1
|
Pisuchpen N, Parakh A, Cao J, Yuenyongsinchai K, Joseph E, Lennartz S, Kongboonvijit S, Sahani D, Kambadakone A. Diagnostic performance and feasibility of dual-layer detector dual-energy CT for characterization of urinary stones in patients of different sizes. Abdom Radiol (NY) 2024; 49:209-219. [PMID: 38041709 DOI: 10.1007/s00261-023-04116-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Urinary stones are frequently encountered in urology and are typically identified using non-contrast CT scans. Dual-energy CT (DECT) is a valuable imaging technique that produces material-specific images and allows for precise assessment of stone composition by estimating the effective atomic number (Zeff), a capability not achievable with the conventional single-energy CT's attenuation measurement method. PURPOSE To investigate the diagnostic performance and image quality of dual-layer detector DECT (dlDECT) in characterizing urinary stones in patients of different sizes. METHODS All consecutive dlDECT examinations with stone protocol and presence of urinary stones between July 2018 and November 2019 were retrospectively evaluated. Two radiologists independently reviewed 120 kVp and color-overlay Zeff images to determine stone composition (reference standard = crystallography) and image quality. The objective analysis included image noise and Zeff values measurement. RESULTS A total of 739 urinary stones (median size 3.7 mm, range 1-35 mm) were identified on 177 CT examinations from 155 adults (mean age, 57 ± 15 years, 80 men, median weight 82.6 kg, range 42.6-186.9 kg). Using color-overlay Zeff images, the radiologists could subjectively interpret the composition in all stones ≥ 3 mm (n = 491). For stones with available reference standards (n = 74), dlDECT yielded a sensitivity of 80% (95%CI 44-98%) and a specificity of 98% (95%CI 92-100%) in visually discriminating uric acid from non-uric acid stones. Patients weighing > 90 kg and ≤ 90 kg had similar stone characterizability (p = 0.20), with 86% of stones characterized in the > 90 kg group and 87% in the ≤ 90 kg group. All examinations throughout various patients' weights revealed acceptable image quality. A Zeff cutoff of 7.66 accurately distinguished uric acid from non-uric acid stones (AUC = 1.00). Zeff analysis revealed AUCs of 0.78 and 0.91 for differentiating calcium-based stones from other non-uric stones and all stone types, respectively. CONCLUSION dlDECT allowed accurate differentiation of uric acid and non-uric acid stones among patients with different body sizes with acceptable image quality. CLINICAL IMPACT The ability to accurately differentiate uric acid stones from non-uric acid stones using color-overlay Zeff images allows for better tailored treatment strategies, helping to choose appropriate interventions and prevent potential complications related to urinary stones in patient care.
Collapse
Affiliation(s)
- Nisanard Pisuchpen
- Abdominal Radiology Division, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA
- Department of Radiology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
| | - Anushri Parakh
- Abdominal Radiology Division, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA
| | - Jinjin Cao
- Abdominal Radiology Division, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA
| | - Kampon Yuenyongsinchai
- Abdominal Radiology Division, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA
- Department of Radiology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
| | - Evita Joseph
- Abdominal Radiology Division, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA
| | - Simon Lennartz
- Abdominal Radiology Division, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA
- Institute for Diagnostic and Interventional Radiology, University Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Sasiprang Kongboonvijit
- Abdominal Radiology Division, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA
- Department of Radiology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
| | - Dushyant Sahani
- Department of Radiology, University of Washington, UWMC Radiology RR218, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Avinash Kambadakone
- Abdominal Radiology Division, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA.
| |
Collapse
|
2
|
Chakravarti S, Uyeda JW. Expanding Role of Dual-Energy CT for Genitourinary Tract Assessment in the Emergency Department, From the AJR Special Series on Emergency Radiology. AJR Am J Roentgenol 2023; 221:720-730. [PMID: 37073900 DOI: 10.2214/ajr.22.27864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Among explored applications of dual-energy CT (DECT) in the abdomen and pelvis, the genitourinary (GU) tract represents an area where accumulated evidence has established the role of DECT to provide useful information that may change management. This review discusses established applications of DECT for GU tract assessment in the emergency department (ED) setting, including characterization of renal stones, evaluation of traumatic injuries and hemorrhage, and characterization of incidental renal and adrenal findings. Use of DECT for such applications can reduce the need for additional multiphase CT or MRI examinations and reduce follow-up imaging recommendations. Emerging applications are also highlighted, including use of low-energy virtual monoenergetic images (VMIs) to improve image quality and potentially reduce contrast media doses and use of high-energy VMIs to mitigate renal mass pseudoenhancement. Finally, implementation of DECT into busy ED radiology practices is presented, weighing the trade-off of additional image acquisition, processing time, and interpretation time against potential additional useful clinical information. Automatic generation of DECT-derived images with direct PACS transfer can facilitate radiologists' adoption of DECT in busy ED environments and minimize impact on interpretation times. Using the described approaches, radiologists can apply DECT technology to improve the quality and efficiency of care in the ED.
