1
|
Artesani A, Bruno A, Gelardi F, Chiti A. Empowering PET: harnessing deep learning for improved clinical insight. Eur Radiol Exp 2024; 8:17. [PMID: 38321340 PMCID: PMC10847083 DOI: 10.1186/s41747-023-00413-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/20/2023] [Indexed: 02/08/2024] Open
Abstract
This review aims to take a journey into the transformative impact of artificial intelligence (AI) on positron emission tomography (PET) imaging. To this scope, a broad overview of AI applications in the field of nuclear medicine and a thorough exploration of deep learning (DL) implementations in cancer diagnosis and therapy through PET imaging will be presented. We firstly describe the behind-the-scenes use of AI for image generation, including acquisition (event positioning, noise reduction though time-of-flight estimation and scatter correction), reconstruction (data-driven and model-driven approaches), restoration (supervised and unsupervised methods), and motion correction. Thereafter, we outline the integration of AI into clinical practice through the applications to segmentation, detection and classification, quantification, treatment planning, dosimetry, and radiomics/radiogenomics combined to tumour biological characteristics. Thus, this review seeks to showcase the overarching transformation of the field, ultimately leading to tangible improvements in patient treatment and response assessment. Finally, limitations and ethical considerations of the AI application to PET imaging and future directions of multimodal data mining in this discipline will be briefly discussed, including pressing challenges to the adoption of AI in molecular imaging such as the access to and interoperability of huge amount of data as well as the "black-box" problem, contributing to the ongoing dialogue on the transformative potential of AI in nuclear medicine.Relevance statementAI is rapidly revolutionising the world of medicine, including the fields of radiology and nuclear medicine. In the near future, AI will be used to support healthcare professionals. These advances will lead to improvements in diagnosis, in the assessment of response to treatment, in clinical decision making and in patient management.Key points• Applying AI has the potential to enhance the entire PET imaging pipeline.• AI may support several clinical tasks in both PET diagnosis and prognosis.• Interpreting the relationships between imaging and multiomics data will heavily rely on AI.
Collapse
Affiliation(s)
- Alessia Artesani
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Milan, Pieve Emanuele, 20090, Italy
| | - Alessandro Bruno
- Department of Business, Law, Economics and Consumer Behaviour "Carlo A. Ricciardi", IULM Libera Università Di Lingue E Comunicazione, Via P. Filargo 38, Milan, 20143, Italy
| | - Fabrizia Gelardi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Milan, Pieve Emanuele, 20090, Italy.
- Vita-Salute San Raffaele University, Via Olgettina 58, Milan, 20132, Italy.
| | - Arturo Chiti
- Vita-Salute San Raffaele University, Via Olgettina 58, Milan, 20132, Italy
- Department of Nuclear Medicine, IRCCS Ospedale San Raffaele, Via Olgettina 60, Milan, 20132, Italy
| |
Collapse
|
2
|
Bhure U, Cieciera M, Lehnick D, Del Sol Pérez Lago M, Grünig H, Lima T, Roos JE, Strobel K. Incorporation of CAD (computer-aided detection) with thin-slice lung CT in routine 18F-FDG PET/CT imaging read-out protocol for detection of lung nodules. Eur J Hybrid Imaging 2023; 7:17. [PMID: 37718372 PMCID: PMC10505603 DOI: 10.1186/s41824-023-00177-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023] Open
Abstract
OBJECTIVE To evaluate the detection rate and performance of 18F-FDG PET alone (PET), the combination of PET and low-dose thick-slice CT (PET/lCT), PET and diagnostic thin-slice CT (PET/dCT), and additional computer-aided detection (PET/dCT/CAD) for lung nodules (LN)/metastases in tumor patients. Along with this, assessment of inter-reader agreement and time requirement for different techniques were evaluated as well. METHODS In 100 tumor patients (56 male, 44 female; age range: 22-93 years, mean age: 60 years) 18F-FDG PET images, low-dose CT with shallow breathing (5 mm slice thickness), and diagnostic thin-slice CT (1 mm slice thickness) in full inspiration were retrospectively evaluated by three readers with variable experience (junior, mid-level, and senior) for the presence of lung nodules/metastases and additionally analyzed with CAD. Time taken for each analysis and number of the nodules detected were assessed. Sensitivity, specificity, positive and negative predictive value, accuracy, and Receiver operating characteristic (ROC) analysis of each technique was calculated. Histopathology and/or imaging follow-up served as reference standard for the diagnosis of metastases. RESULTS Three readers, on an average, detected 40 LN in 17 patients with PET only, 121 LN in 37 patients using ICT, 283 LN in 60 patients with dCT, and 282 LN in 53 patients with CAD. On average, CAD detected 49 extra LN, missed by the three readers without CAD, whereas CAD overall missed 53 LN. There was very good inter-reader agreement regarding the diagnosis of metastases for all four techniques (kappa: 0.84-0.93). The average time required for the evaluation of LN in PET, lCT, dCT, and CAD was 25, 31, 60, and 40 s, respectively; the assistance of CAD lead to average 33% reduction in time requirement for evaluation of lung nodules compared to dCT. The time-saving effect was highest in the less experienced reader. Regarding the diagnosis of metastases, sensitivity and specificity combined of all readers were 47.8%/96.2% for PET, 80.0%/81.9% for PET/lCT, 100%/56.7% for PET/dCT, and 95.6%/64.3% for PET/CAD. No significant difference was observed regarding the ROC AUC (area under the curve) between the imaging methods. CONCLUSION Implementation of CAD for the detection of lung nodules/metastases in routine 18F-FDG PET/CT read-out is feasible. The combination of diagnostic thin-slice CT and CAD significantly increases the detection rate of lung nodules in tumor patients compared to the standard PET/CT read-out. PET combined with low-dose CT showed the best balance between sensitivity and specificity regarding the diagnosis of metastases per patient. CAD reduces the time required for lung nodule/metastasis detection, especially for less experienced readers.
Collapse
Affiliation(s)
- Ujwal Bhure
- Department of Nuclear Medicine and Radiology, Cantonal Hospital Lucerne, Lucerne, Switzerland
| | - Matthäus Cieciera
- Department of Nuclear Medicine and Radiology, Cantonal Hospital Lucerne, Lucerne, Switzerland
| | - Dirk Lehnick
- Faculty of Health Sciences and Medicine, University of Lucerne, Frohburgstrasse 3, 6002, Lucerne, Switzerland
- Clinical Trial Unit Central Switzerland, University of Lucerne, 6002, Lucerne, Switzerland
| | | | - Hannes Grünig
- Department of Nuclear Medicine and Radiology, Cantonal Hospital Lucerne, Lucerne, Switzerland
| | - Thiago Lima
- Department of Nuclear Medicine and Radiology, Cantonal Hospital Lucerne, Lucerne, Switzerland
| | - Justus E Roos
- Department of Nuclear Medicine and Radiology, Cantonal Hospital Lucerne, Lucerne, Switzerland
| | - Klaus Strobel
- Department of Nuclear Medicine and Radiology, Cantonal Hospital Lucerne, Lucerne, Switzerland.
- Division of Nuclear Medicine, Department of Nuclear Medicine and Radiology, Cantonal Hospital Lucerne, 6000, Lucerne 16, Switzerland.
| |
Collapse
|
3
|
Reymann MP, Vija AH, Maier A. Method for comparison of data driven gating algorithms in emission tomography. Phys Med Biol 2023; 68:185024. [PMID: 37619585 DOI: 10.1088/1361-6560/acf3ce] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/24/2023] [Indexed: 08/26/2023]
Abstract
Objective.Multiple algorithms have been proposed for data driven gating (DDG) in single photon emission computed tomography (SPECT) and have successfully been applied to myocardial perfusion imaging (MPI). Application of DDG to acquisition types other than SPECT MPI has not been demonstrated so far, as limitations and pitfalls of current methods are unknown.Approach.We create a comprehensive set of phantoms simulating the influence of different motion artifacts, view angles, moving objects, contrast, and count levels in SPECT. We perform Monte Carlo simulation of the phantoms, allowing the characterization of DDG algorithms using quantitative metrics derived from the data and evaluate the Center of Light (COL) and Laplacian Eigenmaps methods as sample DDG algorithms.Main results.View angle, object size, count rate density, and contrast influence the accuracy of both DDG methods. Moreover, the ability to extract the respiratory motion in the phantom was shown to correlate with the contrast of the moving feature to the background, the signal to noise ratio, and the noise in the data.Significance.We showed that reporting the average correlation to an external physical reference signal per acquisition is not sufficient to characterize DDG methods. Assessing DDG methods on a view-by-view basis using the simulations and metrics from this work could enable the identification of pitfalls of current methods, and extend their application to acquisitions beyond SPECT MPI.
Collapse
Affiliation(s)
- M P Reymann
- Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Siemens Healthcare GmbH, Forchheim, Germany
- Clinic for Nuclear Medicine, University Hospital Erlangen, Germany
| | - A H Vija
- Siemens Medical Solutions USA, Inc., Molecular Imaging, Hoffman Estates, IL, United States of America
| | - A Maier
- Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
4
|
Nii T, Hosokawa S, Kotani T, Domoto H, Nakamura Y, Tanada Y, Kondo R, Takahashi Y. Evaluation of Data-Driven Respiration Gating in Continuous Bed Motion in Lung Lesions. J Nucl Med Technol 2023; 51:32-37. [PMID: 36750380 DOI: 10.2967/jnmt.122.264909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 02/09/2023] Open
Abstract
Respiration gating is used in PET to prevent image quality degradation due to respiratory effects. In this study, we evaluated a type of data-driven respiration gating for continuous bed motion, OncoFreeze AI, which was implemented to improve image quality and the accuracy of semiquantitative uptake values affected by respiratory motion. Methods: 18F-FDG PET/CT was performed on 32 patients with lung lesions. Two types of respiration-gated images (OncoFreeze AI with data-driven respiration gating, device-based amplitude-based OncoFreeze with elastic motion compensation) and ungated images (static) were reconstructed. For each image, we calculated SUV and metabolic tumor volume (MTV). The improvement rate (IR) from respiration gating and the contrast-to-noise ratio (CNR), which indicates the improvement in image noise, were also calculated for these indices. IR was also calculated for the upper and lower lobes of the lung. As OncoFreeze AI assumes the presence of respiratory motion, we examined quantitative accuracy in regions where respiratory motion was not present using a 68Ge cylinder phantom with known quantitative accuracy. Results: OncoFreeze and OncoFreeze AI showed similar values, with a significant increase in SUV and decrease in MTV compared with static reconstruction. OncoFreeze and OncoFreeze AI also showed similar values for IR and CNR. OncoFreeze AI increased SUVmax by an average of 18% and decreased MTV by an average of 25% compared with static reconstruction. From the IR results, both OncoFreeze and OncoFreeze AI showed a greater IR from static reconstruction in the lower lobe than in the upper lobe. OncoFreeze and OncoFreeze AI increased CNR by 17.9% and 18.0%, respectively, compared with static reconstruction. The quantitative accuracy of the 68Ge phantom, assuming a region of no respiratory motion, was almost equal for the static reconstruction and OncoFreeze AI. Conclusion: OncoFreeze AI improved the influence of respiratory motion in the assessment of lung lesion uptake to a level comparable to that of the previously launched OncoFreeze. OncoFreeze AI provides more accurate imaging with significantly larger SUVs and smaller MTVs than static reconstruction.
Collapse
Affiliation(s)
- Takeshi Nii
- Division of Radiological Technology, Department of Medical Technology, University Hospital, Kyoto Prefectural University of Medicine, Kyoto, Japan;
| | - Shota Hosokawa
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Japan
| | - Tomoya Kotani
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroshi Domoto
- Division of Radiological Technology, Department of Medical Technology, University Hospital, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasunori Nakamura
- Division of Radiological Technology, Department of Medical Technology, University Hospital, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Medical Physics, Graduate School of Medical Sciences, Kindai University, Osaka, Japan; and
| | - Yasutomo Tanada
- Division of Radiological Technology, Department of Medical Technology, University Hospital, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Quantum Medical Technology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Ryotaro Kondo
- Division of Radiological Technology, Department of Medical Technology, University Hospital, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasuyuki Takahashi
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Japan
| |
Collapse
|
5
|
Liu G, Chen S, Hu Y, Cao S, Yang X, Zhou Y, Shi H. Respiratory-gated PET imaging with reduced acquisition time for suspect malignancies: the first experience in application of total-body PET/CT. Eur Radiol 2022; 33:3366-3376. [PMID: 36565352 DOI: 10.1007/s00330-022-09369-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/08/2022] [Accepted: 12/08/2022] [Indexed: 12/25/2022]
Abstract
OBJECTIVES This study aimed to investigate the performance of respiratory-gating imaging with reduced acquisition time using the total-body positron emission tomography/computed tomography (PET/CT) scanner. METHODS Imaging data of 71 patients with suspect malignancies who underwent total-body 2-[18F]-fluoro-2-deoxy-D-glucose PET/CT for 15 min with respiration recorded were analyzed. For each examination, four reconstructions were performed: Ungated-15, using all coincidences; Ungated-5, using data of the first 5 min; Gated-15 using all coincidences but with respiratory gating; and Gated-6 using data of the first 6 min with respiratory gating. Lesions were quantified and image quality was evaluated; both were compared between the four image sets. RESULTS A total of 390 lesions were found in the thorax and upper abdomen. Lesion detectability was significantly higher in gated-15 (97.2%) than in ungated-15 (93.6%, p = 0.001) and ungated-5 (92.3%, p = 0.001), but comparable to Gated-6 (95.9%, p = 0.993). A total of 131 lesions were selected for quantitative analyses. Lesions in Gated-15 presented significantly larger standardized uptake values, tumor-to-liver ratio, and tumor-to-blood ratio, but smaller metabolic tumor volume, compared to those in Ungated-15 and Ungated-5 (all p < 0.001). These differences were more obvious in small lesions and in lesions from sites other than mediastinum/retroperitoneum. However, these indices were not significantly different between Gated-15 and Gated-6. Higher, but acceptable, image noise was identified in gated images than in ungated images. CONCLUSIONS Respiratory-gating imaging with reduced scanning time using the total-body PET/CT scanner is superior to ungated imaging and can be used in the clinic. KEY POINTS • In PET imaging, respiratory gating can improve lesion presentation and detectability but requires longer imaging time. • This single-center study showed that the total-body PET scanner allows respiratory-gated imaging with reduced and clinically acceptable scanning time.
