1
|
Yang C, Ding Y, Mao Z, Wang W. Nanoplatform-Mediated Autophagy Regulation and Combined Anti-Tumor Therapy for Resistant Tumors. Int J Nanomedicine 2024; 19:917-944. [PMID: 38293604 PMCID: PMC10826716 DOI: 10.2147/ijn.s445578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
The overall cancer incidence and death toll have been increasing worldwide. However, the conventional therapies have some obvious limitations, such as non-specific targeting, systemic toxic effects, especially the multidrug resistance (MDR) of tumors, in which, autophagy plays a vital role. Therefore, there is an urgent need for new treatments to reduce adverse reactions, improve the treatment efficacy and expand their therapeutic indications more effectively and accurately. Combination therapy based on autophagy regulators is a very feasible and important method to overcome tumor resistance and sensitize anti-tumor drugs. However, the less improved efficacy, more systemic toxicity and other problems limit its clinical application. Nanotechnology provides a good way to overcome this limitation. Co-delivery of autophagy regulators combined with anti-tumor drugs through nanoplatforms provides a good therapeutic strategy for the treatment of tumors, especially drug-resistant tumors. Notably, the nanomaterials with autophagy regulatory properties have broad therapeutic prospects as carrier platforms, especially in adjuvant therapy. However, further research is still necessary to overcome the difficulties such as the safety, biocompatibility, and side effects of nanomedicine. In addition, clinical research is also indispensable to confirm its application in tumor treatment.
Collapse
Affiliation(s)
- Caixia Yang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
2
|
Shams M, Abdallah S, Alsadoun L, Hamid YH, Gasim R, Hassan A. Oncological Horizons: The Synergy of Medical and Surgical Innovations in Cancer Treatment. Cureus 2023; 15:e49249. [PMID: 38143618 PMCID: PMC10743204 DOI: 10.7759/cureus.49249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
The landscape of cancer treatment has witnessed a remarkable transformation in recent years, marked by the convergence of medical and surgical innovations. Historically, cancer therapy faced challenges, including limited efficacy and severe side effects. This narrative review explores the historical progression of cancer treatments, shedding light on significant breakthroughs in both medical and surgical oncology. It comprehensively addresses the medical domain, covering chemotherapy, targeted therapies, immunotherapy, hormonal treatments, and radiological procedures. Simultaneously, it delves into the surgical realm, discussing the evolution of surgical techniques, minimally invasive procedures, and the role of surgery across various stages of cancer. The article emphasizes the fusion of medical and surgical approaches, highlighting neoadjuvant and adjuvant therapies and the significance of multidisciplinary tumor boards. It also addresses innovations, challenges, and the pivotal role of patient-centered care. Furthermore, it offers insights into the future directions and forecasts in the constantly evolving field of integrated oncological care. This review provides a comprehensive understanding of the dynamic and transformative nature of cancer treatment, reflecting the unwavering commitment of the medical and surgical communities in the ongoing fight against cancer.
Collapse
Affiliation(s)
| | | | - Lara Alsadoun
- Trauma and Orthopaedics, Chelsea and Westminster Hospital, London, GBR
| | - Yusra H Hamid
- Community Medicine, Faculty of Medicine, University of Khartoum, Khartoum, SDN
| | - Rayan Gasim
- Internal Medicine, University of Khartoum, Khartoum, SDN
| | | |
Collapse
|
3
|
Novel Effects of Statins on Cancer via Autophagy. Pharmaceuticals (Basel) 2022; 15:ph15060648. [PMID: 35745567 PMCID: PMC9228383 DOI: 10.3390/ph15060648] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer is one of the main causes of death globally. Most of the molecular mechanisms underlying cancer are marked by complex aberrations that activate the critical cell-signaling pathways that play a pivotal role in cell metabolism, tumor development, cytoskeletal reorganization, and metastasis. The phosphatidylinositol 3-kinase/protein kinase-B/mammalian target of the rapamycin (PI3K/AKT/mTOR) pathway is one of the main signaling pathways involved in carcinogenesis and metastasis. Autophagy, a cellular pathway that delivers cytoplasmic components to lysosomes for degradation, plays a dual role in cancer, as either a tumor promoter or a tumor suppressor, depending on the stage of the carcinogenesis. Statins are the group of drugs of choice to lower the level of low-density lipoprotein (LDL) cholesterol in the blood. Experimental and clinical data suggest the potential of statins in the treatment of cancer. In vitro and in vivo studies have demonstrated the molecular mechanisms through which statins inhibit the proliferation and metastasis of cancer cells in different types of cancer. The anticancer properties of statins have been shown to result in the suppression of tumor growth, the induction of apoptosis, and autophagy. This literature review shows the dual role of the autophagic process in cancer and the latest scientific evidence related to the inducing effect exerted by statins on autophagy, which could explain their anticancer potential.