Collapse
Affiliation(s)
| | - Jennifer W Uyeda
- Department of Emergency Radiology, Brigham and Women's Hospital/Harvard Medical School, 75 Francis St, Boston, MA 02115
| |
Collapse
|
3
|
Peña-Trujillo V, Gallo-Bernal S, Tung EL, Gee MS. Pediatric Applications of Dual-Energy Computed Tomography. Radiol Clin North Am 2023; 61:1069-1083. [PMID: 37758357 DOI: 10.1016/j.rcl.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
There is renewed interest in novel pediatric dual-energy computed tomography (DECT) applications that can image awake patients faster and at low radiation doses. DECT enables the simultaneous acquisition of 2 data sets at different energy levels, allowing for better material characterization and unique image reconstructions that enhance image analysis and provide quantitative and qualitative information about tissue composition. Pediatric DECT reduces radiation doses further while accelerating image acquisition and improving motion robustness. Current applications include the improved evaluation of congenital and acquired cardiovascular anomalies, lung perfusion and ventilation, renal stone composition, tumor extension and treatment response, and gastrointestinal diseases.
Collapse
Affiliation(s)
- Valeria Peña-Trujillo
- Division of Pediatric Imaging, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA. https://twitter.com/valeria_pt22
| | - Sebastian Gallo-Bernal
- Division of Pediatric Imaging, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA. https://twitter.com/SebGal1230
| | - Erik L Tung
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA. https://twitter.com/ErikTungMD
| | - Michael S Gee
- Division of Pediatric Imaging, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Srinivas-Rao S, Cao J, Marin D, Kambadakone A. Dual-Energy Computed Tomography to Photon Counting Computed Tomography: Emerging Technological Innovations. Radiol Clin North Am 2023; 61:933-944. [PMID: 37758361 DOI: 10.1016/j.rcl.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Computed tomography (CT) has seen remarkable developments in the past several decades, radically transforming the role of imaging in day-to-day clinical practice. Dual-energy CT (DECT), an exciting innovation introduced in the early part of this century, has widened the scope of CT, opening new opportunities due to its ability to provide superior tissue characterization. The introduction of photon-counting CT (PCCT) heralds a paradigm shift in CT scanner technology representing another significant milestone in CT innovation. PCCT offers several advantages over DECT, such as improved spectral resolution, enhanced tissue characterization, reduced image artifacts, and improved image quality.
Collapse
Affiliation(s)
- Shravya Srinivas-Rao
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA 02114-2696, USA
| | - Jinjin Cao
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA 02114-2696, USA
| | - Daniele Marin
- Department of Radiology, Duke University Medical Center, Box 3808 Erwin Road, Durham, NC 27710, USA
| | - Avinash Kambadakone
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA 02114-2696, USA.
| |
Collapse
|
5
|
Virarkar MK, Mileto A, Vulasala SSR, Ananthakrishnan L, Bhosale P. Dual-Energy Computed Tomography Applications in the Genitourinary Tract. Radiol Clin North Am 2023; 61:1051-1068. [PMID: 37758356 DOI: 10.1016/j.rcl.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
By virtue of material differentiation capabilities afforded through dedicated postprocessing algorithms, dual-energy CT (DECT) has been shown to provide benefit in the evaluation of various diseases. In this article, we review the diagnostic use of DECT in the assessment of genitourinary diseases, with emphasis on its role in renal stone characterization, incidental renal and adrenal lesion characterization, retroperitoneal trauma, reduction of radiation, and contrast dose and cost-effectiveness potential. We also discuss future perspectives of the DECT scanning mode, including the use of novel contrast injection strategies and photon-counting detector computed tomography.
Collapse
Affiliation(s)
- Mayur K Virarkar
- Department of Radiology, University of Florida College of Medicine, Clinical Center, C90, 2nd Floor, 655 West 8th Street, Jacksonville, FL 32209, USA
| | - Achille Mileto
- Department of Radiology, Mayo Clinic, Mayo Building West, 2nd Floor, 200 First Street SW, Rochester, MN, 55905, USA
| | - Sai Swarupa R Vulasala
- Department of radiology, University of Florida College of Medicine, Clinical Center, C90, 2nd Floor, 655 West 8th Street, Jacksonville, FL, 32209, USA.
| | - Lakshmi Ananthakrishnan
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Priya Bhosale
- Department of Diagnostic Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1479, Houston, TX 77030, USA
| |
Collapse
|
6
|
May C, Sodickson A. Leveraging Dual-Energy Computed Tomography to Improve Emergency Radiology Practice. Radiol Clin North Am 2023; 61:1085-1096. [PMID: 37758358 DOI: 10.1016/j.rcl.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Dual-energy computed tomography affords emergency radiologists with important tools to aid in the detection and discrimination of commonly encountered ED pathologies. In doing so, it can increase the speed of diagnosis and diagnostic certainty while sparing patients potentially unnecessary downsteam workups and radiation exposure. This article demonstrates these clinical benefits through a case-based approach.