Collapse
Affiliation(s)
- Guobing Liu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China.,Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shuguang Chen
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China.,Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yan Hu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China.,Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shuangliang Cao
- Central Research Institute, United Imaging Healthcare Group Co., Ltd., Shanghai, 201807, China
| | - Xinlan Yang
- Central Research Institute, United Imaging Healthcare Group Co., Ltd., Shanghai, 201807, China
| | - Yun Zhou
- Central Research Institute, United Imaging Healthcare Group Co., Ltd., Shanghai, 201807, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, China. .,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China. .,Shanghai Institute of Medical Imaging, Shanghai, 200032, China. .,Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Hapdey S, Dubray B, Chastan M, Thureau S, Gouel P, Edet-Sanson A, Becker S, Vera P, Bouyeure-Petit AC. Respiratory gated multistatic PET reconstructions to delineate radiotherapy target volume in patients with mobile lung tumors. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2022; 66:171-178. [PMID: 31922369 DOI: 10.23736/s1824-4785.19.03183-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND PET-CT with 18F-FDG or other radiopharmaceuticals is a recommended tool to help the delineation of lung cancers candidate to radiotherapy. The motion artifacts caused by respiratory movements are reduced by 4D acquisitions. We introduced an extended reconstruction algorithm (multiple reconstruct register and average [multi-RRA]) which requires much shorter acquisition times than standard 4D PET-CT. Our aim was to evaluate the interest on multi-RRA images as an alternative of 3D and 4D PET-CT for the delineation of lung lesion. METHODS PET acquisitions synchronized to the respiratory signal were obtained in 18 patients with mobile lung tumors. We compared the tumor volumes delineated on Multi-RRA images to 3D and 4D PET-CT, considering the 4D CT as a reference. The tumor volumes were delineated and compared with topologic similarity indexes (Dice, Jaccard and overlap). RESULTS Twenty tumors were delineated. The volumes delineated with multi-RRA and 4D PET were not significantly different (mean difference of 0.2±0.7 mL). Comparison by pairs (Tukey-Kramer test) showed that 3D-PET volumes were significantly smaller than 4D-PET and multi-RRA volumes (P<0.001). Topologic similarity indexes with 4D-PET were slightly statistically higher with multi-RRA than with 3D-PET (Dice and Jaccard) or 4D-CT (Dice, Jaccard and Overlap). CONCLUSIONS The tumor volumes delineated on multi-RRA are similar to the volumes obtained with 4D PET, with shorter acquisition time.
Collapse
Affiliation(s)
- Sebastien Hapdey
- Department of Nuclear Medicine, Henri Becquerel Cancer Center, Rouen, France -
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France -
| | - Bernard Dubray
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France
- Department of Radiotherapy, Henri Becquerel Cancer Center, Rouen, France
| | - Mathieu Chastan
- Department of Nuclear Medicine, Henri Becquerel Cancer Center, Rouen, France
| | - Sebastien Thureau
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France
- Department of Radiotherapy, Henri Becquerel Cancer Center, Rouen, France
| | - Pierrick Gouel
- Department of Nuclear Medicine, Henri Becquerel Cancer Center, Rouen, France
| | - Agathe Edet-Sanson
- Department of Nuclear Medicine, Henri Becquerel Cancer Center, Rouen, France
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France
| | - Stéphanie Becker
- Department of Nuclear Medicine, Henri Becquerel Cancer Center, Rouen, France
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France
| | - Pierre Vera
- Department of Nuclear Medicine, Henri Becquerel Cancer Center, Rouen, France
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France
| | | |
Collapse
|
7
|
Thomas MA, Meier JG, Mawlawi OR, Sun P, Pan T. Impact of acquisition time and misregistration with CT on data-driven gated PET. Phys Med Biol 2022; 67:10.1088/1361-6560/ac5f73. [PMID: 35313286 PMCID: PMC9128538 DOI: 10.1088/1361-6560/ac5f73] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/21/2022] [Indexed: 11/11/2022]
Abstract
Objective. Data-driven gating (DDG) can address patient motion issues and enhance PET quantification but suffers from increased image noise from utilization of <100% of PET data. Misregistration between DDG-PET and CT may also occur, altering the potential benefits of gating. Here, the effects of PET acquisition time and CT misregistration were assessed with a combined DDG-PET/DDG-CT technique.Approach. In the primary PET bed with lesions of interest and likely respiratory motion effects, PET acquisition time was extended to 12 min and a low-dose cine CT was acquired to enable DDG-CT. Retrospective reconstructions were created for both non-gated (NG) and DDG-PET using 30 s to 12 min of PET data. Both the standard helical CT and DDG-CT were used for attenuation correction of DDG-PET data. SUVmax, SUVpeak, and CNR were compared for 45 lesions in the liver and lung from 27 cases.Main results. For both NG-PET (p= 0.0041) and DDG-PET (p= 0.0028), only the 30 s acquisition time showed clear SUVmaxbias relative to the 3 min clinical standard. SUVpeakshowed no bias at any change in acquisition time. DDG-PET alone increased SUVmaxby 15 ± 20% (p< 0.0001), then was increased further by an additional 15 ± 29% (p= 0.0007) with DDG-PET/CT. Both 3 min and 6 min DDG-PET had lesion CNR statistically equivalent to 3 min NG-PET, but then increased at 12 min by 28 ± 48% (p= 0.0022). DDG-PET/CT at 6 min had comparable counts to 3 min NG-PET, but significantly increased CNR by 39 ± 46% (p< 0.0001).Significance. 50% counts DDG-PET did not lead to inaccurate or biased SUV-increased SUV resulted from gating. Improved registration from DDG-CT was equally as important as motion correction with DDG-PET for increasing SUV in DDG-PET/CT. Lesion detectability could be significantly improved when DDG-PET used equivalent counts to NG-PET, but only when combined with DDG-CT in DDG-PET/CT.
Collapse
Affiliation(s)
- M. Allan Thomas
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, TX 77030
| | - Joseph G. Meier
- Department of Medical Physics, University of Wisconsin, Madison, WI 53726
| | - Osama R. Mawlawi
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, TX 77030
| | - Peng Sun
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, TX 77030
| | - Tinsu Pan
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, TX 77030
| |
Collapse
|
8
|
Pan T, Thomas MA, Luo D. Data-driven gated (DDG) CT: An automated respiratory gating method to enable DDG PET/CT. Med Phys 2022; 49:3597-3611. [PMID: 35324002 DOI: 10.1002/mp.15620] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The accuracy of PET quantification and localization can be compromised if a misregistered CT is used for attenuation correction (AC) in PET/CT. As data-driven gating (DDG) continues to grow in clinical use, these issues are becoming more relevant with respect to solutions for gated CT. PURPOSE In this work, a new automated data-driven gated (DDG) CT method was developed to provide average CT and DDG CT for AC of PET and DDG PET, respectively. METHODS An automatic DDG CT was developed to provide the end-expiratory (EE) and end-inspiratory (EI) phases of images from low-dose cine CT images, with all phases being averaged to generate an average CT. The respiratory phases of EE and EI were determined according to lung region Hounsfield unit (HU) values and body outline contours. The average CT was used for AC of baseline PET and DDG CT at EE phase was used for AC of DDG PET at the quiescent or EE phase. The EI and EE phases obtained with DDG CT were used for assessing the magnitude of respiratory motion. The proposed DDG CT was compared to two commercial CT gating methods: 1) 4D CT (external device based) and 2) D4D CT (DDG based) in 38 patient data sets with respect to respiratory phase image selection, lung HU, lung volume, and image artifacts. In a separate set of twenty consecutive PET/CT studies containing a mix of 18 F-FDG, 68 Ga-Dotatate, and 64 Cu-Dotatate scans, the proposed DDG CT was compared with D4D CT for impacts on registration and quantification in DDG PET/CT. RESULTS In the EE phase, the images selected by DDG CT and 4D CT were identical 62.5±21.6% of the time, while DDG CT and D4D CT were 6.5±9.7%, and 4D CT and D4D CT were 8.6±12.2%. These differences in EE phase image selection were significant (p<0.0001). In the EI phase, the images selected by DDG CT and 4D CT were identical 68.2±18.9% of the time, DDG CT and D4D CT were 63.9±18.8%, and 4D CT and D4D CT were 61.2±19.8%. These differences were not significant. The mean lung HU and volumes were not statistically different (p > 0.1) among the three methods. In some studies, DDG CT was better than D4D or 4D CT in appropriate selection of the EE and EI phases, and D4D CT was found to reverse the EE and EI phases or not select the correct images by visual inspection. A statistically significant improvement of DDG CT over D4D CT for AC of DDG PET was also demonstrated with PET quantification analysis. When irregular breath cycles were present in the cine CT, DDG CT could be used to replace average CT for improved AC of baseline PET. CONCLUSION A new automatic DDG CT was developed to tackle the issues of misregistration and tumor motion in PET/CT imaging. DDG CT was significantly more consistent than D4D CT in selecting the EE phase images as the clinical standard of 4D CT. When compared to both commercial gated CT methods of 4D CT and D4D CT, DDG CT appeared to be more robust in the lower lung and upper diaphragm regions where misregistration and tumor motion often occur. DDG CT offered improved AC for DDG PET relative to D4D CT. In cases with irregular respiratory motion, DDG CT improved AC over average CT for baseline PET. The new DDG CT provides the benefits of 4D CT without the need for external device gating. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tinsu Pan
- Department of Imaging Physics, M.D. Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | - M Allan Thomas
- Department of Imaging Physics, M.D. Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | - Dershan Luo
- Department of Radiation Physics, M.D. Anderson Cancer Center, University of Texas, Houston, Texas, USA
| |
Collapse
|
9
|
Cheung AHY, Wu VWC, Cheung ALY, Cai J. Respiratory 4D-Gating F-18 FDG PET/CT Scan for Liver Malignancies: Feasibility in Liver Cancer Patient and Tumor Quantitative Analysis. Front Oncol 2022; 12:789506. [PMID: 35223472 PMCID: PMC8864173 DOI: 10.3389/fonc.2022.789506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/12/2022] [Indexed: 11/18/2022] Open
Abstract
Purpose To evaluate the potential clinical role and effectiveness of respiratory 4D-gating F-18 FDG PET/CT scan for liver malignancies, relative to routine (3D) F-18 FDG PET/CT scan. Materials and Methods This study presented a prospective clinical study of 16 patients who received F-18 FDG PET/CT scan for known or suspected malignant liver lesions. Ethics approvals were obtained from the ethics committees of the Hong Kong Baptist Hospital and The Hong Kong Polytechnic University. Liver lesions were compared between the gated and ungated image sets, in terms of 1) volume measurement of PET image, 2) accuracy of maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean), and 3) accuracy of total lesion glycoses (TLG). Statistical analysis was performed by using a two-tailed paired Student t-test and Pearson correlation test. Results The study population consisted of 16 patients (9 males and 7 females; mean age of 65) with a total number of 89 lesions. The SUVmax and SUVmean measurement of the gated PET images was more accurate than that of the ungated PET images, compared to the static reference images. An average of 21.48% (p < 0.001) reduction of the tumor volume was also observed. The SUVmax and SUVmean of the gated PET images were improved by 19.81% (p < 0.001) and 25.53% (p < 0.001), compared to the ungated PET images. Conclusions We have demonstrated the feasibility of implementing 4D PET/CT scan for liver malignancies in a prospective clinical study. The 4D PET/CT scan for liver malignancies could improve the quality of PET image by improving the SUV accuracy of the lesions and reducing image blurring. The improved accuracy in the classification and identification of liver tumors with 4D PET image would potentially lead to its increased utilization in target delineation of GTV, ITV, and PTV for liver radiotherapy treatment planning in the future.
