Department of Molecular Biology, King Fahd Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Wafaa M A Alshehri
- Department of Chemistry, Faculty of Science, University of Bisha, Al Namas, Saudi Arabia
| | | | - Manal S Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Kingdom of Saudi Arabia
- Correspondence: Manal S Fawzy Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, EgyptTel + 20 1008584720Fax + 20 64 3216496 Email
| |
Collapse
|
7
|
Podkowińska A, Formanowicz D. Chronic Kidney Disease as Oxidative Stress- and Inflammatory-Mediated Cardiovascular Disease. Antioxidants (Basel) 2020; 9:E752. [PMID: 32823917 PMCID: PMC7463588 DOI: 10.3390/antiox9080752] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
Generating reactive oxygen species (ROS) is necessary for both physiology and pathology. An imbalance between endogenous oxidants and antioxidants causes oxidative stress, contributing to vascular dysfunction. The ROS-induced activation of transcription factors and proinflammatory genes increases inflammation. This phenomenon is of crucial importance in patients with chronic kidney disease (CKD), because atherosclerosis is one of the critical factors of their cardiovascular disease (CVD) and increased mortality. The effect of ROS disrupts the excretory function of each section of the nephron. It prevents the maintenance of intra-systemic homeostasis and leads to the accumulation of metabolic products. Renal regulatory mechanisms, such as tubular glomerular feedback, myogenic reflex in the supplying arteriole, and the renin-angiotensin-aldosterone system, are also affected. It makes it impossible for the kidney to compensate for water-electrolyte and acid-base disturbances, which progress further in the mechanism of positive feedback, leading to a further intensification of oxidative stress. As a result, the progression of CKD is observed, with a spectrum of complications such as malnutrition, calcium phosphate abnormalities, atherosclerosis, and anemia. This review aimed to show the role of oxidative stress and inflammation in renal impairment, with a particular emphasis on its influence on the most common disturbances that accompany CKD.
Collapse
Affiliation(s)
| | - Dorota Formanowicz
- Department of Clinical Biochemistry and Laboratory Medicine, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland
| |
Collapse
|
8
|
Evaluation of some oxidative markers in diabetes and diabetic retinopathy. Diabetol Int 2020; 12:108-117. [PMID: 33479586 DOI: 10.1007/s13340-020-00450-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/22/2020] [Indexed: 11/27/2022]
Abstract
Aims Diabetes mellitus and diabetic retinopathy (DR) are major public health concerns globally. Oxidative stress plays a central role in the pathogenesis of diabetes and DR. The aim of this study was to investigate the association of malondialdehyde, uric acid and bilirubin with diabetes and diabetic retinopathy development. Methods This study was conducted on 110 diabetics (with and without retinopathy). Beside 40 healthy individuals as a control group. The level of three markers (malondialdehyde, uric acid and bilirubin) was estimated in the studied groups. Receiver operating characteristic analysis and a logistic regression model was performed. Results The present study revealed significantly higher uric acid and malondialdehyde levels, while bilirubin showed significantly lower levels in diabetics compared to control and similarly in diabetic retinopathy compared to those without DR. Furthermore, combination of the three markers increased the accuracy and effect size for differentiation between diabetes with and without DR. In addition, higher levels of uric acid and malondialdehyde were associated with risk of diabetes and DR development. Conclusion This study concluded that higher levels of uric acid and malondialdehyde were associated with increase in the risk of diabetes and DR development, while bilirubin wasn't associated with decreasing the risk of diabetes or DR. However, the combination of malondialdehyde, uric acid and bilirubin may be a valuable addition to the current options for the prognosis of DR. In addition, malondialdehyde may be independent predictor of diabetes and DR as well as uric acid may be used as independent biomarker to predict the risk of DR.
Collapse
|
9
|
Association of genetic polymorphisms of SelS with Type 2 diabetes in a Chinese population. Biosci Rep 2018; 38:BSR20181696. [PMID: 30413610 PMCID: PMC6259018 DOI: 10.1042/bsr20181696] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/03/2018] [Accepted: 11/06/2018] [Indexed: 01/11/2023] Open
Abstract
Background: Selenoprotein S (SelS) gene expression is positively correlated to triglyceride (TG) concentrations and is associated with diabetes in animal model. However, the relationship between genetic polymorphisms of SelS and Type 2 diabetes (T2DM) remains unclear. Methods: In the present study, we genotyped four single nucleotide polymorphisms (rs12910524, rs1384565, rs2101171, rs4965814) of SelS gene using TaqMan genotyping method in a case-control study (1947 T2DM patients and 1639 control subjects). Results: We found both rs1384565 CC genotype (12.1 compared with 6.6%, P<0.001) and C allele (35.2 compared with 24.4%, P<0.001) were more frequent in the T2DM patients than in the controls. Logistic regression analysis suggested after adjustment of other confounders, the difference remained significant between the two groups (CC compared with TT, P=0.002, OR = 1.884, 95% CI: 1.263-2.811; CT compared with TT, P<0.001, OR = 1.764, 95% CI: 1.412-2.204). Conclusion: The present study suggested that genetic polymorphisms of SelS were associated with T2DM in a Chinese population.
Collapse
|