Collapse
Affiliation(s)
- Craig May
- Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| | - Aaron Sodickson
- Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| |
Collapse
|
7
|
Feng P, Li G, Liang P. The value of dual-energy computed tomography (DECT) in the diagnosis of urinary calculi: a systematic review and meta-analysis of retrospective studies. PeerJ 2023; 11:e16076. [PMID: 37810769 PMCID: PMC10552745 DOI: 10.7717/peerj.16076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/20/2023] [Indexed: 10/10/2023] Open
Abstract
Objective Dual-energy computed tomography (DECT) imaging technology opens a new idea and method for analyzing stone composition, which can obtain several quantitative parameters reflecting tissue-related information and energy images different from traditional images. However, the application of DECT in diagnosing urinary calculi remains unknown. This study aims to evaluate the value of DECT in diagnosing urinary calculi by meta-analysis. Methods PubMed, EMBASE, Web of Science, and the Cochrane Library were searched to articles published from the establishment of the databases to April 18, 2023. We reviewed the articles on the diagnosis of urinary calculi detected by DECT, established standards, screened the articles, and extracted data. Two researchers carried out data extraction and the Cohen's unweighted kappa was estimated for inter-investigator reliability. The quality of the literature was evaluated by the diagnostic test accuracy quality evaluation tool (QUADAS-2). The heterogeneity and threshold effects were analyzed by Meta-Disc 1.4 software, and the combined sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic ratio were calculated. The combined receiver-operating characteristic (ROC) curve was drawn, and the value of DECT in the diagnosis of urinary calculi was evaluated by the area under the curve (AUC). The meta-analysis was registered at PROSPERO (CRD42023418204). Results One thousand and twenty-seven stones were detected in 1,223 samples from 10 diagnostic tests. The analyzed kappa alternated between 0.78-0.85 for the document's retrieval and detection procedure. The sensitivity of DECT in the diagnosis of urinary calculi was 0.94 (95% CI [0.92-0.96]). The positive likelihood ratio (PLR) of DECT in the diagnosis of urinary stones was 0.91 (95% CI [0.88-0.94]), and the negative likelihood ratio (NLR) was 0.08 (95% CI [0.05-0.11]). The specificity of DECT for detecting urinary calculi was 0.91 (95% CI [0.88-0.94]). The area under the curve of the summary receiver operator characteristic (SROC) was 0.9875. The sensitivity of dual-energy CT in the diagnosis of urinary calculi diameter <3 mm was 0.94 (95% CI [0.91-0.96]). The PLR of DECT in the diagnosis of urinary stones diameter <3 mm was 10.79 (95% CI [5.25 to 22.17]), and the NLR was 0.08 (95% CI [0.05-0.13]). The specificity of DECT for detecting urinary calculi <3 mm was 0.91 (95% CI [0.87-0.94]). The SROC was 0.9772. Conclusion The DECT has noble application value in detecting urinary calculi.
Collapse
Affiliation(s)
- Peipei Feng
- Department of Imaging, Yantaishan Hospital, Yantai, China
| | - Guochao Li
- Department of Imaging, Yantaishan Hospital, Yantai, China
| | - Peng Liang
- Department of Imaging, Yantaishan Hospital, Yantai, China
| |
Collapse
|
8
|
Verstraeten S, Ansems J, van Ommen W, van der Linden D, Looijmans F, Tesselaar E. Comparison of true non-contrast and virtual non-contrast images in the characterization of renal lesions using detector-based spectral CT. Br J Radiol 2023; 96:20220157. [PMID: 37334964 PMCID: PMC10461284 DOI: 10.1259/bjr.20220157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 01/24/2023] [Accepted: 05/19/2023] [Indexed: 06/21/2023] Open
Abstract
OBJECTIVES Renal lesions are sometimes incidentally detected during computed tomography (CT) examinations in which an unenhanced series is not included, preventing the lesions from being fully characterized. The aim of this study was to investigate the feasibility to use virtual non-contrast (VNC) images, acquired using a detector-based dual-energy CT, for the characterization of renal lesions. METHODS Twenty-seven patients (12 women) underwent a renal CT scan, including a non-contrast, an arterial, and a venous phase contrast-enhanced series, using a detector-based dual-energy CT scanner. VNC images were reconstructed from the venous contrast-enhanced series. The mean attenuation values of 65 renal lesions in both the VNC and true non-contrast (TNC) images were measured and compared quantitatively. Three radiologists blindly assessed all lesions using either VNC or TNC images in combination with contrast-enhanced images. RESULTS Sixteen patients had cystic lesions, five had angiomyolipoma (AML), and six had suspected renal cell carcinomas (RCC). Attenuation values in VNC and TNC images were strongly correlated (ρ = 0.7, mean difference -6.0 ± 13 HU). The largest differences were found for unenhanced high-attenuation lesions. Radiologists classified 86% of the lesions correctly using VNC images. CONCLUSIONS In 70% of the patients, incidentally detected renal lesions could be accurately characterized using VNC images, resulting in less patient burden and a reduction in radiation exposure. ADVANCES IN KNOWLEDGE This study shows that renal lesions can be accurately characterized using VNC images acquired by detector-based dual-energy CT, which is in agreement with previous studies using dual-source and rapid X-ray tube potential switching technique.