Collapse
Affiliation(s)
- Anson H Y Cheung
- Department of Health Technology & Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China.,Radiotherapy and Oncology Department, Hong Kong Baptist Hospital, Hong Kong, Hong Kong SAR, China
| | - Vincent W C Wu
- Department of Health Technology & Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Andy L Y Cheung
- Department of Health Technology & Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China.,Department of Clinical Oncology, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Jing Cai
- Department of Health Technology & Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
10
|
Rogasch JMM, Hofheinz F, van Heek L, Voltin CA, Boellaard R, Kobe C. Influences on PET Quantification and Interpretation. Diagnostics (Basel) 2022; 12:451. [PMID: 35204542 PMCID: PMC8871060 DOI: 10.3390/diagnostics12020451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/06/2022] [Accepted: 02/08/2022] [Indexed: 01/21/2023] Open
Abstract
Various factors have been identified that influence quantitative accuracy and image interpretation in positron emission tomography (PET). Through the continuous introduction of new PET technology-both imaging hardware and reconstruction software-into clinical care, we now find ourselves in a transition period in which traditional and new technologies coexist. The effects on the clinical value of PET imaging and its interpretation in routine clinical practice require careful reevaluation. In this review, we provide a comprehensive summary of important factors influencing quantification and interpretation with a focus on recent developments in PET technology. Finally, we discuss the relationship between quantitative accuracy and subjective image interpretation.
Collapse
Affiliation(s)
- Julian M. M. Rogasch
- Department of Nuclear Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany;
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, 10178 Berlin, Germany
| | - Frank Hofheinz
- Institute of Radiopharmaceutical Cancer Research, Helmholtz Center Dresden-Rossendorf, 01328 Dresden, Germany;
| | - Lutz van Heek
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (L.v.H.); (C.-A.V.)
| | - Conrad-Amadeus Voltin
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (L.v.H.); (C.-A.V.)
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam (CCA), Amsterdam University Medical Center, Free University Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Carsten Kobe
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (L.v.H.); (C.-A.V.)
| |
Collapse
|
11
|
Yanlan Z, Xianfeng L, Lingjun H. Consideration of the target area of radiotherapy for lung cancer with 4DPET. PRECISION RADIATION ONCOLOGY 2021. [DOI: 10.1002/pro6.1131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Zhang Yanlan
- Radiotherapy Department The First Hospital of Shanxi Medical University Taiyuan 030000 China
| | - Li Xianfeng
- Radiotherapy Department The First Hospital of Shanxi Medical University Taiyuan 030000 China
| | - Hu Lingjun
- Radiotherapy Department The First Hospital of Shanxi Medical University Taiyuan 030000 China
| |
Collapse
|
12
|
Crivellaro C, Guerra L. Respiratory Gating and the Performance of PET/CT in Pulmonary Lesions. Curr Radiopharm 2021; 13:218-227. [PMID: 32183685 PMCID: PMC8206192 DOI: 10.2174/1874471013666200317144629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/29/2019] [Accepted: 07/17/2019] [Indexed: 12/15/2022]
Abstract
Background Motion artifacts related to the patient’s breathing can be the cause of underestimation of the lesion uptake and can lead to missing of small lung lesions. The respiratory gating (RG) technology has demonstrated a significant increase in image quality. Objective The aim of this paper was to evaluate the advantages of RG technique on PET/CT performance in lung lesions. The impact of 4D-PET/CT on diagnosis (metabolic characterization), staging and re-staging lung cancer was also assessed, including its application for radiotherapy planning. Finally, new technologies for respiratory motion management were also discussed. Methods A comprehensive electronic search of the literature was performed by using Medline database (PubMed) searching “PET/CT”, “gated” and “lung”. Original articles, review articles, and editorials published in the last 10 years were selected, included and critically reviewed in order to select relevant articles. Results Many papers compared Standardized Uptake Value (SUV) in gated and ungated PET studies showing an increase in SUV of gated images, particularly for the small lesions located in medium and lower lung. In addition, other features as Metabolic Tumor Volume (MTV), Total Lesion Glycolysis (TLG) and textural-features presented differences when obtained from gated and ungated PET acquisitions. Besides the increase in quantification, gating techniques can determine an increase in the diagnostic accuracy of PET/CT. Gated PET/CT was evaluated for lung cancer staging, therapy response assessment and for radiation therapy planning. Conclusion New technologies able to track the motion of organs lesion directly from raw PET data, can reduce or definitively solve problems (i.e.: extended acquisition time, radiation exposure) currently limiting the use of gated PET/CT in clinical routine.
Collapse
Affiliation(s)
- Cinzia Crivellaro
- School of Medicine and Surgery - University of Milan - Bicocca, Milan, Italy
| | - Luca Guerra
- School of Medicine and Surgery - University of Milan - Bicocca, Milan, Italy,Nuclear Medicine Department, ASST- Monza, San Gerardo Hospital, Monza, Italy
| |
Collapse
|
13
|
Thomas MA, Pan T. Data-driven gated PET/CT: implications for lesion segmentation and quantitation. EJNMMI Phys 2021; 8:64. [PMID: 34453630 PMCID: PMC8403089 DOI: 10.1186/s40658-021-00411-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/16/2021] [Indexed: 12/27/2022] Open
Abstract
Background Data-driven gating (DDG) can improve PET quantitation and alleviate many issues with patient motion. However, misregistration between DDG-PET and CT may occur due to the distinct temporal resolutions of PET and CT and can be mitigated by DDG-CT. Here, the effects of misregistration and respiratory motion on PET quantitation and lesion segmentation were assessed with a new DDG-PET/CT method. Methods A low-dose cine-CT was acquired in misregistered regions to enable both average CT (ACT) and DDG-CT. The following were compared: (1) baseline PET/CT, (2) PET/ACT (attenuation correction, AC = ACT), (3) DDG-PET (AC = helical CT), and (4) DDG-PET/CT (AC = DDG-CT). For DDG-PET, end-expiration (EE) data were derived from 50% of the total PET data at 30% from end-inspiration. For DDG-CT, EE phase CT data were extracted from cine-CT data by lung Hounsfield unit (HU) value and body contour. A total of 91 lesions from 16 consecutive patients were assessed for changes in standard uptake value (SUV), lesion glycolysis (LG), lesion volume, centroid-to-centroid distance (CCD), and DICE coefficients. Results Relative to baseline PET/CT, median changes in SUVmax ± σ for all 91 lesions were 20 ± 43%, 26 ± 23%, and 66 ± 66%, respectively, for PET/ACT, DDG-PET, and DDG-PET/CT. Median changes in lesion volume were 0 ± 58%, − 36 ± 26%, and − 26 ± 40%. LG for individual lesions increased for PET/ACT and decreased for DDG-PET, but was not different for DDG-PET/CT. Changes in mean HU from baseline PET/CT were dramatic for most lesions in both PET/ACT and DDG-PET/CT, especially for lesions with mean HU < 0 at baseline. CCD and DICE were both affected more by motion correction with DDG-PET than improved registration with ACT or DDG-CT. Conclusion As misregistration becomes more prominent, the impact of motion correction with DDG-PET is diminished. The potential benefits of DDG-PET toward accurate lesion segmentation and quantitation could only be fully realized when combined with DDG-CT. These results impress upon the necessity of ensuring both misregistration and motion correction are accounted for together to optimize the clinical utility of PET/CT. Supplementary Information The online version contains supplementary material available at 10.1186/s40658-021-00411-5.
Collapse
Affiliation(s)
- M Allan Thomas
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Tinsu Pan
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
14
|
Hwang D, Kang SK, Kim KY, Choi H, Seo S, Lee JS. Data-driven respiratory phase-matched PET attenuation correction without CT. Phys Med Biol 2021; 66. [PMID: 33910170 DOI: 10.1088/1361-6560/abfc8f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 04/28/2021] [Indexed: 12/20/2022]
Abstract
We propose a deep learning-based data-driven respiratory phase-matched gated-PET attenuation correction (AC) method that does not need a gated-CT. The proposed method is a multi-step process that consists of data-driven respiratory gating, gated attenuation map estimation using maximum-likelihood reconstruction of attenuation and activity (MLAA) algorithm, and enhancement of the gated attenuation maps using convolutional neural network (CNN). The gated MLAA attenuation maps enhanced by the CNN allowed for the phase-matched AC of gated-PET images. We conducted a non-rigid registration of the gated-PET images to generate motion-free PET images. We trained the CNN by conducting a 3D patch-based learning with 80 oncologic whole-body18F-fluorodeoxyglucose (18F-FDG) PET/CT scan data and applied it to seven regional PET/CT scans that cover the lower lung and upper liver. We investigated the impact of the proposed respiratory phase-matched AC of PET without utilizing CT on tumor size and standard uptake value (SUV) assessment, and PET image quality (%STD). The attenuation corrected gated and motion-free PET images generated using the proposed method yielded sharper organ boundaries and better noise characteristics than conventional gated and ungated PET images. A banana artifact observed in a phase-mismatched CT-based AC was not observed in the proposed approach. By employing the proposed method, the size of tumor was reduced by 12.3% and SUV90%was increased by 13.3% in tumors with larger movements than 5 mm. %STD of liver uptake was reduced by 11.1%. The deep learning-based data-driven respiratory phase-matched AC method improved the PET image quality and reduced the motion artifacts.
Collapse
Affiliation(s)
- Donghwi Hwang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Kwan Kang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyeong Yun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hongyoon Choi
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seongho Seo
- Department of Electronic Engineering, Pai Chai University, Daejeon, Republic of Korea
| | - Jae Sung Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
15
|
Wu Z, Guo B, Huang B, Hao X, Wu P, Zhao B, Qin Z, Xie J, Li S. Phantom and clinical assessment of small pulmonary nodules using Q.Clear reconstruction on a silicon-photomultiplier-based time-of-flight PET/CT system. Sci Rep 2021; 11:10328. [PMID: 33990659 PMCID: PMC8121798 DOI: 10.1038/s41598-021-89725-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/01/2021] [Indexed: 11/09/2022] Open
Abstract
To evaluate the quantification accuracy of different positron emission tomography-computed tomography (PET/CT) reconstruction algorithms, we measured the recovery coefficient (RC) and contrast recovery (CR) in phantom studies. The results played a guiding role in the partial-volume-effect correction (PVC) for following clinical evaluations. The PET images were reconstructed with four different methods: ordered subsets expectation maximization (OSEM), OSEM with time-of-flight (TOF), OSEM with TOF and point spread function (PSF), and Bayesian penalized likelihood (BPL, known as Q.Clear in the PET/CT of GE Healthcare). In clinical studies, SUVmax and SUVmean (the maximum and mean of the standardized uptake values, SUVs) of 75 small pulmonary nodules (sub-centimeter group: < 10 mm and medium-size group: 10-25 mm) were measured from 26 patients. Results show that Q.Clear produced higher RC and CR values, which can improve quantification accuracy compared with other methods (P < 0.05), except for the RC of 37 mm sphere (P > 0.05). The SUVs of sub-centimeter fludeoxyglucose (FDG)-avid pulmonary nodules with Q.Clear illustrated highly significant differences from those reconstructed with other algorithms (P < 0.001). After performing the PVC, highly significant differences (P < 0.001) still existed in the SUVmean measured by Q.Clear comparing with those measured by the other algorithms. Our results suggest that the Q.Clear reconstruction algorithm improved the quantification accuracy towards the true uptake, which potentially promotes the diagnostic confidence and treatment response evaluations with PET/CT imaging, especially for the sub-centimeter pulmonary nodules. For small lesions, PVC is essential.
Collapse
Affiliation(s)
- Zhifang Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, No. 85 South Jiefang Road, Taiyuan, 030001, Shanxi, People's Republic of China.,Molecular Imaging Precision Medical Collaborative Innovation Center, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Binwei Guo
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, No. 85 South Jiefang Road, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Bin Huang
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, No. 85 South Jiefang Road, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Xinzhong Hao
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, No. 85 South Jiefang Road, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Ping Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, No. 85 South Jiefang Road, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Bin Zhao
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, No. 85 South Jiefang Road, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Zhixing Qin
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, No. 85 South Jiefang Road, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Sijin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, No. 85 South Jiefang Road, Taiyuan, 030001, Shanxi, People's Republic of China. .,Molecular Imaging Precision Medical Collaborative Innovation Center, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China.
| |
Collapse
|
16
|
Prone position [ 18F]FDG PET/CT to reduce respiratory motion artefacts in the evaluation of lung nodules. Eur Radiol 2021; 31:4606-4614. [PMID: 33852046 DOI: 10.1007/s00330-021-07894-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/09/2021] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES 2-Deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron-emission tomography/computed tomography (PET/CT) is widely used to evaluate lung nodules, although respiratory motion artefacts may occur. We investigated the value of prone position PET/CT (pPET/CT) in lung nodule evaluation compared with standard supine position PET/CT (sPET/CT). METHODS We retrospectively reviewed 28 consecutive patients (20 men; age, 65.6 ± 12.1 years) with a lung nodule (size, 16.8 ± 5.5 mm) located below the sub-carinal level who underwent [18F]FDG PET/CT in a standard supine position and additional prone position. The maximum standardised uptake value (SUVmax), metabolic tumour volume (MTV), difference of diaphragm position between PET and CT (DDP), Dice's similarity coefficient (DSC) and occurrence of mis-registration were analysed. The [18F]FDG uptake of 20 biopsy-confirmed (15 malignant) nodules was evaluated visually. RESULTS pPET/CT yielded a significantly higher SUVmax, lower MTV and shorter DDP than with sPET/CT (p = 0.043, 0.007 and 0.021, respectively). Mis-registration occurred in 53.6% of cases in sPET/CT and in 28.6% of cases in pPET/CT (p = 0.092). Among the 15 patients with mis-registration in sPET/CT, 10 patients (66.7%) did not show mis-registration in pPET/CT. DSC was higher in pPET/CT than in sPET/CT in 18 out of 28 patients (64.3%). In visual analysis, malignant nodules exhibited a higher [18F]FDG uptake positivity than benign nodules in pPET/CT (93.3% vs. 40.0%, p = 0.032) but not in sPET/CT (80.0% vs. 40.0%, p = 0.131). CONCLUSIONS pPET/CT reduces respiratory motion artefact and enables more-precise measurements of PET parameters. KEY POINTS • In prone position PET/CT, the decrease in the blurring effect caused by reduced respiratory motion resulted in a higher SUVmax and lower MTV in lung nodules than that with supine position PET/CT. • Prone position PET/CT was useful to interpret correctly malignant lung nodules as being positive in individual cases that had a negative result in supine position PET/CT.