Collapse
|
4
|
N Chin C, Subhawong T, Grosso J, Wortman JR, McIntosh LJ, Tai R, Braschi-Amirfarzan M, Castillo P, Alessandrino F. Teaching cancer imaging in the era of precision medicine: Looking at the big picture. Eur J Radiol Open 2022; 9:100414. [PMID: 35309874 PMCID: PMC8927915 DOI: 10.1016/j.ejro.2022.100414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The role of imaging in cancer diagnosis and treatment has evolved at the same rapid pace as cancer management. Over the last twenty years, with the advancement of technology, oncology has become a multidisciplinary field that allows for researchers and clinicians not only to create individualized treatment options for cancer patients, but also to evaluate patients’ response to therapy with increasing precision. Familiarity with these concepts is a requisite for current and future radiologists, as cancer imaging studies represent a significant and growing component of any radiology practice, from tertiary cancer centers to community hospitals. In this review we provide the framework to teach cancer imaging in the era of genomic oncology. After reading this article, readers should be able to illustrate the basics cancer genomics, modern cancer genomics, to summarize the types of systemic oncologic therapies available, their patterns of response and their adverse events, to discuss the role of imaging in oncologic clinical trials and the role of tumor response criteria and to display the future directions of oncologic imaging.
Collapse
Affiliation(s)
- Christopher N Chin
- Department of Surgery, Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Ty Subhawong
- Department of Radiology, Leonard M. Miller School of Medicine, Miami, FL, USA
| | - James Grosso
- Department of Radiology, Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Jeremy R Wortman
- Department of Radiology, Lahey Health Medical Center, Beth Israel Lahey Health, Tufts University school of Medicine, Boston, MA, USA
| | - Lacey J McIntosh
- Department of Radiology, University of Massachusetts Chan Medical School, Memorial Health Care, Worcester, MA, USA
| | - Ryan Tai
- Department of Radiology, University of Massachusetts Chan Medical School, Memorial Health Care, Worcester, MA, USA
| | - Marta Braschi-Amirfarzan
- Department of Radiology, Lahey Health Medical Center, Beth Israel Lahey Health, Tufts University school of Medicine, Boston, MA, USA
| | - Patricia Castillo
- Department of Radiology, Leonard M. Miller School of Medicine, Miami, FL, USA
| | | |
Collapse
|
5
|
Abstract
Cancer therapy has undergone a drastic revolution in the past few decades with the introduction of several novel therapies, like immunotherapy (active and passive), stem cell-based therapies, and nanocarrier-based therapies. These therapies have addressed the issues of conventional cancer therapy (chemotherapy or radiotherapy), like specificity and off-target effects. Further, the introduction of such treatments has improved survival and converted a terminal disease into a more manageable condition. However, many clinical, ethical, and regulatory issues are raised with such novel additions. Several effective therapies are under research but could not come to market or are delayed due to regulatory concerns for marketing approval. The scope of this review encompasses the examination of these regulatory issues and discuss their possible solutions. A practical and flexible regulatory approach, harmonized globally, could help the patients suffering from a terminal illness to lead a quality life.