Collapse
Affiliation(s)
| | - Janneke Ansems
- Department of Medical Physics, Bravis Hospital, Roosendaal, Netherlands
| | - Wenzel van Ommen
- Department of Radiology, Bravis Hospital, Roosendaal, Netherlands
| | | | - Frank Looijmans
- Department of Radiology, Bravis Hospital, Roosendaal, Netherlands
| | | |
Collapse
|
9
|
Schwartz FR, Samei E, Marin D. Exploiting the Potential of Photon-Counting CT in Abdominal Imaging. Invest Radiol 2023; 58:488-498. [PMID: 36728045 DOI: 10.1097/rli.0000000000000949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
ABSTRACT Photon-counting computed tomography (PCCT) imaging uses a new detector technology to provide added information beyond what can already be obtained with current CT and MR technologies. This review provides an overview of PCCT of the abdomen and focuses specifically on applications that benefit the most from this new imaging technique. We describe the requirements for a successful abdominal PCCT acquisition and the challenges for clinical translation. The review highlights work done within the last year with an emphasis on new protocols that have been tested in clinical practice. Applications of PCCT include imaging of cystic lesions, sources of bleeding, and cancers. Photon-counting CT is positioned to move beyond detection of disease to better quantitative staging of disease and measurement of treatment response.
Collapse
Affiliation(s)
| | - Ehsan Samei
- Quantitative Imaging and Analysis Lab, Duke University Health System, Durham, NC
| | | |
Collapse
|
10
|
Cellina M, Cè M, Rossini N, Cacioppa LM, Ascenti V, Carrafiello G, Floridi C. Computed Tomography Urography: State of the Art and Beyond. Tomography 2023; 9:909-930. [PMID: 37218935 PMCID: PMC10204399 DOI: 10.3390/tomography9030075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Computed Tomography Urography (CTU) is a multiphase CT examination optimized for imaging kidneys, ureters, and bladder, complemented by post-contrast excretory phase imaging. Different protocols are available for contrast administration and image acquisition and timing, with different strengths and limits, mainly related to kidney enhancement, ureters distension and opacification, and radiation exposure. The availability of new reconstruction algorithms, such as iterative and deep-learning-based reconstruction has dramatically improved the image quality and reducing radiation exposure at the same time. Dual-Energy Computed Tomography also has an important role in this type of examination, with the possibility of renal stone characterization, the availability of synthetic unenhanced phases to reduce radiation dose, and the availability of iodine maps for a better interpretation of renal masses. We also describe the new artificial intelligence applications for CTU, focusing on radiomics to predict tumor grading and patients' outcome for a personalized therapeutic approach. In this narrative review, we provide a comprehensive overview of CTU from the traditional to the newest acquisition techniques and reconstruction algorithms, and the possibility of advanced imaging interpretation to provide an up-to-date guide for radiologists who want to better comprehend this technique.
Collapse
Affiliation(s)
- Michaela Cellina
- Radiology Department, Fatebenefratelli Hospital, ASST Fatebenefratelli Sacco, Piazza Principessa Clotilde 3, 20121 Milan, Italy
| | - Maurizio Cè
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Nicolo’ Rossini
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy
| | - Laura Maria Cacioppa
- Division of Interventional Radiology, Department of Radiological Sciences, University Politecnica delle Marche, 60126 Ancona, Italy
| | - Velio Ascenti
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Gianpaolo Carrafiello
- Radiology Department, Policlinico di Milano Ospedale Maggiore|Fondazione IRCCS Ca’ Granda, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Chiara Floridi
- Division of Interventional Radiology, Department of Radiological Sciences, University Politecnica delle Marche, 60126 Ancona, Italy
- Division of Special and Pediatric Radiology, Department of Radiology, University Hospital “Umberto I-Lancisi-Salesi”, 60126 Ancona, Italy
| |
Collapse
|
11
|
Ascenti G, Cicero G, Cardone G, Bertelli E, Papa M, Ciccone V, Manetta R, Gentili F, Francioso AP, Mazzei MA, Floridi C, Di Cesare E, Gandolfo N, De Filippo M, Miele V, Giovagnoni A. Cornerstones of CT urography: a shared document by the Italian board of urogenital radiology. LA RADIOLOGIA MEDICA 2023; 128:601-611. [PMID: 37027091 DOI: 10.1007/s11547-023-01623-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/15/2023] [Indexed: 04/08/2023]
Abstract
CT urography is a single term used to refer to different scanning protocols that can be applied for a number of clinical indications. If, on the one hand, this highlights the role of the radiologist in deciding the most suitable technique to perform according to the patient's needs, on the other hand, a certain confusion may arise due to the different technical and clinical variables that have to be taken into account. This has been well demonstrated by a previous work based on an online questionnaire administered to a population of Italian radiologists that brought out similarities as well as differences across the national country. Defining precise guidelines for each clinical scenario, although desirable, is a difficult task to accomplish, if not even unfeasible. According to the prementioned survey, five relevant topics concerning CT urography have been identified: definition and clinical indications, opacification of the excretory system, techniques, post-processing reconstructions, and radiation dose and utility of dual-energy CT. The aim of this work is to deepen and share knowledge about these main points in order to assist the radiology in the daily practice. Moreover, a synopsis of recommendations agreed by the Italian board of genitourinary imaging is provided.