Collapse
|
17
|
New Data-Driven Gated PET/CT Free of Misregistration Artifacts. Int J Radiat Oncol Biol Phys 2021; 109:1638-1646. [PMID: 33186619 DOI: 10.1016/j.ijrobp.2020.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE We developed a new data-driven gated (DDG) positron emission tomography (PET)/computed tomography (CT) to improve the registration of CT and DDG PET. METHODS We acquired 10 repeat PET/CT and 35 cine CT scans for the mitigation of misregistration between CT and PET data. We also derived end-expiration phase CT as DDG CT for attenuation correction of DDG PET. Radiation exposure, body mass index (BMI), scan coverage, and effective radiation dose were compared between repeat PET/CT and cine CT. Of the 35 cine CT patients, 14 (capturing 59 total tumors) were compared among average PET/CT (baseline PET attenuation correction by average CT), DDG PET (DDG PET attenuation correction by baseline CT), and DDG PET/CT (DDG PET attenuation correction by DDG CT) for registration and quantification without increasing the scan time for DDG PET. RESULTS Compared with repeat PET/CT, cine CT had significantly lower scan coverage (32.5 ± 11.5 cm vs 15.4 ± 4.7 cm; P < .001) and effective radiation dose (3.7 ± 2.6 mSv vs 1.3 ± 0.6 mSv; P < .01). Repeat PET/CT and cine CT did not differ significantly in BMI or radiation exposure (P > .1). Cine CT saved the scan time for not needing a repeat PET. The SUV ratios of average PET/CT, DDG PET, and DDG PET/CT to baseline PET/CT were 1.14 ± 0.28, 1.28 ± 0.20, and 1.63 ± 0.64, respectively (P < .0001), suggesting that the SUVmax increased consecutively from baseline PET/CT to average PET/CT, DDG PET, and DDG PET/CT. Motion correction with DDG PET had a larger impact on quantification than registration improvement with average CT did. The biggest improvement in quantification was from DDG PET/CT, in which both registration was improved and motion was mitigated. CONCLUSION Our new DDG PET/CT approach alleviates misregistration artifacts and, compared with DDG PET, improves quantification and registration. The use of cine CT in our DDG PET/CT method also reduces the effective radiation dose and scan coverage compared with repeat CT.
Collapse
|
18
|
Kang SY, Moon BS, Kim HO, Yoon HJ, Kim BS. The impact of data-driven respiratory gating in clinical F-18 FDG PET/CT: comparison of free breathing and deep-expiration breath-hold CT protocol. Ann Nucl Med 2021; 35:328-337. [PMID: 33449303 DOI: 10.1007/s12149-020-01574-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/09/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Respiratory motion can diminish PET image quality and lead to inaccurate lesion quantifications. Data-driven gating (DDG) was recently introduced as an effective respiratory gating technique for PET. In the current study, we investigated the clinical impact of DDG on respiratory movement in 18F-FDG PET/CT. METHOD PET list-mode data were collected for each subject and DDG software was utilized for extracting respiratory waveforms. PET images was reconstructed using Q.clear and Q.clear + DDG, respectively. We evaluated SUVmax, SUVmean, the coefficient of variance (CoV), metabolic tumor volume (MTV), and tumor heterogeneity using the area under the curve of cumulative SUV histogram (AUC-CSH). Metabolic parameter changes were compared between each reconstruction method. The Deep-Expiration Breath Hold (DEBH) protocol was introduced for CT scans to correct spatial misalignment between PET and CT and compared with conventional free breathing. The DEBH and free breathing (FB) protocol comparison was made in a separate matching cohort using propensity core matching rather than the same patient. RESULTS Total 147 PET/CT scans with excessive respiratory movements were used to study DDG-mediated correction. After DDG application, SUVmax (P < 0.0001; 8.15 ± 4.77 vs. 9.03 ± 5.02) and SUVmean (P < 0.0001; 4.91 ± 2.44 vs. 5.49 ± 2.68) of lung and upper abdomen lesions increased, while MTV significantly decreased (P < 0.0001; 7.07 ± 15.46 vs. 6.58 ± 15.14). In addition, the percent change of SUVs was greater in lower lung lesions compared to upper lobe lesions. Likewise, the MTV reduction was significantly greater in lower lobe lesions. No significant difference dependent on location was observed in liver lesions. DEBH-mediated CT breathing correction did not make a significant difference in lesion metabolic parameters compared to conventional free breathing. CONCLUSIONS These results suggest that DDG correction enables more corrected quantification from respiratory movements for lesions located in the lung and upper abdomen. Therefore, we suggest that DDG is worth using as a standard protocol during 18F-FDG PET/CT imaging.
Collapse
Affiliation(s)
- Seo Young Kang
- Department of Nuclear Medicine, College of Medicine, Ewha Womans University Medical Center, (07804) 260, Gonghang-daero, Gangseo-gu, Seoul, Republic of Korea
| | - Byung Seok Moon
- Department of Nuclear Medicine, College of Medicine, Ewha Womans University Medical Center, (07804) 260, Gonghang-daero, Gangseo-gu, Seoul, Republic of Korea
| | - Hye Ok Kim
- Department of Nuclear Medicine, College of Medicine, Ewha Womans University Medical Center, (07804) 260, Gonghang-daero, Gangseo-gu, Seoul, Republic of Korea
| | - Hai-Jeon Yoon
- Department of Nuclear Medicine, College of Medicine, Ewha Womans University Medical Center, (07804) 260, Gonghang-daero, Gangseo-gu, Seoul, Republic of Korea
| | - Bom Sahn Kim
- Department of Nuclear Medicine, College of Medicine, Ewha Womans University Medical Center, (07804) 260, Gonghang-daero, Gangseo-gu, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Büther F, Jones J, Seifert R, Stegger L, Schleyer P, Schäfers M. Clinical Evaluation of a Data-Driven Respiratory Gating Algorithm for Whole-Body PET with Continuous Bed Motion. J Nucl Med 2020; 61:1520-1527. [PMID: 32060218 DOI: 10.2967/jnumed.119.235770] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
Respiratory gating is the standard to prevent respiration effects from degrading image quality in PET. Data-driven gating (DDG) using signals derived from PET raw data is a promising alternative to gating approaches requiring additional hardware (e.g., pressure-sensitive belt gating [BG]). However, continuous-bed-motion (CBM) scans require dedicated DDG approaches for axially extended PET, compared with DDG for conventional step-and-shoot scans. In this study, a CBM-capable DDG algorithm was investigated in a clinical cohort and compared with BG using optimally gated (OG) and fully motion-corrected (elastic motion correction [EMOCO]) reconstructions. Methods: Fifty-six patients with suspected malignancies in the thorax or abdomen underwent whole-body 18F-FDG CBM PET/CT using DDG and BG. Correlation analyses were performed on both gating signals. Besides static reconstructions, OG and EMOCO reconstructions were used for BG and DDG. The metabolic volume, SUVmax, and SUVmean of lesions were compared among the reconstructions. Additionally, the quality of lesion delineation in the different PET reconstructions was independently evaluated by 3 experts. Results: The global correlation coefficient between BG and DDG signals was 0.48 ± 0.11, peaking at 0.89 ± 0.07 when scanning the kidney and liver region. In total, 196 lesions were analyzed. SUV measurements were significantly higher in BG-OG, DDG-OG, BG-EMOCO, and DDG-EMOCO than in static images (P < 0.001; median SUVmax: static, 14.3 ± 13.4; BG-EMOCO, 19.8 ± 15.7; DDG-EMOCO, 20.5 ± 15.6; BG-OG, 19.6 ± 17.1; and DDG-OG, 18.9 ± 16.6). No significant differences between BG-OG and DDG-OG or between BG-EMOCO and DDG-EMOCO were found. Visual lesion delineation was significantly better in BG-EMOCO and DDG-EMOCO than in static reconstructions (P < 0.001); no significant difference was found when comparing BG and DDG for either EMOCO or OG reconstruction. Conclusion: DDG-based motion compensation of CBM PET acquisitions outperforms static reconstructions, delivering qualities comparable to BG approaches. The new algorithm may be a valuable alternative for CBM PET systems.
Collapse
Affiliation(s)
- Florian Büther
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | | | - Robert Seifert
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Lars Stegger
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | | | - Michael Schäfers
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany.,European Institute for Molecular Imaging, University of Münster, Münster, Germany
| |
Collapse
|
20
|
Laudicella R, Baratto L, Minutoli F, Baldari S, Iagaru A. Malignant Cutaneous Melanoma: Updates in PET Imaging. Curr Radiopharm 2020; 13:14-23. [PMID: 31749439 DOI: 10.2174/1874471012666191015095550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/20/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cutaneous malignant melanoma is a neoplasm whose incidence and mortality are dramatically increasing. 18F-FDG PET/CT gained clinical acceptance over the past 2 decades in the evaluation of several glucose-avid neoplasms, including malignant melanoma, particularly for the assessment for distant metastases, recurrence and response to therapy. OBJECTIVE To describe the advancements of nuclear medicine for imaging melanoma with particular attention to 18F-FDG-PET and its current state-of-the-art technical innovations. METHODS A comprehensive search strategy was used based on SCOPUS and PubMed databases. From all studies published in English, we selected the articles that evaluated the technological insights of 18FFDG- PET in the assessment of melanoma. RESULTS State-of-the-art silicon photomultipliers based detectors ("digital") PET/CT scanners are nowadays more common, showing technical innovations that may have beneficial implications for patients with melanoma. Steady improvements in detectors design and architecture, as well as the implementation of both software and hardware technology (i.e., TOF, point spread function, etc.), resulted in significant improvements in PET image quality while reducing radiotracer dose and scanning time. CONCLUSION Recently introduced digital PET detector technology in PET/CT and PET/MRI yields higher intrinsic system sensitivity compared with the latest generation analog technology, enabling the detection of very small lesions with potential impact on disease outcome.
Collapse
Affiliation(s)
- Riccardo Laudicella
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, Messina ME, Italy
| | - Lucia Baratto
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, United States
| | - Fabio Minutoli
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, Messina ME, Italy
| | - Sergio Baldari
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, Messina ME, Italy
| | - Andrei Iagaru
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, United States
| |
Collapse
|
21
|
Kuttner S, Lassen ML, Øen SK, Sundset R, Beyer T, Eikenes L. Quantitative PET/MR imaging of lung cancer in the presence of artifacts in the MR-based attenuation correction maps. Acta Radiol 2020; 61:11-20. [PMID: 31091969 DOI: 10.1177/0284185119848118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Positron emission tomography (PET)/magnetic resonance (MR) imaging may become increasingly important for assessing tumor therapy response. A prerequisite for quantitative PET/MR imaging is reliable and repeatable MR-based attenuation correction (AC). Purpose To investigate the frequency and test–retest reproducibility of artifacts in MR-AC maps in a lung cancer patient cohort and to study the impact of artifact corrections on PET-based tumor quantification. Material and Methods Twenty-five lung cancer patients underwent single-day, test–retest, 18F-fluorodeoxyglucose (FDG) PET/MR imaging. The acquired MR-AC maps were inspected for truncation, susceptibility, and tissue inversion artifacts. An anatomy-based bone template and a PET-based estimation of truncated arms were employed, while susceptibility artifacts were corrected manually. We report the frequencies of artifacts and the relative difference (RD) on standardized uptake value (SUV) based quantification in PET images reconstructed with the corrected AC maps. Results Truncation artifacts were found in all 50 acquisitions (100%), while susceptibility and tissue inversion artifacts were observed in six (12%) and 26 (52%) of the scans, respectively. The RD in lung tumor SUV was < 5% from bone and truncation corrections, while up to 20% RD was introduced after susceptibility artifact correction, with large inconsistencies between test–retest scans. Conclusion The absence of bone and truncation artifacts have limited effect on the PET quantification of lung lesions. In contrast, susceptibility artifacts caused significant and inconsistent underestimations of the lung tumor SUVs, between test–retest scans. This may have clinical implications for patients undergoing serial imaging for tumor therapy response assessment.