Collapse
|
6
|
Maiuolo J, Gliozzi M, Carresi C, Musolino V, Oppedisano F, Scarano F, Nucera S, Scicchitano M, Bosco F, Macri R, Ruga S, Cardamone A, Coppoletta A, Mollace A, Cognetti F, Mollace V. Nutraceuticals and Cancer: Potential for Natural Polyphenols. Nutrients 2021; 13:nu13113834. [PMID: 34836091 PMCID: PMC8619660 DOI: 10.3390/nu13113834] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the leading causes of death globally, associated with multifactorial pathophysiological components. In particular, genetic mutations, infection or inflammation, unhealthy eating habits, exposition to radiation, work stress, and/or intake of toxins have been found to contribute to the development and progression of cancer disease states. Early detection of cancer and proper treatment have been found to enhance the chances of survival and healing, but the side effects of anticancer drugs still produce detrimental responses that counteract the benefits of treatment in terms of hospitalization and survival. Recently, several natural bioactive compounds were found to possess anticancer properties, capable of killing transformed or cancerous cells without being toxic to their normal counterparts. This effect occurs when natural products are associated with conventional treatments, thereby suggesting that nutraceutical supplementation may contribute to successful anticancer therapy. This review aims to discuss the current literature on four natural bioactive extracts mostly characterized by a specific polyphenolic profile. In particular, several activities have been reported to contribute to nutraceutical support in anticancer treatment: (1) inhibition of cell proliferation, (2) antioxidant activity, and (3) anti-inflammatory activity. On the other hand, owing to their attenuation of the toxic effect of current anticancer therapies, natural antioxidants may contribute to improving the compliance of patients undergoing anticancer treatment. Thus, nutraceutical supplementation, along with current anticancer drug treatment, may be considered for better responses and compliance in patients with cancer. It should be noted, however, that when data from studies with bioactive plant preparations are discussed, it is appropriate to ensure that experiments have been conducted in accordance with accepted pharmacological research practices so as not to disclose information that is only partially correct.
Collapse
Affiliation(s)
- Jessica Maiuolo
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Micaela Gliozzi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Cristina Carresi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Vincenzo Musolino
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Francesca Oppedisano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Federica Scarano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Saverio Nucera
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Miriam Scicchitano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Francesca Bosco
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Roberta Macri
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Stefano Ruga
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
| | - Antonio Cardamone
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
| | - Annarita Coppoletta
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
| | - Annachiara Mollace
- Medical Oncology 1, Regina Elena National Cancer Institute, IRCCS, 00144 Rome, Italy; (A.M.); (F.C.)
| | - Francesco Cognetti
- Medical Oncology 1, Regina Elena National Cancer Institute, IRCCS, 00144 Rome, Italy; (A.M.); (F.C.)
| | - Vincenzo Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
- IRCCS San Raffaele, Via di Valcannuta 247, 00133 Rome, Italy
- Correspondence:
| |
Collapse
|
7
|
Sagbo IJ, Otang-Mbeng W. Plants Used for the Traditional Management of Cancer in the Eastern Cape Province of South Africa: A Review of Ethnobotanical Surveys, Ethnopharmacological Studies and Active Phytochemicals. Molecules 2021; 26:4639. [PMID: 34361790 PMCID: PMC8347031 DOI: 10.3390/molecules26154639] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 01/04/2023] Open
Abstract
Cancer occurrence is rapidly increasing all over the world, including in developing countries. The current trend in cancer management requires the use of herbal remedies since the majority of anticancer drugs are known to be costly, with unwanted side effects. In the Eastern Cape province, the use of medicinal plants for cancer management has been climbing steadily over the past two decades due to their cultural belief, low cost, efficacy, and safety claims. With the aim of identifying some potential anticancer plants for probable drug development, this study was undertaken to review plants reported by ethnobotanical surveys in the Eastern Cape province of South Africa for the traditional management of cancer. Information regarding plants used for cancer management in the Eastern Cape province was obtained from multidisciplinary databases and ethnobotanical books. About 24 plant species belonging to twenty families have been reported to be used for the traditional management of cancer in the Eastern Cape province. Among the anticancer plant species, only 16 species have been explored scientifically for their anticancer activities. This review authenticated the use of anticancer plant species in the Eastern Cape province and, therefore, identified several promising unexplored species for further scientific evaluation.