Collapse
Affiliation(s)
- Giorgio Ascenti
- Section of Radiological Sciences, Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, Policlinico "G. Martino", Via Consolare Valeria, 1, 98100, Messina, Italy
| | - Giuseppe Cicero
- Section of Radiological Sciences, Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, Policlinico "G. Martino", Via Consolare Valeria, 1, 98100, Messina, Italy.
| | - Gianpiero Cardone
- Diagnostic and Interventional Radiology Department, IRCCS Ospedale San Raffaele-Turro, Università Vita-Salute San Raffaele, Milan, Italy
| | - Elena Bertelli
- Department of Emergency Radiology, Careggi University Hospital, Florence, Italy
| | - Maurizio Papa
- Complex Unit of Radiology, Department of Diagnostic and Interventional Radiology, Azienda Socio Sanitaria Territoriale (ASST) Lodi, Lodi, Italy
| | - Vincenzo Ciccone
- Radiology Department, San Giovanni Di Dio E Ruggi D'Aragona Hospital, Salerno, Italy
| | - Rosa Manetta
- Radiology Unit, San Salvatore Hospital, L'Aquila, Italy
| | - Francesco Gentili
- Unit of Diagnostic Imaging, Department of Radiological Sciences, Azienda Ospedaliero-Universitaria Senese, "Santa Maria Alle Scotte" General Hospital, Viale Mario Bracci, 16, Siena, 53100, Italy
| | - Antonio Pio Francioso
- Complex Unit of Radiology, Department of Diagnostic and Interventional Radiology, Azienda Socio Sanitaria Territoriale (ASST) Lodi, Lodi, Italy
| | - Maria Antonietta Mazzei
- Unit of Diagnostic Imaging, Department of Medical, Surgical and Neuro Sciences and of Radiological Sciences, University of Siena, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Chiara Floridi
- Department of Radiological Sciences, Ospedali Riuniti Ancona, Università Politecnica Delle Marche - University Hospital, Via Tronto 10, 60126, Ancona, Italy
| | - Ernesto Di Cesare
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Nicoletta Gandolfo
- Diagnostic Imaging Department, Villa Scassi Hospital-ASL 3, Corso Scassi 1, Genoa, Italy
| | - Massimo De Filippo
- University of Parma, Parma Hospital, Via Gramsci 14, 43126, Parma, Italy
| | - Vittorio Miele
- Department of Emergency Radiology, Careggi University Hospital, Florence, Italy
| | - Andrea Giovagnoni
- Department of Radiological Sciences, Ospedali Riuniti Ancona, Università Politecnica Delle Marche - University Hospital, Via Tronto 10, 60126, Ancona, Italy
| |
Collapse
|
12
|
Wang M, Dai Y, Jiang H, Sansone A, Jannini EA, Zhang X. Application of dual-energy CT angiography in diagnosis of arterial erectile dysfunction: new scanning technology, new scanning area. Aging Male 2022; 25:257-265. [PMID: 36102620 DOI: 10.1080/13685538.2022.2121815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
OBJECTIVES To explore the value of dual-energy computed tomography (DE-CT) angiography in diagnosis of arteriogenic erectile dysfunction (ED) patients and feasibility of new scanning area that excludes the testis. MATERIALS AND METHODS Ninety-three patients suspected of suffering arterial ED and 40 health volunteers underwent penile duplex Doppler ultrasound and DE-CT angiography (DE-CTA). The scanning range of DE-CTA covered whole arterial system of pelvis and testis was excluded. Two blinded investigators independently evaluated the arterial system that supplies the penis. RESULTS Finally, 1596 segments were evaluated and 470 segments were judged to be abnormal. The distribution was: 2 (0.4%) in common iliac artery, 7 (1.5%) in internal iliac artery, 82 (17.5%) in internal pudendal artery, 89 (18.9%) in penile artery, 120 (25.5%) in dorsal artery, and 170 (36.2%) in cavernosal artery. The specificity, sensitivity, positive predictive value, and negative predictive value of DE-CTA in diagnostic were 86.02%, 87.50%, 94.12%, and 72.92%. Besides, the new scan area allowed for effective evaluation of the arteries while excluding the testis. CONCLUSION DE-CTA can provide unbiased, safe evaluation of the vascular status of the penile bed in patients with ED.