Collapse
Affiliation(s)
- Samuel Kuttner
- Nuclear Medicine and Radiation Biology Research Group, Department of Clinical Medicine, University of Tromsø - The Arctic University of Norway, Norway
- The PET Imaging Center, University Hospital of North Norway, Norway
| | - Martin Lyngby Lassen
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
- Cedars-Sinai Medical Center, Los Angeles, California
| | - Silje Kjærnes Øen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Norway
| | - Rune Sundset
- Nuclear Medicine and Radiation Biology Research Group, Department of Clinical Medicine, University of Tromsø - The Arctic University of Norway, Norway
- The PET Imaging Center, University Hospital of North Norway, Norway
| | - Thomas Beyer
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Live Eikenes
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Norway
| |
Collapse
|
22
|
Evaluation and Optimization of a New PET Reconstruction Algorithm, Bayesian Penalized Likelihood Reconstruction, for Lung Cancer Assessment According to Lesion Size. AJR Am J Roentgenol 2019; 213:W50-W56. [PMID: 30995096 DOI: 10.2214/ajr.18.20478] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE. The purpose of this study was to characterize the Bayesian penalized likelihood (BPL) reconstruction algorithm in comparison with an ordered subset expectation maximization (OSEM) reconstruction algorithm and to determine its optimal penalization factor (expressed as a beta value) for clinical use. MATERIALS AND METHODS. FDG PET/CT scans of 46 patients with lung cancer were reconstructed using OSEM and BPL with beta values of 200, 300, 400, 500, and 1000. The liver signal-to-noise ratio, mean standardized uptake value (SUVmean) of the liver, and maximum standardized uptake value (SUVmax) and SUVmean of the cancers were measured. Tumors were categorized into three size groups, and the percentage difference in the tumor SUVmax between OSEM and BPL with a beta value of 200 as well as the percentage difference in the SUVmax between BPL with a beta value of 200 and BPL with a beta value of 1000 were calculated. Image quality was assessed by visual scoring. RESULTS. BPL showed a significantly higher liver signal-to-noise ratio than OSEM, except for BPL with a beta value of 200. The liver SUVmean showed no statistical difference among all algorithms. The SUVmax and SUVmean of tumors decreased as the beta value increased. BPL with a beta value of 200 produced a significantly higher tumor SUVmax than did OSEM (p < 0.01), and BPL with a beta value of 400, 500, or 1000 produced a significantly lower tumor SUVmax than did OSEM (p < 0.01). Visual analysis showed the highest and lowest scores for BPL with beta values of 500 and 200, respectively. In the small size group, the percentage difference in the SUVmax between OSEM and BPL with a beta value of 200 and the percentage difference in the SUVmax between BPL with a beta value of 200 and BPL with a beta value of 1000 were significantly larger than that in the other size groups (p < 0.01). CONCLUSION. The BPL algorithm improves image quality without compromising image quantification. A beta value of 500 appeared to be optimal in this study. Smaller tumors were more influenced by BPL.
Collapse
|
23
|
Boada FE, Koesters T, Block KT, Chandarana H. Improved Detection of Small Pulmonary Nodules Through Simultaneous MR/PET Imaging. PET Clin 2018; 13:89-95. [PMID: 29157389 DOI: 10.1016/j.cpet.2017.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Magnetic resonance (MR)/PET scanners provide an imaging platform that enables simultaneous acquisition of MR and PET data in perfect spatial and temporal registration. This feature allows improving image quality for the MR and PET images obtained during the course of an examination. In this work the authors demonstrate the use of prospective MR-based motion tracking information for removing motion blur in MR/PET images of small pulmonary nodules. The theoretical basis for the algorithms is presented alongside clinical examples of its use.
Collapse
Affiliation(s)
- Fernando E Boada
- Department of Radiology, Center for Advanced Imaging Innovation and Research, New York University Langone Medical Center, 660 First Avenue, New York, NY 10016, USA.
| | - Thomas Koesters
- Department of Radiology, Center for Advanced Imaging Innovation and Research, New York University Langone Medical Center, 660 First Avenue, New York, NY 10016, USA
| | - Kai Tobias Block
- Department of Radiology, Center for Advanced Imaging Innovation and Research, New York University Langone Medical Center, 660 First Avenue, New York, NY 10016, USA
| | - Hersh Chandarana
- Department of Radiology, Center for Advanced Imaging Innovation and Research, New York University Langone Medical Center, 660 First Avenue, New York, NY 10016, USA
| |
Collapse
|
24
|
Usefulness of Respiratory-Gated 18F-FDG PET/CT in Detecting Upper Abdominal Fever Focus. Nucl Med Mol Imaging 2018; 52:380-383. [PMID: 30344787 DOI: 10.1007/s13139-018-0534-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/18/2018] [Accepted: 07/09/2018] [Indexed: 10/28/2022] Open
Abstract
Respiratory-gated 18F-fluorodeoxygluocse (18F-FDG) PET/CT has been successfully used to better localize malignancies in the lung or upper abdominal organs. However, clinical usefulness of respiratory-gated 18F-FDG PET/CT in detection of fever focus has not been reported yet. A 68-year-old male patient with a history of living donor liver transplantation and biliary stenting was referred for 18F-FDG PET/CT due to fever of unknown origin (FUO). To find the accurate fever focus, respiratory-gated and non-gated 18F-FDG PET/CT was performed. Respiratory-gated PET/CT readily revealed prominent hypermetabolic lesion in the distal common bile duct (CBD) area where previous surgical graft was in situ. Maximum standardized uptake value (SUVmax) and SUV ratio (SUR) were greater in the gated PET/CT (SUVmax 5.4 and SUR 3.5) than in the non-gated PET/CT (SUVmax 4.6 and SUR 3.0). Fever dramatically subsided after removal of the graft in the CBD. This case report implies that respiratory-gated 18F-FDG PET/CT can visualize upper abdominal fever focus with better contrast than the conventional non-gated method.
Collapse
|
25
|
Gkika E, Oehlke O, Bunea H, Wiedenmann N, Adebahr S, Nestle U, Zamboglou C, Kirste S, Fennell J, Brunner T, Gainey M, Baltas D, Langer M, Urbach H, Bock M, Meyer PT, Grosu AL. Biological imaging for individualized therapy in radiation oncology: part II medical and clinical aspects. Future Oncol 2018. [DOI: 10.2217/fon-2017-0465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Positron emission tomography and multiparametric MRI provide crucial information concerning tumor extent and normal tissue anatomy. Moreover, they are able to visualize biological characteristics of the tumor, which can be considered in the radiation treatment planning and monitoring. In this review we discuss the impact of biological imaging positron emission tomography and multiparametric MRI for radiation oncology, based on the data of the literature and on the experience of our own institution in this field.
Collapse
Affiliation(s)
- Eleni Gkika
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Oliver Oehlke
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Hatice Bunea
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Nicole Wiedenmann
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Sonja Adebahr
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Ursula Nestle
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Constantinos Zamboglou
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Simon Kirste
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Jamina Fennell
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Thomas Brunner
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Mark Gainey
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Dimos Baltas
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Mathias Langer
- Department of Radiology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
| | - Michael Bock
- Department of Radiology – Medical Physics, Department of Radiology, Faculty of Medicine, Medical Center, University of Freiburg, D-79106, Germany
| | - Philipp T Meyer
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
- Department of Nuclear Medicine, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| |
Collapse
|
26
|
Robin P, Bourhis D, Bernard B, Abgral R, Querellou S, Le Duc-Pennec A, Le Roux PY, Salaün PY. Feasibility of Systematic Respiratory-Gated Acquisition in Unselected Patients Referred for 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography. Front Med (Lausanne) 2018. [PMID: 29516001 PMCID: PMC5826069 DOI: 10.3389/fmed.2018.00036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objective Respiratory motion in 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) induces blurred images, leading to errors in location and quantification for lung and abdominal lesions. Various methods have been developed to correct for these artifacts, and most of current PET/CT scanners are equipped with a respiratory gating system. However, they are not routinely performed because their use is time-consuming. The aim of this study is to assess the feasibility and quantitative impact of a systematic respiratory-gated acquisition in unselected patients referred for FDG PET/CT, without increasing acquisition time. Methods Patients referred for a FDG PET/CT examination to the nuclear medicine department of Brest University Hospital were consecutively enrolled, during a 3-month period. Cases presenting lung or liver uptakes were analyzed. Two sets of images were reconstructed from data recorded during a unique acquisition with a continuous table speed of 1 mm/s of the used Biograph mCT Flow PET/CT scanner: standard free-breathing images, and respiratory-gated images. Lesion location and quantitative parameters were recorded and compared. Results From October 1 2015 to December 31 2015, 847 patients were referred for FDG PET/CT, 741 underwent a respiratory-gated acquisition. Out of them, 213 (29%) had one or more lung or liver uptake but 82 (38%) had no usable respiratory-gated signal. Accordingly, 131 (62%) patients with 183 lung or liver uptakes were analyzed. Considering the 183 lesions, 140 and 43 were located in the lungs and the liver, respectively. The median (IQR) difference between respiratory-gated images and non-gated images was 18% (4−32) for SUVmax, increasing to 30% (14−57) in lower lobes for lung lesions, and −18% (−40 to −4) for MTV (p < 0.05). Technologists’ active personal dosimetry and mean total examinations duration were not statistically different between periods with and without respiratory gating. Conclusion This study showed that a systematic respiratory-gated acquisition without increasing acquisition time is feasible in a daily routine and results in a significant impact on PET quantification. However, clinical impact on patient management remains to be determined.
Collapse
Affiliation(s)
- Philippe Robin
- Service de Médecine Nucléaire, EA 3878 (GETBO) IFR 148, Centre Hospitalier Régional et Universitaire de Brest, Université de Bretagne Occidentale, Brest, France
| | - David Bourhis
- Service de Médecine Nucléaire, EA 3878 (GETBO) IFR 148, Centre Hospitalier Régional et Universitaire de Brest, Université de Bretagne Occidentale, Brest, France
| | - Brieuc Bernard
- Service de Médecine Nucléaire, EA 3878 (GETBO) IFR 148, Centre Hospitalier Régional et Universitaire de Brest, Université de Bretagne Occidentale, Brest, France
| | - Ronan Abgral
- Service de Médecine Nucléaire, EA 3878 (GETBO) IFR 148, Centre Hospitalier Régional et Universitaire de Brest, Université de Bretagne Occidentale, Brest, France
| | - Solène Querellou
- Service de Médecine Nucléaire, EA 3878 (GETBO) IFR 148, Centre Hospitalier Régional et Universitaire de Brest, Université de Bretagne Occidentale, Brest, France
| | - Alexandra Le Duc-Pennec
- Service de Médecine Nucléaire, EA 3878 (GETBO) IFR 148, Centre Hospitalier Régional et Universitaire de Brest, Université de Bretagne Occidentale, Brest, France
| | - Pierre-Yves Le Roux
- Service de Médecine Nucléaire, EA 3878 (GETBO) IFR 148, Centre Hospitalier Régional et Universitaire de Brest, Université de Bretagne Occidentale, Brest, France
| | - Pierre-Yves Salaün
- Service de Médecine Nucléaire, EA 3878 (GETBO) IFR 148, Centre Hospitalier Régional et Universitaire de Brest, Université de Bretagne Occidentale, Brest, France
| |
Collapse
|
27
|
Frood R, McDermott G, Scarsbrook A. Respiratory-gated PET/CT for pulmonary lesion characterisation-promises and problems. Br J Radiol 2018; 91:20170640. [PMID: 29338327 DOI: 10.1259/bjr.20170640] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
2-deoxy-2-(18Fluorine)-fluoro-D-glucose (FDG) PET/CT is an integral part of lung carcinoma staging and frequently used in the assessment of solitary pulmonary nodules. However, a limitation of conventional three-dimensional PET/CT when imaging the thorax is its susceptibility to motion artefact, which blurs the signal from the lesion resulting in inaccurate representation of size and metabolic activity. Respiratory gated (four-dimensional) PET/CT aims to negate the effects of motion artefact and provide a more accurate interpretation of pulmonary nodules and lymphadenopathy. There have been recent advances in technology and a shift from traditional hardware to more streamlined software methods for respiratory gating which should allow more widespread use of respiratory-gating in the future. The purpose of this article is to review the evidence surrounding four-dimensional PET/CT in pulmonary lesion characterisation.
Collapse
Affiliation(s)
- Russell Frood
- 1 Department of Nuclear Medicine, Leeds Teaching Hospitals NHS Trust , Leeds , United Kingdom
| | - Garry McDermott
- 2 Department of Medical Physics & Engineering, Leeds Teaching Hospitals NHS Trust , Leeds , United Kingdom
| | - Andrew Scarsbrook
- 1 Department of Nuclear Medicine, Leeds Teaching Hospitals NHS Trust , Leeds , United Kingdom.,3 Leeds Institute of Cancer and Pathology, University of Leeds , Leeds , United Kingdom
| |
Collapse
|
28
|
Frood R, Prestwich R, Tsoumpas C, Murray P, Franks K, Scarsbrook A. Effectiveness of Respiratory-gated Positron Emission Tomography/Computed Tomography for Radiotherapy Planning in Patients with Lung Carcinoma - A Systematic Review. Clin Oncol (R Coll Radiol) 2018; 30:225-232. [PMID: 29397271 DOI: 10.1016/j.clon.2018.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/25/2022]
Abstract
AIMS A systematic review of the literature evaluating the clinical use of respiratory-gated (four-dimensional; 4D) fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) compared with non-gated (three-dimensional; 3D) PET/CT for radiotherapy planning in lung cancer. MATERIALS AND METHODS A search of MEDLINE, Cochrane, Web of Science, SCOPUS and clinicaltrials.gov databases was undertaken for articles comparing 3D and 4D PET/CT tumour volume or 4D PET/CT for radiotherapy planning. PRISMA guidelines were followed. RESULTS Thirteen studies compared tumour volumes at 3D and 4D PET/CT; eight reported significantly smaller volumes (6.9-44.5%), three reported significantly larger volumes at 4D PET/CT (16-50%), one reported no significant difference and one reported mixed findings. Six studies, including two that reported differences in tumour volumes, compared target volumes or studied geographic misses. 4D PET/CT target volumes were significantly larger (19-40%) when compared with 3D PET/CT in all but one study, where they were smaller (3.8%). One study reported no significance in 4D PET/CT target volumes when compared with 4D CT, whereas another study reported significantly larger volumes (38.7%). CONCLUSION The use of 4D PET/CT leads to differences in target volume delineation compared with 3D PET/CT. These differences vary depending upon technique and the clinical impact currently remains uncertain. Correlation of pretreatment target volumes generated at 3D and 4D PET/CT with postsurgical histology would be ideal but technically challenging. Evaluation of patient outcomes based on 3D versus 4D PET/CT derived treatment volumes warrants further investigation.