Collapse
Affiliation(s)
- Idowu Jonas Sagbo
- School of Biology and Environmental Sciences, University of Mpumalanga, Private Bag X11283, Mbombela 1200, South Africa;
| | | |
Collapse
|
8
|
Shao J, Fang Y, Zhao R, Chen F, Yang M, Jiang J, Chen Z, Yuan X, Jia L. Evolution from small molecule to nano-drug delivery systems: An emerging approach for cancer therapy of ursolic acid. Asian J Pharm Sci 2020; 15:685-700. [PMID: 33363625 PMCID: PMC7750806 DOI: 10.1016/j.ajps.2020.03.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 12/31/2019] [Accepted: 03/01/2020] [Indexed: 02/07/2023] Open
Abstract
Ursolic acid (UA), a natural pentacyclic triterpenoid, possesses widespread biological and pharmacological activities. However, drawbacks such as low bioavailability, poor targeting and rapid metabolism greatly hinder its further clinical application. Recently, with the development of nanotechnology, various UA nanosystems have emerged as promising strategies for effective cancer therapy. This article reviews various types of UA-based nano-delivery systems, primarily with emphasis placed on novel UA-based carrier-free nano-drugs, which are considered to be innovative methods for cancer therapy. Moreover, this review presents carrier-free nano-drugs that co-assembled of UA and photosensitizers that displayed synergistic antitumor performance. Finally, the article also describes the development and challenges of UA nanosystems for future research in this field. Overall, the information presented in this review will provide new insight into the rational utilization of nano-drugs in cancer therapy.
Collapse
Affiliation(s)
- Jingwei Shao
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China.,Marine Drug R&D Center, Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Yifan Fang
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Ruirui Zhao
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Fangmin Chen
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Mingyue Yang
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jiali Jiang
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Zixuan Chen
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Xiaotian Yuan
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China.,Marine Drug R&D Center, Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| |
Collapse
|
9
|
Guler E, Smith DA, Somarouthu B, Gujrathi R, Ramaiya NH, Tirumani SH. Overview of imaging findings associated with systemic therapies in advanced epithelial ovarian cancer. Abdom Radiol (NY) 2020; 45:828-841. [PMID: 31396642 DOI: 10.1007/s00261-019-02175-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE To provide an overview for radiologists of the systemic agents used in the treatment of advanced epithelial ovarian cancer (EOC) and their associated toxicities. RESULTS EOC is a common gynecological malignancy, with the majority of patients presenting with advanced stage disease at the time of diagnosis. Although primary cytoreductive surgery and chemotherapy are the principal treatments for EOC, recurrence rates of disease remain high. As several molecular targeted therapies have been developed in the last decade, various novel agents have shown efficacy in the treatment of advanced EOC. Advanced EOC will be discussed by outlining the relevant radiological features of toxicities. CONCLUSION Knowledge of the systemic therapies utilized in the treatment of advanced EOC and their associated radiological features is critical in diagnostic image interpretation.
Collapse
Affiliation(s)
- Ezgi Guler
- Department of Radiology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave, Cleveland, OH, 44106, USA.
| | - Daniel A Smith
- Department of Radiology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Bhanusupriya Somarouthu
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Rahul Gujrathi
- Department of Radiology, Harvard Medical School, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Nikhil H Ramaiya
- Department of Radiology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Sree Harsha Tirumani
- Department of Radiology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| |
Collapse
|
10
|
Alessandrino F, Smith DA, Tirumani SH, Ramaiya NH. Cancer genome landscape: a radiologist's guide to cancer genome medicine with imaging correlates. Insights Imaging 2019; 10:111. [PMID: 31781977 PMCID: PMC6883020 DOI: 10.1186/s13244-019-0800-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022] Open
Abstract
The introduction of high throughput sequence analysis in the past decade and the decrease in sequencing costs has made available an enormous amount of genomic data. These data have shaped the landscape of cancer genome, which encompasses mutations determining tumorigenesis, the signaling pathways involved in cancer growth, the tumor heterogeneity, and its role in development of metastases. Tumors develop acquiring a series of driver mutations over time. Of the many mutated genes present in cancer, only few specific mutations are responsible for invasiveness and metastatic potential, which, in many cases, have characteristic imaging appearance. Ten signaling pathways, each with targetable components, have been identified as responsible for cancer growth. Blockage of any of these pathways form the basis for molecular targeted therapies, which are associated with specific pattern of response and toxicities. Tumor heterogeneity, responsible for the different mutation pattern of metastases and primary tumor, has been classified in intratumoral, intermetastatic, intrametastatic, and interpatient heterogeneity, each with specific imaging correlates. The purpose of this article is to introduce the key components of the landscapes of cancer genome and their imaging counterparts, describing the types of mutations associated with tumorigenesis, the pathways of cancer growth, the genetic heterogeneity involved in metastatic disease, as well as the current challenges and opportunities for cancer genomics research.