Collapse
Affiliation(s)
- Ming Wang
- Department of Urology, First affiliated hospital of Anhui medical university, Hefei, China
| | - Yutian Dai
- Department of Andrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hui Jiang
- Department of Andrology, Peking University Third Hospital, Beijing, China
| | - Andrea Sansone
- Chair of Endocrinology & Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Emmanuele A Jannini
- Chair of Endocrinology & Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Xiansheng Zhang
- Department of Urology, First affiliated hospital of Anhui medical university, Hefei, China
| |
Collapse
|
13
|
Cao J, Lennartz S, Pisuchpen N, Mroueh N, Kongboonvijit S, Parakh A, Sahani DV, Kambadakone A. Renal Lesion Characterization by Dual-Layer Dual-Energy CT: Comparison of Virtual and True Unenhanced Images. AJR Am J Roentgenol 2022; 219:614-623. [PMID: 35441533 DOI: 10.2214/ajr.21.27272] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND. Prior studies have provided mixed results for the ability to replace true unenhanced (TUE) images with virtual unenhanced (VUE) images when characterizing renal lesions by dual-energy CT (DECT). Detector-based dual-layer DECT (dlDECT) systems may optimize performance of VUE images for this purpose. OBJECTIVE. The purpose of this article was to compare dual-phase dlDECT examinations evaluated using VUE and TUE images in differentiating cystic and solid renal masses. METHODS. This retrospective study included 110 patients (mean age, 64.3 ± 11.8 years; 46 women, 64 men) who underwent renal-mass protocol dlDECT between July 2018 and February 2022. TUE, VUE, and nephrographic phase image sets were reconstructed. Lesions were diagnosed as solid masses by histopathology or MRI. Lesions were diagnosed as cysts by composite criteria reflecting findings from MRI, ultrasound, and the TUE and nephrographic phase images of the dlDECT examinations. One radiologist measured lesions' attenuation on all dlDECT image sets. Lesion characterization was compared between use of VUE and TUE images, including when considering enhancement of 20 HU or greater to indicate presence of a solid mass. RESULTS. The analysis included 219 lesions (33 solid masses; 186 cysts [132 simple, 20 septate, 34 hyperattenuating]). TUE and VUE attenuation were significantly different for solid masses (33.4 ± 7.1 HU vs 35.4 ± 8.6 HU, p = .002), simple cysts (10.8 ± 5.6 HU vs 7.1 ± 8.1 HU, p < .001), and hyperattenuating cysts (56.3 ± 21.0 HU vs 47.6 ± 16.3 HU, p < .001), but not septate cysts (13.6 ± 8.1 HU vs 14.0 ± 6.8 HU, p = .79). Frequency of enhancement 20 HU or greater when using TUE and VUE images was 90.9% and 90.9% in solid masses, 0.0% and 9.1% in simple cysts, 15.0% and 10.0% in septate cysts, and 11.8% and 38.2% in hyperattenuating cysts. All solid lesions were concordant in terms of enhancement 20 HU or greater when using TUE and VUE images. Twelve simple cysts and nine hyperattenuating cysts showed enhancement of 20 HU or greater when using VUE but not TUE images. CONCLUSION. Use of VUE images reliably detected enhancement in solid masses. However, VUE images underestimated attenuation of simple and hyperattenuating cysts, leading to false-positive findings of enhancement by such lesions. CLINICAL IMPACT. The findings do not support replacement of TUE acquisitions with VUE images when characterizing renal lesions by dlDECT.
Collapse
Affiliation(s)
- Jinjin Cao
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, White 270, Boston, MA 02114-2696
| | - Simon Lennartz
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, White 270, Boston, MA 02114-2696
- Institute for Diagnostic and Interventional Radiology, University Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Nisanard Pisuchpen
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, White 270, Boston, MA 02114-2696
- Department of Radiology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nayla Mroueh
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, White 270, Boston, MA 02114-2696
| | - Sasiprang Kongboonvijit
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, White 270, Boston, MA 02114-2696
- Department of Radiology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Anushri Parakh
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, White 270, Boston, MA 02114-2696
| | | | - Avinash Kambadakone
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, White 270, Boston, MA 02114-2696
| |
Collapse
|
14
|
Xu C, Kong L, Deng X. Dual-Energy Computed Tomography For Differentiation Between Osteoblastic Metastases and Bone Islands. Front Oncol 2022; 12:815955. [PMID: 35903682 PMCID: PMC9315104 DOI: 10.3389/fonc.2022.815955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 06/09/2022] [Indexed: 11/23/2022] Open
Abstract
Objective The objective of our study was to evaluate the utility of Rho/Z on dual-energy computed tomography (DECT) for the differentiation of osteoblastic metastases (OBMs) from bone islands (BIs). Methods DECT images of 110 patients with malignancies were collected. The effective atomic number (Z), electron density (Rho), dual energy index (DEI), and regular CT (rCT) values were measured by two observers. Independent-sample t-test was used to compare these values between OBMs and BIs. The diagnostic performance was assessed by receiver operating characteristic (ROC) analysis and the cutoff values were evaluated according to ROC curves. Results A total of 205 OBMs and 120 BIs were included. The mean values of Z, Rho, DEI, and rCT of OBMs were significantly lower than those of BIs, whereas the standard deviation values were higher than those of BIs (all p ≤ 0.05). ROC analysis showed that 11.86 was the optimal cutoff value for Z, rendering an area under the ROC curve (AUC) of 0.91, with a sensitivity of 91.2% and a specificity of 82.5%. Conclusion DECT can provide quantitative values of Z, Rho, and DEI and has good performance in differentiating between OBMs and BIs.
Collapse
|
15
|
Aggarwal A, Das CJ, Sharma S. Recent advances in imaging techniques of renal masses. World J Radiol 2022; 14:137-150. [PMID: 35978979 PMCID: PMC9258310 DOI: 10.4329/wjr.v14.i6.137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/04/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Multiphasic multidetector computed tomography (CT) forms the mainstay for the characterization of renal masses whereas magnetic resonance imaging (MRI) acts as a problem-solving tool in some cases. However, a few of the renal masses remain indeterminate even after evaluation by conventional imaging methods. To overcome the deficiency in current imaging techniques, advanced imaging methods have been devised and are being tested. This review will cover the role of contrast-enhanced ultrasonography, shear wave elastography, dual-energy CT, perfusion CT, MR perfusion, diffusion-weighted MRI, blood oxygen level-dependent MRI, MR spectroscopy, positron emission tomography (PET)/prostate-specific membrane antigen-PET in the characterization of renal masses.