Collapse
Affiliation(s)
- R Frood
- Department of Nuclear Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| | - R Prestwich
- Department of Clinical Oncology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - C Tsoumpas
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - P Murray
- Department of Clinical Oncology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - K Franks
- Department of Clinical Oncology, Leeds Teaching Hospitals NHS Trust, Leeds, UK; Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - A Scarsbrook
- Department of Nuclear Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK; Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| |
Collapse
|
29
|
Balamoutoff N, Serrano B, Hugonnet F, Garnier N, Paulmier B, Faraggi M. Added Value of a Single Fast 20-second Deep-Inspiration Breath-hold Acquisition in FDG PET/CT in the Assessment of Lung Nodules. Radiology 2018; 286:260-270. [DOI: 10.1148/radiol.2017160534] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Nicolas Balamoutoff
- From the Departments of Nuclear Medicine (N.B., F.H., B.P., M.F.) and Medical Radiophysics (B.S., N.G.), Centre Hospitalier Princesse Grâce, Monaco
| | - Benjamin Serrano
- From the Departments of Nuclear Medicine (N.B., F.H., B.P., M.F.) and Medical Radiophysics (B.S., N.G.), Centre Hospitalier Princesse Grâce, Monaco
| | - Florent Hugonnet
- From the Departments of Nuclear Medicine (N.B., F.H., B.P., M.F.) and Medical Radiophysics (B.S., N.G.), Centre Hospitalier Princesse Grâce, Monaco
| | - Nicolas Garnier
- From the Departments of Nuclear Medicine (N.B., F.H., B.P., M.F.) and Medical Radiophysics (B.S., N.G.), Centre Hospitalier Princesse Grâce, Monaco
| | - Benoît Paulmier
- From the Departments of Nuclear Medicine (N.B., F.H., B.P., M.F.) and Medical Radiophysics (B.S., N.G.), Centre Hospitalier Princesse Grâce, Monaco
| | - Marc Faraggi
- From the Departments of Nuclear Medicine (N.B., F.H., B.P., M.F.) and Medical Radiophysics (B.S., N.G.), Centre Hospitalier Princesse Grâce, Monaco
| |
Collapse
|
30
|
Crivellaro C, De Ponti E, Elisei F, Morzenti S, Picchio M, Bettinardi V, Versari A, Fioroni F, Dziuk M, Tkaczewski K, Ahond-Vionnet R, Nodari G, Todde S, Landoni C, Guerra L. Added diagnostic value of respiratory-gated 4D 18F-FDG PET/CT in the detection of liver lesions: a multicenter study. Eur J Nucl Med Mol Imaging 2017; 45:102-109. [PMID: 28825125 DOI: 10.1007/s00259-017-3795-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/26/2017] [Indexed: 11/30/2022]
Abstract
PURPOSE The aim of the present study was to evaluate the added diagnostic value of respiratory-gated 4D18F-FDG PET/CT in liver lesion detection and characterization in a European multicenter retrospective study. METHODS Fifty-six oncological patients (29 males and 27 females, mean age, 61.2 ± 11.2 years) from five European centers, submitted to standard 3D-PET/CT and liver 4D-PET/CT were retrospectively evaluated. Based on visual analysis, liver PET/CT findings were scored as positive, negative, or equivocal both in 3D and 4D PET/CT. The impact of 4D-PET/CT on the confidence in classifying liver lesions was assessed. PET/CT findings were compared to histology and clinical follow-up as standard reference and diagnostic accuracy was calculated for both techniques. At semi-quantitative analysis, SUVmax was calculated for each detected lesion in 3D and 4D-PET/CT. RESULTS Overall, 72 liver lesions were considered for the analysis. Based on visual analysis in 3D-PET/CT, 32/72 (44.4%) lesions were considered positive, 21/72 (29.2%) negative, and 19/72 (26.4%) equivocal, while in 4D-PET/CT 48/72 (66.7%) lesions were defined positive, 23/72 (31.9%) negative, and 1/72 (1.4%) equivocal. 4D-PET/CT findings increased the confidence in lesion definition in 37/72 lesions (51.4%). Considering 3D equivocal lesions as positive, sensitivity, specificity, and accuracy were 88.9, 70.0, and 83.1%, respectively, while the same figures were 67.7, 90.0, and 73.8% if 3D equivocal findings were included as negative. 4D-PET/CT sensitivity, specificity, and accuracy were 97.8, 90.0, and 95.4%, respectively, considering equivocal lesions as positive and 95.6, 90.0, and 93.8% considering equivocal lesions as negative. The SUVmax of the liver lesions in 4D-PET (mean ± SD, 6.9 ± 3.2) was significantly higher (p < 0.001) than SUVmax in 3D-PET (mean ± SD, 5.2 ± 2.3). CONCLUSIONS Respiratory-gated PET/CT technique is a valuable clinical tool in diagnosing liver lesions, reducing 3D undetermined findings, improving diagnostic accuracy, and confidence in reporting. 4D-PET/CT also improved the quantification of SUVmax of liver lesions.
Collapse
Affiliation(s)
- Cinzia Crivellaro
- Nuclear Medicine, San Gerardo Hospital, Monza, Italy. .,University of Milan-Bicocca, Milan, Italy.
| | | | | | | | - Maria Picchio
- Nuclear Medicine, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Annibale Versari
- Nuclear Medicine, Santa Maria Nuova Hospital IRCCS, Reggio Emilia, Italy
| | - Federica Fioroni
- Medical Physics, Santa Maria Nuova Hospital IRCCS, Reggio Emilia, Italy
| | | | | | - Renée Ahond-Vionnet
- Service de Médecine Nucléaire, Hôpital Pierre Beregovoy, Cedex, Nevers, France
| | - Guillaume Nodari
- Service de Médecine Nucléaire, Hôpital Pierre Beregovoy, Cedex, Nevers, France
| | - Sergio Todde
- Tecnomed Foundation, University of Milan-Bicocca, Monza, Italy
| | - Claudio Landoni
- Nuclear Medicine, San Gerardo Hospital, Monza, Italy.,University of Milan-Bicocca, Milan, Italy
| | - Luca Guerra
- Nuclear Medicine, San Gerardo Hospital, Monza, Italy.,University of Milan-Bicocca, Milan, Italy
| |
Collapse
|
31
|
Goo HW, Allmendinger T. Combined Electrocardiography- and Respiratory-Triggered CT of the Lung to Reduce Respiratory Misregistration Artifacts between Imaging Slabs in Free-Breathing Children: Initial Experience. Korean J Radiol 2017; 18:860-866. [PMID: 28860904 PMCID: PMC5552470 DOI: 10.3348/kjr.2017.18.5.860] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 03/12/2017] [Indexed: 11/16/2022] Open
Abstract
Objective Cardiac and respiratory motion artifacts degrade the image quality of lung CT in free-breathing children. The aim of this study was to evaluate the effect of combined electrocardiography (ECG) and respiratory triggering on respiratory misregistration artifacts on lung CT in free-breathing children. Materials and Methods In total, 15 children (median age 19 months, range 6 months–8 years; 7 boys), who underwent free-breathing ECG-triggered lung CT with and without respiratory-triggering were included. A pressure-sensing belt of a respiratory gating system was used to obtain the respiratory signal. The degree of respiratory misregistration artifacts between imaging slabs was graded on a 4-point scale (1, excellent image quality) on coronal and sagittal images and compared between ECG-triggered lung CT studies with and without respiratory triggering. A p value < 0.05 was considered significant. Results Lung CT with combined ECG and respiratory triggering showed significantly less respiratory misregistration artifacts than lung CT with ECG triggering only (1.1 ± 0.4 vs. 2.2 ± 1.0, p = 0.003). Conclusion Additional respiratory-triggering reduces respiratory misregistration artifacts on ECG-triggered lung CT in free-breathing children.
Collapse
Affiliation(s)
- Hyun Woo Goo
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Thomas Allmendinger
- Siemens Healthcare, GmbH, Computed Tomography Division, Forchheim 91301, Germany
| |
Collapse
|
32
|
Boada FE, Koesters T, Block KT, Chandarana H. Improved Detection of Small Pulmonary Nodules Through Simultaneous MR/PET Imaging. Magn Reson Imaging Clin N Am 2017; 25:273-279. [PMID: 28390528 DOI: 10.1016/j.mric.2016.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Magnetic resonance (MR)/PET scanners provide an imaging platform that enables simultaneous acquisition of MR and PET data in perfect spatial and temporal registration. This feature allows improving image quality for the MR and PET images obtained during the course of an examination. In this work the authors demonstrate the use of prospective MR-based motion tracking information for removing motion blur in MR/PET images of small pulmonary nodules. The theoretical basis for the algorithms is presented alongside clinical examples of its use.
Collapse
Affiliation(s)
- Fernando E Boada
- Department of Radiology, Center for Advanced Imaging Innovation and Research, New York University Langone Medical Center, 660 First Avenue, New York, NY 10016, USA.
| | - Thomas Koesters
- Department of Radiology, Center for Advanced Imaging Innovation and Research, New York University Langone Medical Center, 660 First Avenue, New York, NY 10016, USA
| | - Kai Tobias Block
- Department of Radiology, Center for Advanced Imaging Innovation and Research, New York University Langone Medical Center, 660 First Avenue, New York, NY 10016, USA
| | - Hersh Chandarana
- Department of Radiology, Center for Advanced Imaging Innovation and Research, New York University Langone Medical Center, 660 First Avenue, New York, NY 10016, USA
| |
Collapse
|
33
|
Bouyeure-Petit AC, Chastan M, Edet-Sanson A, Becker S, Thureau S, Houivet E, Vera P, Hapdey S. Clinical respiratory motion correction software (reconstruct, register and averaged-RRA), for 18F-FDG-PET-CT: phantom validation, practical implications and patient evaluation. Br J Radiol 2017; 90:20160549. [PMID: 27936893 DOI: 10.1259/bjr.20160549] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE On fluorine-18 fludeoxyglucose (18F-FDG) positron emission tomography (PET) CT of pulmonary or hepatic lesions, standard uptake value (SUV) is often underestimated due to patient breathing. The aim of this study is to validate, on phantom and patient data, a motion correction algorithm [reconstruct, register and averaged (RRA)] implemented on a PET-CT system. METHODS Three phantoms containing five spheres filled with 18F-FDG and suspended in a water or Styrofoam®18F-FDG-filled tank to create different contrasts and attenuation environment were acquired on a Discovery GE710. The spheres were animated with a 2-cm longitudinal respiratory-based movement. Respiratory-gated (RRA) and ungated PET images were compared with static reference images (without movement). The optimal acquisition time, number of phases and the best phase within the respiratory cycle were investigated. The impact of irregular motion was also investigated. Quantification impact was computed on each sphere. Quantification improvement on 28 lung lesions was also investigated. RESULTS Phantoms: 4 min was required to obtain a stable quantification with the RRA method. The reference phase and the number of phases used for RRA did not affect the quantification which was similar on static acquisitions but different on ungated images. The results showed that the maximum standard uptake value (SUVmax) restoration is majored for the smallest spheres (≤2.1 ml). PATIENTS SUVmax on RRA and ungated acquisitions were statistically different to the SUVmax on whole-body images (p = 0.05) but not different from each other (mean SUVmax: 7.0 ± 7.8 vs 6.9 ± 7.8, p = 0.23 on RRA and ungated images, respectively). We observed a statistically significant correlation between SUV restoration and lesion displacement, with a real SUV quantitation improvement for lesion with movement >1.2 mm. CONCLUSION According to the results obtained using phantoms, RRA method is promising, showing a real impact on the lesion quantification on phantom data. With regard to the patient study, our results showed a trend towards an increase in the SUVs and a decrease in the volume between the ungated and RRA data. We also noticed a statistically significant correlation between the quantitative restoration obtained with RRA compared with ungated data and lesion displacement, indicating that the RRA approach should be reserved to patients with small lesions or nodes moving with a displacement larger than 1.2 cm. Advances in knowledge: This article investigates the performances of motion correction software recently introduced in PET. The conclusion revealed that such respiratory motion correction approach shows a real impact on the lesion quantification but must be reserved to the patient for whom lesion displacement was confirmed and high enough to clearly impact lesion evaluation.