Collapse
Affiliation(s)
- Francesco Alessandrino
- Department of Imaging, Dana Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA, 02215, USA. .,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| | - Daniel A Smith
- Department of Radiology, UH Cleveland Medical Center, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Sree Harsha Tirumani
- Department of Radiology, UH Cleveland Medical Center, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Nikhil H Ramaiya
- Department of Radiology, UH Cleveland Medical Center, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| |
Collapse
|
11
|
Revels JW, Dey CB, Aggarwal A, London SS, Katz D, Menias C, Moshiri M. More Than Just 2 Layers: A Comprehensive Multimodality Imaging Review of Endometrial Abnormalities. Curr Probl Diagn Radiol 2019; 49:431-446. [PMID: 31307863 DOI: 10.1067/j.cpradiol.2019.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/06/2019] [Accepted: 06/25/2019] [Indexed: 11/22/2022]
Abstract
Endometrial abnormalities develop in female patients of all ages. Symptoms related to endometrial pathologies are among the most common causes of gynecologist office visits, with the radiologists playing an important role in endometrial evaluation. In some instances, the radiologist may be the first physician to note endometrial pathology. In this article, we will provide a comprehensive review of radiologic modalities utilized in the evaluation of the endometrium, as well as the imaging appearance of various endometrial disease processes.
Collapse
Affiliation(s)
| | - Courtney B Dey
- Department of Radiology, Eastern Virginia Medical School, Sentara Norfolk General Hospital, Norfolk, VA
| | - Abhi Aggarwal
- Department of Radiology, Eastern Virginia Medical School, Sentara Norfolk General Hospital, Norfolk, VA
| | - Sean S London
- Department of Radiology, University of Washington, Seattle, WA
| | - Douglas Katz
- Department of Radiology, NYU Winthrop Hospital, Mineola, NY
| | | | - Mariam Moshiri
- Department of Radiology, University of Washington, Seattle, WA
| |
Collapse
|
12
|
Eryilmaz IE, Guney Eskiler G, Egeli U, Yurdacan B, Cecener G, Tunca B. In vitro cytotoxic and antiproliferative effects of usnic acid on hormone-dependent breast and prostate cancer cells. J Biochem Mol Toxicol 2018; 32:e22208. [PMID: 30101414 DOI: 10.1002/jbt.22208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/25/2018] [Accepted: 07/06/2018] [Indexed: 02/04/2023]
Abstract
The aim of the current study was first to investigate cytotoxic activity of usnic acid (UA) on hormone-dependent breast and prostate cancer, and normal cells. Cells were treated with increasing concentrations (25 to 150 µM) of UA for 48 hours and cell viability, quantitative and morphological analysis of cell death, and cell cycle analysis were performed. UA was shown to have selective cytotoxicity on hormone-dependent cancer cells with the IC50 levels of 71.4 and 77.5 µM for MCF7 and LNCaP cells, respectively. UA induced apoptotic cell death and G0/G1 cell cycle arrest without damaging normal cells. MCF7 cells were more sensitive to UA than LNCaP cells. Our results first revealed that UA is a promising candidate as an alternative agent for hormone-dependent breast and prostate cancers. However, molecular mechanism underlying the UA-mediated cell death in cancer cells should be investigated further.
Collapse
Affiliation(s)
- Isil Ezgi Eryilmaz
- Medical Biology Department, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Gamze Guney Eskiler
- Medical Biology Department, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Unal Egeli
- Medical Biology Department, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Beste Yurdacan
- Medical Biology Department, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Gulsah Cecener
- Medical Biology Department, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Berrin Tunca
- Medical Biology Department, Faculty of Medicine, Uludag University, Bursa, Turkey
| |
Collapse
|
13
|
Ben Mihoub A, Larue L, Moussaron A, Youssef Z, Colombeau L, Baros F, Frochot C, Vanderesse R, Acherar S. Use of Cyclodextrins in Anticancer Photodynamic Therapy Treatment. Molecules 2018; 23:E1936. [PMID: 30072672 PMCID: PMC6222782 DOI: 10.3390/molecules23081936] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/19/2018] [Accepted: 07/28/2018] [Indexed: 12/22/2022] Open
Abstract
Photodynamic therapy (PDT) is mainly used to destroy cancerous cells; it combines the action of three components: a photoactivatable molecule or photosensitizer (PS), the light of an appropriate wavelength, and naturally occurring molecular oxygen. After light excitation of the PS, the excited PS then reacts with molecular oxygen to produce reactive oxygen species (ROS), leading to cellular damage. One of the drawbacks of PSs is their lack of solubility in water and body tissue fluids, thereby causing low bioavailability, drug-delivery efficiency, therapeutic efficacy, and ROS production. To improve the water-solubility and/or drug delivery of PSs, using cyclodextrins (CDs) is an interesting strategy. This review describes the in vitro or/and in vivo use of natural and derived CDs to improve antitumoral PDT efficiency in aqueous media. To achieve these goals, three types of binding modes of PSs with CDs are developed: non-covalent CD⁻PS inclusion complexes, covalent CD⁻PS conjugates, and CD⁻PS nanoassemblies. This review is divided into three parts: (1) non-covalent CD-PS inclusion complexes, covalent CD⁻PS conjugates, and CD⁻PS nanoassemblies, (2) incorporating CD⁻PS systems into hybrid nanoparticles (NPs) using up-converting or other types of NPs, and (3) CDs with fullerenes as PSs.