Collapse
Affiliation(s)
- Ankita Aggarwal
- Department of Radiology, Vardhman Mahavir Medical College& Safdarjung Hospital, Delhi 110029, India
| | - Chandan J Das
- Department of Radiodiagnosis and Interventional Radiology, All India Institute of Medical Sciences, Delhi 110029, India
| | - Sanjay Sharma
- Department of Radiology (RPC), All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
16
|
Euler A, Zadory M, Breiding PS, Sartoretti T, Ghafoor S, Froehlich JM, Donati OF. Realistic Kidney Tissue Surrogates for Multienergy Computed Tomography-Feasibility and Estimation of Energy-Dependent Attenuation Thresholds for Renal Lesion Enhancement in Low-kV and Virtual Monoenergetic Imaging. Invest Radiol 2021; 56:791-798. [PMID: 33899757 DOI: 10.1097/rli.0000000000000790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE The aims of this study were to assess if kidney tissue surrogates (KTSs) are superior to distilled water-iodine solutions in the emulation of energy-dependent computed tomography (CT) attenuation characteristics of renal parenchyma and to estimate attenuation thresholds for definite lesion enhancement for low-kV single-energy and low-keV dual-energy virtual monoenergetic imaging. METHODS A water-filled phantom (diameter, 30 cm) with multiple vials was imaged on a dual-source dual-energy CT (DS-DE) and a single-source split-filter dual-energy CT (SF-DE), both in single-energy mode at 80, 100, 120, 140 kVp and in dual-energy mode at 80/Sn150, 90/Sn150, and 100/Sn150 kVp for DS-DE and AuSn120 kVp for SF-DE. Single-energy images, linear-blended dual-energy images, and virtual monoenergetic imaging at energy levels from 40 to 190 keV were reconstructed. First, attenuation characteristics of KTS in solid and liquid consistencies were compared. Second, solid KTSs were developed to match the CT attenuation of unenhanced renal parenchyma at 120 kVp as retrospectively measured in 100 patients. Third, CT attenuation of KTS-iodine and water-iodine solutions at 8 different iodine concentrations (0-10 mg I/mL) were compared as a function of tube voltage and of keV level using multiple linear regression models. Energy-dependent attenuation thresholds for definite lesion enhancement were calculated. RESULTS Unenhanced renal parenchyma at 120 kVp measured on average 30 HU on both scanners in the patient cohort. Solid KTS with a water content of 80% emulated the attenuation of unenhanced renal parenchyma (30 HU) more accurately compared with water-iodine solutions (0 HU). Attenuation difference between KTS-iodine and water-iodine solutions converged with increasing iodine concentration and decreasing x-ray energy due to beam-hardening effects. A slight attenuation difference of approximately 2 HU was found between the 2 CT scanners. Attenuation thresholds for definite lesion enhancement were dependent on tube voltage and keV level and ranged from 16.6 to 33.2 HU and 3.2 to 68.3 HU for single-energy and dual-energy CT scan modes for DS-DE and from 16.1 to 34.3 HU and 3.3 to 92.2 HU for SF-DE. CONCLUSIONS Kidney tissue surrogates more accurately emulate the energy-dependent CT attenuation characteristics of renal parenchyma for multienergy CT compared with conventional water-iodine approaches. Energy-dependent thresholds for definite lesion enhancement could facilitate lesion characterization when imaging at different energies than the traditional 120 kVp.
Collapse
Affiliation(s)
- André Euler
- From the Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich, University of Zurich
| | | | - Philipe Sebastian Breiding
- From the Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich, University of Zurich
| | | | - Soleen Ghafoor
- From the Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich, University of Zurich
| | | | - Olivio Fabrizio Donati
- From the Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich, University of Zurich
| |
Collapse
|
17
|
Pettersson E, Bäck A, Thilander-Klang A. COMPARISON OF METAL ARTEFACTS FOR DIFFERENT DUAL ENERGY CT TECHNIQUES. RADIATION PROTECTION DOSIMETRY 2021; 195:232-245. [PMID: 34345904 PMCID: PMC8507444 DOI: 10.1093/rpd/ncab105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 10/30/2020] [Accepted: 05/05/2021] [Indexed: 06/13/2023]
Abstract
This study compares dual-energy computed tomography (DECT) images of a phantom including different material inserts and with additional lateral titanium or stainless steel inserts, simulating bilateral hip prostheses. Dual-source (DS) and fast kV-switching (FKS) DECT with/without metal artefact reduction (MAR) were compared with regards to virtually monoenergetic CT number accuracy and the depiction of different materials. Streak artefacts were observed between the metal inserts that were more severe with steel compared to titanium inserts. The artefact severity and CT number accuracy depended on the photon energy (keV) for both DECT techniques. While MAR generally increased the CT number accuracy and material depiction within the streak artefacts, it sometimes decreased the accuracy outside the streak artefacts for both DS and FKS. FKS depicted the metal inserts more accurately than DS with regards to both CT numbers and external diameter.