Collapse
Affiliation(s)
| | - Mathieu Chastan
- 1 Nuclear Department, Becquerel Center, Rouen University Hospital, France
| | - Agathe Edet-Sanson
- 1 Nuclear Department, Becquerel Center, Rouen University Hospital, France
| | - Stephanie Becker
- 1 Nuclear Department, Becquerel Center, Rouen University Hospital, France.,2 QuantIF-LITIS EA4108, Rouen University, France
| | - Sebastien Thureau
- 1 Nuclear Department, Becquerel Center, Rouen University Hospital, France.,2 QuantIF-LITIS EA4108, Rouen University, France
| | - Estelle Houivet
- 3 Biostatistics Department, Rouen University Hospital, France
| | - Pierre Vera
- 1 Nuclear Department, Becquerel Center, Rouen University Hospital, France.,2 QuantIF-LITIS EA4108, Rouen University, France
| | - Sebastien Hapdey
- 1 Nuclear Department, Becquerel Center, Rouen University Hospital, France.,2 QuantIF-LITIS EA4108, Rouen University, France
| |
Collapse
|
34
|
Bärwolf R, Zirnsak M, Freesmeyer M. Breath-hold and free-breathing F-18-FDG-PET/CT in malignant melanoma-detection of additional tumoral foci and effects on quantitative parameters. Medicine (Baltimore) 2017; 96:e5882. [PMID: 28079829 PMCID: PMC5266191 DOI: 10.1097/md.0000000000005882] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
During PET/CT acquisition, respiratory motion generates artifacts in the form of breath-related blurring, which may impair lesion detectability and diagnostic accuracy. This observational study was undertaken to verify whether breath-hold F-18-FDG-PET/CT (bhPET) detects additional foci compared to free-breathing PET/CT (fbPET) in cases of malignant melanoma, and to assess the impact of breath-holding on standard uptake values (SUV) and metabolic isocontoured volume (mVic40).Thirty-four patients with melanoma were examined. BhPET and fbPET findings of 117 lesions were compared and correlated with standard contrast-enhanced (ce) CT and MRI for lesion verification. Quantitative parameters (SUVmax, SUVmean, and mVic40) were assessed for both methods and evaluated by linear regression and Spearman correlation. The impact of lesion size and time interval between investigations was analyzed.In 1 patient, a CT-confirmed liver metastasis was seen only on bhPET but not on fbPET. At bhPET, SUVmax, and SUVmean proved significantly higher and mVic40 significantly lower than at fbPET. The positive effect on SUVmax and SUVmean was more pronounced in smaller lesions, whereas the time interval between bhPET and fbPET did not influence SUV or mVic40.In our patient cohort, bhPET yielded significantly higher SUV and provided improved volumetric lesion definition, particularly of smaller lesions. Also one additional liver lesion was identified. Breath-hold PET/CT is technically feasible, and may become clinically useful when fine quantitative evaluations are needed.
Collapse
|
35
|
Pasciak AS, Lin A, Georgiades C, Findeiss LK, Kauffman S, Bradley YC. Computational simulation of the predicted dosimetric impact of adjuvant yttrium-90 PET/CT-guided percutaneous ablation following radioembolization. EJNMMI Res 2016; 6:89. [PMID: 27957721 PMCID: PMC5153383 DOI: 10.1186/s13550-016-0244-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 11/29/2016] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND 90Y PET/CT post-radioembolization imaging has demonstrated that the distribution of 90Y in a tumor can be non-uniform. Using computational modeling, we predicted the dosimetric impact of post-treatment 90Y PET/CT-guided percutaneous ablation of the portions of a tumor receiving the lowest absorbed dose. A cohort of fourteen patients with non-resectable liver cancer previously treated using 90Y radioembolization were included in this retrospective study. Each patient exhibited potentially under-treated areas of tumor following treatment based on quantitative 90Y PET/CT. 90Y PET/CT was used to guide electrode placement for simulated adjuvant radiofrequency ablation in areas of tumor receiving the lowest dose. The finite element method was used to solve Penne's bioheat transport equation, coupled with the Arrhenius thermal cell-death model to determine 3D thermal ablation zones. Tumor and unablated tumor absorbed-dose metrics (average dose, D50, D70, D90, V100) following ablation were compared, where D70 is the minimum dose to 70% of tumor and V100 is the fractional tumor volume receiving more than 100 Gy. RESULTS Compared to radioembolization alone, 90Y radioembolization with adjuvant ablation was associated with predicted increases in all tumor dose metrics evaluated. The mean average absorbed dose increased by 11.2 ± 6.9 Gy. Increases in D50, D70, and D90 were 11.0 ± 6.9 Gy, 13.3 ± 10.9 Gy, and 11.8 ± 10.8 Gy, respectively. The mean increase in V100 was 7.2 ± 4.2%. All changes were statistically significant (P < 0.01). A negative correlation between pre-ablation tumor volume and D50, average dose, and V100 was identified (ρ < - 0.5, P < 0.05) suggesting that adjuvant radiofrequency ablation may be less beneficial to patients with large tumor burdens. CONCLUSIONS This study has demonstrated that adjuvant 90Y PET/CT-guided radiofrequency ablation may improve tumor absorbed-dose metrics. These data may justify a prospective clinical trial to further evaluate this hybrid approach.
Collapse
Affiliation(s)
- Alexander S Pasciak
- Department of Radiology, University of Tennessee Graduate School of Medicine, Knoxville, TN, USA.
- School of Medicine, The Johns Hopkins Hospital, 733 N Broadway, Baltimore, MD, 21205, USA.
| | - Abigail Lin
- School of Medicine, The Johns Hopkins Hospital, 733 N Broadway, Baltimore, MD, 21205, USA
| | | | - Laura K Findeiss
- Department of Radiology, University of Tennessee Graduate School of Medicine, Knoxville, TN, USA
| | | | - Yong C Bradley
- Department of Radiology, University of Tennessee Graduate School of Medicine, Knoxville, TN, USA
| |
Collapse
|
36
|
Pelegrí Martínez L, Kohan AA, Vercher Conejero JL. Optimization of the protocols for the use of contrast agents in PET/CT studies. RADIOLOGIA 2016; 59:64-74. [PMID: 27726860 DOI: 10.1016/j.rx.2016.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 06/27/2016] [Accepted: 07/05/2016] [Indexed: 10/20/2022]
Abstract
The introduction of PET/CT scanners in clinical practice in 1998 has improved care for oncologic patients throughout the clinical pathway, from the initial diagnosis of disease through the evaluation of the response to treatment to screening for possible recurrence. The CT component of a PET/CT study is used to correct the attenuation of PET studies; CT also provides anatomic information about the distribution of the radiotracer. CT is especially useful in situations where PET alone can lead to false positives and false negatives, and CT thereby improves the diagnostic performance of PET. The use of intravenous or oral contrast agents and optimal CT protocols have improved the detection and characterization of lesions. However, there are circumstances in which the systematic use of contrast agents is not justified. The standard acquisition in PET/CT scanners is the whole body protocol, but this can lead to artifacts due to the position of patients and respiratory movements between the CT and PET acquisitions. This article discusses these aspects from a constructive perspective with the aim of maximizing the diagnostic potential of PET/CT and providing better care for patients.
Collapse
Affiliation(s)
- L Pelegrí Martínez
- Servei de Diagnòstic per la Imatge, Hospital Sant Joan Despí-Moisès Broggi, Sant Joan Despí (Barcelona), España.
| | - A A Kohan
- Servicio de Radiología, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - J L Vercher Conejero
- Unitat PET-TC IDI, Hospital Universitari de Bellvitge, Institut d'Investigació Biomédica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat (Barcelona), España
| |
Collapse
|
37
|
Minamimoto R, Mitsumoto T, Miyata Y, Sunaoka F, Morooka M, Okasaki M, Iagaru A, Kubota K. Evaluation of a new motion correction algorithm in PET/CT: combining the entire acquired PET data to create a single three-dimensional motion-corrected PET/CT image. Nucl Med Commun 2016; 37:162-70. [PMID: 26513056 DOI: 10.1097/mnm.0000000000000423] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE This study evaluated the potential of Q.Freeze algorithm for reducing motion artifacts, in comparison with ungated imaging (UG) and respiratory-gated imaging (RG). PATIENTS AND METHODS Twenty-nine patients with 53 lesions who had undergone RG F-FDG PET/CT were included in this study. Using PET list mode data, five series of PET images [UG, RG, and QF images with an acquisition duration of 3 min (QF3), 5 min (QF5), and 10 min (QF10)] were reconstructed retrospectively. The image quality was evaluated first. Next, quantitative metrics [maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean), SD, metabolic tumor volume, signal to noise ratio, or lesion to background ratio] were calculated for the liver, background, and each lesion, and the results were compared across the series. RESULTS QF10 and QF5 showed better image quality compared with all other images. SUVmax in the liver, background, and lesions was lower with QF10 and QF5 than with the others, but there were no statistically significant differences in SUVmean and the lesion to background ratios. The SD with UG and RG was significantly higher than that with QF5 and QF10. The metabolic tumor volume in QF3 and QF5 was significantly lower than that in UG. CONCLUSION The Q.Freeze algorithm can improve the quality of PET imaging compared with RG and UG.
Collapse
Affiliation(s)
- Ryogo Minamimoto
- aDepartment of Radiology, Division of Nuclear Medicine, National Center for Global Health and Medicine, Tokyo bDepartment of Radiology, National Center for Global Health and Medicine, Kohnodai Hospital, Ichikawa, Japan cDepartment of Radiology, Division of Nuclear Medicine and Molecular Imaging, Stanford University, Stanford, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Respiratory-gated time-of-flight PET/CT during whole-body scan for lung lesions: feasibility in a routine clinical setting and quantitative analysis. Ann Nucl Med 2016; 30:722-730. [PMID: 27566685 DOI: 10.1007/s12149-016-1118-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/18/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE To demonstrate the feasibility of respiratory gating during whole-body scan for lung lesions in routine 18F-FDG PET/CT examinations using a time-of-flight (TOF)-capable scanner to determine the effect of respiratory gating on reduction of both misregistration (between CT and PET) and image blurring, and on improvement of the maximum standardized uptake value (SUVmax). MATERIALS AND METHODS Patients with lung lesions who received FDG PET/CT were prospectively studied. Misregistration, volume of PET (Vp), and SUVmax were compared between ungated and gated images. The difference in respiratory gating effects was compared between lesions located in the upper or middle lobes (UML) and the lower lobe (LL). The correlation between three parameters (% change in misregistration, % change in Vp, and lesion size) and % change in SUVmax was analyzed. RESULTS The study population consisted of 60 patients (37 males, 23 females; age 68 ± 12 years) with lung lesions (2.5 ± 1.7 cm). Fifty-eight out of sixty respiratory gating studies were successfully completed with a total scan time of 20.9 ± 1.9 min. Eight patients' data were not suitable for analysis, while the remaining 50 patients' data were analyzed. Respiratory gating reduced both misregistration by 21.4 % (p < 0.001) and Vp by 14.2 % (p < 0.001). The SUVmax of gated images improved by 14.8 % (p < 0.001). The % change in misregistration, Vp, and SUVmax by respiratory gating tended to be larger in LL lesions than in UML lesions. The correlation with % change in SUVmax was stronger in % change in Vp (r = 0.57) than % change in misregistration (r = 0.35). There was no statistically significant correlation between lesion size and % change in SUVmax (r = -0.20). CONCLUSIONS Respiratory gating during whole-body scan in routine TOF PET/CT examinations is feasible and can reduce both misregistration and PET image blurring, and improve the SUVmax of lung lesions located primarily in the LL.
Collapse
|
39
|
Commentary to ‘Evaluation of a new motion correction algorithm in PET/CT. Nucl Med Commun 2016; 37:888. [DOI: 10.1097/mnm.0000000000000549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Tabacchi E, Fanti S, Nanni C. The Possible Role of PET Imaging Toward Individualized Management of Bone and Soft Tissue Malignancies. PET Clin 2016; 11:285-96. [PMID: 27321032 DOI: 10.1016/j.cpet.2016.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This article presents fluorodeoxyglucose PET/computed tomography for the evaluation of soft tissue sarcomas. Its clinical impact is discussed analyzing all the clinical information provided when applied in different phases of the disease. A special paragraph is dedicated to the use of functional imaging for driving the biopsy.
Collapse
Affiliation(s)
- Elena Tabacchi
- Nuclear Medicine, AOU di Bologna Policlinico S. Orsola-Malpighi, Via Massarenti 9, Bologna 40138, Italy
| | - Stefano Fanti
- Nuclear Medicine, AOU di Bologna Policlinico S. Orsola-Malpighi, Via Massarenti 9, Bologna 40138, Italy
| | - Cristina Nanni
- Nuclear Medicine, AOU di Bologna Policlinico S. Orsola-Malpighi, Via Massarenti 9, Bologna 40138, Italy.
| |
Collapse
|
41
|
Mosmann MP, Borba MA, de Macedo FPN, Liguori ADAL, Villarim Neto A, de Lima KC. Solitary pulmonary nodule and (18)F-FDG PET/CT. Part 2: accuracy, cost-effectiveness, and current recommendations. Radiol Bras 2016; 49:104-11. [PMID: 27141133 PMCID: PMC4851481 DOI: 10.1590/0100-3984.2014.0087] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A solitary pulmonary nodule is a common, often incidental, radiographic finding. The investigation and differential diagnosis of solitary pulmonary nodules remain complex, because there are overlaps between the characteristics of benign and malignant processes. There are currently many strategies for evaluating solitary pulmonary nodules. The main objective is to identify benign lesions, in order to avoid exposing patients to the risks of invasive methods, and to detect cases of lung cancer accurately, in order to avoid delaying potentially curative treatment. The focus of this study was to review the evaluation of solitary pulmonary nodules, to discuss the current role of (18)F-fluorodeoxyglucose positron-emission tomography, addressing its accuracy and cost-effectiveness, and to detail the current recommendations for the examination in this scenario.