Collapse
Affiliation(s)
- Amina Ben Mihoub
- Laboratoire de Chimie Phusique Macromoléculaire, Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
| | - Ludivine Larue
- Laboratoire de Chimie Phusique Macromoléculaire, Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France.
| | - Albert Moussaron
- Laboratoire de Chimie Phusique Macromoléculaire, Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
| | - Zahraa Youssef
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France.
| | - Ludovic Colombeau
- Laboratoire de Chimie Phusique Macromoléculaire, Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France.
| | - Francis Baros
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France.
| | - Céline Frochot
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France.
| | - Régis Vanderesse
- Laboratoire de Chimie Phusique Macromoléculaire, Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
| | - Samir Acherar
- Laboratoire de Chimie Phusique Macromoléculaire, Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
| |
Collapse
|
14
|
Birch JC, Khatri G, Watumull LM, Arriaga YE, Leyendecker JR. Unintended Consequences of Systemic and Ablative Oncologic Therapy in the Abdomen and Pelvis. Radiographics 2018; 38:1158-1179. [PMID: 29995613 DOI: 10.1148/rg.2018170137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Human cancers are genetically complex and diverse. Although advances in oncologic therapy aim to define and target unique steps in carcinogenesis, oncologists often rely on less discriminate anticancer therapies that have consequences for normal tissues. Even many of the so-called targeted therapies currently employed can adversely affect normal cells, leading to complications that necessitate dose reductions or cessation of specific therapies. This article explores the unintended consequences of currently employed systemic and ablative anticancer therapies that might manifest at imaging examinations of the abdomen and pelvis, including cytotoxic, molecular targeted, and immunologic agents; ablation; and hematopoietic stem cell transplant. Each of these treatments can have both major and minor unintended effects in the targeted organ(s), in local or adjacent structures, or at distant sites. Timely detection and reporting of adverse consequences of anticancer therapies by the astute imager can result in critical treatment modifications and/or lifesaving interventions; therefore, knowledge of these unintended effects is paramount for radiologists interpreting the results of imaging examinations in cancer patients. ©RSNA, 2018.
Collapse
Affiliation(s)
- Julie C Birch
- From the Department of Radiology (J.C.B., G.K., L.M.W., J.R.L.) and Department of Internal Medicine, Division of Hematology/Oncology (Y.E.A.), University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390
| | - Gaurav Khatri
- From the Department of Radiology (J.C.B., G.K., L.M.W., J.R.L.) and Department of Internal Medicine, Division of Hematology/Oncology (Y.E.A.), University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390
| | - Lori M Watumull
- From the Department of Radiology (J.C.B., G.K., L.M.W., J.R.L.) and Department of Internal Medicine, Division of Hematology/Oncology (Y.E.A.), University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390
| | - Yull E Arriaga
- From the Department of Radiology (J.C.B., G.K., L.M.W., J.R.L.) and Department of Internal Medicine, Division of Hematology/Oncology (Y.E.A.), University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390
| | - John R Leyendecker
- From the Department of Radiology (J.C.B., G.K., L.M.W., J.R.L.) and Department of Internal Medicine, Division of Hematology/Oncology (Y.E.A.), University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390
| |
Collapse
|
15
|
Targeting luteinizing hormone-releasing hormone: A potential therapeutics to treat gynecological and other cancers. J Control Release 2018; 269:277-301. [DOI: 10.1016/j.jconrel.2016.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 01/05/2023]
|