Collapse
Affiliation(s)
- Marcos Pretto Mosmann
- MD, MSc, Nuclear Medicine Physician at Liga Norte-Riograndense Contra o Câncer, Natal, RN, Brazil
| | | | | | | | - Arthur Villarim Neto
- PhD, Nuclear Medicine Physician at Liga Norte-Riograndense Contra o Câncer, Natal, RN, Brazil
| | - Kenio Costa de Lima
- Post Doc Fellow, Professor, Programa de Pós-Graduação em Saúde Coletiva - Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil
| |
Collapse
|
42
|
Prior JO, Péguret N, Pomoni A, Pappon M, Zeverino M, Belmondo B, Lovis A, Ozsahin M, Vienne M, Bourhis J. Reduction of Respiratory Motion During PET/CT by Pulsatile-Flow Ventilation: A First Clinical Evaluation. J Nucl Med 2015; 57:416-9. [PMID: 26635339 DOI: 10.2967/jnumed.115.163386] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 11/16/2015] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Respiratory motion negatively affects PET/CT image quality and quantitation. A novel Pulsatile-Flow Ventilation (PFV) system reducing respiratory motion was applied in spontaneously breathing patients to induce sustained apnea during PET/CT. METHODS Four patients (aged 65 ± 14 y) underwent PET/CT for pulmonary nodule staging (mean, 11 ± 7 mm; range, 5-18 mm) at 63 ± 3 min after (18)F-FDG injection and then at 47 ± 7 min afterward, during PFV-induced apnea (with imaging lasting ≥8.5 min). Anterior-posterior thoracic amplitude, SUVmax, and SUVpeak (SUVmean in a 1-cm-diameter sphere) were compared. RESULTS PFV PET/CT reduced thoracic amplitude (80%), increased mean lesion SUVmax (29%) and SUVpeak (11%), decreased lung background SUVpeak (25%), improved lesion detectability, and increased SUVpeak lesion-to-background ratio (54%). On linear regressions, SUVmax and SUVpeak significantly improved (by 35% and 23%, respectively; P ≤ 0.02). CONCLUSION PFV-induced apnea reduces thoracic organ motion and increases lesion SUV, detectability, and delineation, thus potentially affecting patient management by improving diagnosis, prognostication, monitoring, and external-radiation therapy planning.
Collapse
Affiliation(s)
- John O Prior
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Lausanne, Switzerland
| | - Nicolas Péguret
- Department of Radiation Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Anastasia Pomoni
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Lausanne, Switzerland
| | - Martin Pappon
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Lausanne, Switzerland
| | - Michele Zeverino
- Department of Medical Physics, Lausanne University Hospital, Lausanne, Switzerland
| | - Bastien Belmondo
- Department of Physiotherapy, Lausanne University Hospital, Lausanne, Switzerland
| | - Alban Lovis
- Department of Pneumology, Lausanne University Hospital, Lausanne, Switzerland; and
| | - Mahmut Ozsahin
- Department of Radiation Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Monique Vienne
- BIRD Institute of Pulmonary Care, Villeneuve-Loubet, France
| | - Jean Bourhis
- Department of Radiation Oncology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
43
|
Flechsig P, Mehndiratta A, Haberkorn U, Kratochwil C, Giesel FL. PET/MRI and PET/CT in Lung Lesions and Thoracic Malignancies. Semin Nucl Med 2015; 45:268-81. [DOI: 10.1053/j.semnuclmed.2015.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
Impact of 4D-(18)FDG-PET/CT imaging on target volume delineation in SBRT patients with central versus peripheral lung tumors. Multi-reader comparative study. Radiother Oncol 2015; 115:335-41. [PMID: 26116339 DOI: 10.1016/j.radonc.2015.05.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 05/13/2015] [Accepted: 05/31/2015] [Indexed: 01/05/2023]
Abstract
PURPOSE Evaluation of the effect of co-registered 4D-(18)FDG-PET/CT for SBRT target delineation in patients with central versus peripheral lung tumors. METHODS Analysis of internal target volume (ITV) delineation of central and peripheral lung lesions in 21 SBRT-patients. Manual delineation was performed by 4 observers in 2 contouring phases: on respiratory gated 4DCT with diagnostic 3DPET available aside (CT-ITV) and on co-registered 4DPET/CT (PET/CT-ITV). Comparative analysis of volumes and inter-reader agreement. RESULTS 11 cases of peripheral and 10 central lesions were evaluated. In peripheral lesions, average CT-ITV was 6.2 cm(3) and PET/CT-ITV 8.6 cm(3), resembling a mean change in hypothetical radius of 2 mm. For both CT-ITVs and PET/CT-ITVs inter reader agreement was good and unchanged (0.733 and 0.716; p=0.58). All PET/CT-ITVs stayed within the PTVs derived from CT-ITVs. In central lesions, average CT-ITVs were 42.1 cm(3), PET/CT-ITVs 44.2 cm(3), without significant overall volume changes. Inter-reader agreement improved significantly (0.665 and 0.750; p<0.05). 2/10 PET/CT-ITVs exceeded the PTVs derived from CT-ITVs by >1 ml in average for all observers. CONCLUSION The addition of co-registered 4DPET data to 4DCT based target volume delineation for SBRT of centrally located lung tumors increases the inter-observer agreement and may help to avoid geographic misses.
Collapse
|
45
|
Thoracic staging of non-small-cell lung cancer using integrated 18F-FDG PET/MR imaging: diagnostic value of different MR sequences. Eur J Nucl Med Mol Imaging 2015; 42:1257-67. [DOI: 10.1007/s00259-015-3050-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/16/2015] [Indexed: 12/27/2022]
|
46
|
Yip S, McCall K, Aristophanous M, Chen AB, Aerts HJWL, Berbeco R. Comparison of texture features derived from static and respiratory-gated PET images in non-small cell lung cancer. PLoS One 2014; 9:e115510. [PMID: 25517987 PMCID: PMC4269460 DOI: 10.1371/journal.pone.0115510] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/24/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND PET-based texture features have been used to quantify tumor heterogeneity due to their predictive power in treatment outcome. We investigated the sensitivity of texture features to tumor motion by comparing static (3D) and respiratory-gated (4D) PET imaging. METHODS Twenty-six patients (34 lesions) received 3D and 4D [18F]FDG-PET scans before the chemo-radiotherapy. The acquired 4D data were retrospectively binned into five breathing phases to create the 4D image sequence. Texture features, including Maximal correlation coefficient (MCC), Long run low gray (LRLG), Coarseness, Contrast, and Busyness, were computed within the physician-defined tumor volume. The relative difference (δ3D-4D) in each texture between the 3D- and 4D-PET imaging was calculated. Coefficient of variation (CV) was used to determine the variability in the textures between all 4D-PET phases. Correlations between tumor volume, motion amplitude, and δ3D-4D were also assessed. RESULTS 4D-PET increased LRLG ( = 1%-2%, p < 0.02), Busyness ( = 7%-19%, p < 0.01), and decreased MCC ( = 1%-2%, p < 7.5 × 10(-3)), Coarseness ( = 5%-10%, p < 0.05) and Contrast ( = 4%-6%, p > 0.08) compared to 3D-PET. Nearly negligible variability was found between the 4D phase bins with CV < 5% for MCC, LRLG, and Coarseness. For Contrast and Busyness, moderate variability was found with CV = 9% and 10%, respectively. No strong correlation was found between the tumor volume and δ3D-4D for the texture features. Motion amplitude had moderate impact on δ for MCC and Busyness and no impact for LRLG, Coarseness, and Contrast. CONCLUSIONS Significant differences were found in MCC, LRLG, Coarseness, and Busyness between 3D and 4D PET imaging. The variability between phase bins for MCC, LRLG, and Coarseness was negligible, suggesting that similar quantification can be obtained from all phases. Texture features, blurred out by respiratory motion during 3D-PET acquisition, can be better resolved by 4D-PET imaging. 4D-PET textures may have better prognostic value as they are less susceptible to tumor motion.
Collapse
Affiliation(s)
- Stephen Yip
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| | - Keisha McCall
- Department of Radiology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michalis Aristophanous
- Department of Radiation Physics, Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Aileen B. Chen
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hugo J. W. L. Aerts
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ross Berbeco
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
47
|
Kesner AL, Schleyer PJ, Büther F, Walter MA, Schäfers KP, Koo PJ. On transcending the impasse of respiratory motion correction applications in routine clinical imaging - a consideration of a fully automated data driven motion control framework. EJNMMI Phys 2014; 1:8. [PMID: 26501450 PMCID: PMC4673082 DOI: 10.1186/2197-7364-1-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/23/2014] [Indexed: 12/21/2022] Open
Abstract
Positron emission tomography (PET) is increasingly used for the detection, characterization, and follow-up of tumors located in the thorax. However, patient respiratory motion presents a unique limitation that hinders the application of high-resolution PET technology for this type of imaging. Efforts to transcend this limitation have been underway for more than a decade, yet PET remains for practical considerations a modality vulnerable to motion-induced image degradation. Respiratory motion control is not employed in routine clinical operations. In this article, we take an opportunity to highlight some of the recent advancements in data-driven motion control strategies and how they may form an underpinning for what we are presenting as a fully automated data-driven motion control framework. This framework represents an alternative direction for future endeavors in motion control and can conceptually connect individual focused studies with a strategy for addressing big picture challenges and goals.
Collapse
Affiliation(s)
- Adam L Kesner
- Division of Nuclear Medicine, Department of Radiology, Anschutz Medical Campus, University of Colorado Denver, 12700 E 19th Ave, Box C-278, Aurora, CO, 80045, USA.
| | - Paul J Schleyer
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, WC2R 2LS, UK.
| | - Florian Büther
- European Institute for Molecular Imaging, University of Münster, Münster, 48149, Germany.
| | - Martin A Walter
- Institute of Nuclear Medicine and Department of Clinical Research, University Hospital Bern, Bern, 3010, Switzerland.
| | - Klaus P Schäfers
- European Institute for Molecular Imaging, University of Münster, Münster, 48149, Germany.
| | - Phillip J Koo
- Division of Nuclear Medicine, Department of Radiology, Anschutz Medical Campus, University of Colorado Denver, 12700 E 19th Ave, Box C-278, Aurora, CO, 80045, USA.
| |
Collapse
|
48
|
Miwa K. [Management of respiratory motion in FDG-PET/CT: respiratory-gated and deep-inspiration breath-hold techniques]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2014; 70:1344-52. [PMID: 25410343 DOI: 10.6009/jjrt.2014_jsrt_70.11.1344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Freebody J, Wegner EA, Rossleigh MA. 2-deoxy-2-( 18F)fluoro-D-glucose positron emission tomography/computed tomography imaging in paediatric oncology. World J Radiol 2014; 6:741-755. [PMID: 25349660 PMCID: PMC4209422 DOI: 10.4329/wjr.v6.i10.741] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/05/2014] [Accepted: 09/17/2014] [Indexed: 02/06/2023] Open
Abstract
Positron emission tomography (PET) is a minimally invasive technique which has been well validated for the diagnosis, staging, monitoring of response to therapy, and disease surveillance of adult oncology patients. Traditionally the value of PET and PET/computed tomography (CT) hybrid imaging has been less clearly defined for paediatric oncology. However recent evidence has emerged regarding the diagnostic utility of these modalities, and they are becoming increasingly important tools in the evaluation and monitoring of children with known or suspected malignant disease. Important indications for 2-deoxy-2-(18F)fluoro-D-glucose (FDG) PET in paediatric oncology include lymphoma, brain tumours, sarcoma, neuroblastoma, Langerhans cell histiocytosis, urogenital tumours and neurofibromatosis type I. This article aims to review current evidence for the use of FDG PET and PET/CT in these indications. Attention will also be given to technical and logistical issues, the description of common imaging pitfalls, and dosimetric concerns as they relate to paediatric oncology.
Collapse
|
50
|
Abstract
Combined PET/computed tomography (CT) is of value in cancer diagnosis, follow-up, and treatment planning. For cancers located in the thorax or abdomen, the patient’s breathing causes artifacts and errors in PET and CT images. Many different approaches for artifact avoidance or correction have been developed; most are based on gated acquisition and synchronization between the respiratory signal and PET acquisition. The respiratory signal is usually produced by an external sensor that tracks a physiological characteristic related to the patient’s breathing. Respiratory gating is a compensation technique in which time or amplitude binning is used to exclude the motion in reconstructed PET images. Although this technique is performed in routine clinical practice, it fails to adequately correct for respiratory motion because each gate can mix several tissue positions. Researchers have suggested either selecting PET events from gated acquisitions or performing several PET acquisitions (corresponding to a breath-hold CT position). However, the PET acquisition time must be increased if adequate counting statistics are to be obtained in the different gates after binning. Hence, other researchers have assessed correction techniques that take account of all the counting statistics (without increasing the acquisition duration) and integrate motion information before, during, or after the reconstruction process. Here, we provide an overview of how motion is managed to overcome respiratory motion in PET/CT images.
Collapse
|