Collapse
Affiliation(s)
| | - A Bäck
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 45 Sweden
- Department of Therapeutic Radiation Physics, Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg SE-413 45, Sweden
| | - A Thilander-Klang
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 45 Sweden
- Department of Diagnostic Radiation Physics, Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg SE-413 45, Sweden
| |
Collapse
|
18
|
Mohd Ali DKM, Mahmud MH, Mohamad NS. Pre-operative Percutaneous Nephrolithotripsy Characterisation of Kidney Stones with Second-Generation Dual-Source Dual-Energy Computed Tomography. Malays J Med Sci 2020; 27:43-52. [PMID: 33154701 PMCID: PMC7605830 DOI: 10.21315/mjms2020.27.5.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/04/2020] [Indexed: 10/27/2022] Open
Abstract
Background: The current clinical practice to manage kidney stone requires knowledge of the stone composition. However, it is often difficult to determine the actual stone composition before a stone is operatively removed from the patient. Dual-energy computed tomography (DECT) can predict urinary stone composition, but it is not widely adopted. The purpose of the study was to investigate the use of a second-generation DECT with tin or stannum (Sn) filter for characterising the kidney stones composition.
Methods: Thirty-three kidney stones were scanned ex vivo using a dual-source (DS)DECT scanner with dual-energy (DE) mode of 80/140 kVp with and without 4 mm Sn filtration. DE ratio was calculated to determine the kidney stones composition (uric acid, calcium oxalate, calcium phosphate and cystine). The median DE ratio of the stones was compared using Wilcoxon signed rank test and the results were further correlated with semi-quantitative Fourier transform infrared (FTIR) spectroscopy analysis using Kendall’s Tau test with P < 0.05 deemed to be statistically significant.
Results: Second-generation DS-DECT could significantly discriminate the stones composition with and without Sn filtration (P < 0.001). The median DE ratio of uric acid, calcium oxalate and cystine stones were significantly higher with Sn filtration than those without filtration (P < 0.05). DECT results revealed significant correlation with FTIR spectroscopy analysis (r = 0.716, P < 0.001). DECT with Sn filtration showed increased performance (100% sensitivity, 0% specificity) than those without filtration (48.5% sensitivity, 0% specificity) in the detection of the kidney stone subtypes.
Conclusion: In the second-generation DECT with additional Sn filtration, DECT has shown a significant performance in characterising and discriminating the kidney stone composition. This may improve diagnostic and therapy management in kidney stones cases.
Collapse
Affiliation(s)
- DK Mella Mohd Ali
- Centre of Medical Imaging, Faculty of Health Sciences, Universiti Teknologi MARA (UiTM) Selangor Branch, Puncak Alam Campus, Selangor, Malaysia
| | - Mohd Hafizi Mahmud
- Centre of Medical Imaging, Faculty of Health Sciences, Universiti Teknologi MARA (UiTM) Selangor Branch, Puncak Alam Campus, Selangor, Malaysia
| | - Noor Shafini Mohamad
- Centre of Medical Imaging, Faculty of Health Sciences, Universiti Teknologi MARA (UiTM) Selangor Branch, Puncak Alam Campus, Selangor, Malaysia
| |
Collapse
|
19
|
Catania R, Dasyam N, Furlan A, Borhani AA. Cross-sectional imaging of seminal vesicles and vasa deferentia. Abdom Radiol (NY) 2020; 45:2049-2062. [PMID: 31897685 DOI: 10.1007/s00261-019-02368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A wide spectrum of pathologies, ranging from inconsequential degenerative and senile changes to clinically significant neoplasms, can affect seminal vesicles (SVs). With rapid rise in use of magnetic resonance imaging for evaluation of prostate in recent years an increasing number of cases of incidental SV pathologies are encountered by radiologists. Despite the high contrast resolution and high spatial resolution offered by multiparametric pelvic MRI, accurate diagnosis of SV processes can at times be challenging. In this article, we review the anatomy and embryology of the SVs and vasa deferentia and then explore the spectrum of diseases affecting them.
Collapse
Affiliation(s)
- Roberta Catania
- Division of Abdominal Imaging, Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Intensive Medicine, Institute of Radiology, IRCCS Policlinico San Matteo Foundation, University of Parvia, Parvia, Italy
| | - Navya Dasyam
- University of Pittsburgh School of Medicine, UPMC Presbyterian, Radiology Suite 200 East Wing 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Alessandro Furlan
- University of Pittsburgh School of Medicine, UPMC Presbyterian, Radiology Suite 200 East Wing 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Amir A Borhani
- University of Pittsburgh School of Medicine, UPMC Presbyterian, Radiology Suite 200 East Wing 200 Lothrop Street, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
20
|
McCollough CH, Boedeker K, Cody D, Duan X, Flohr T, Halliburton SS, Hsieh J, Layman RR, Pelc NJ. Principles and applications of multienergy CT: Report of AAPM Task Group 291. Med Phys 2020; 47:e881-e912. [DOI: 10.1002/mp.14157] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/11/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
| | - Kirsten Boedeker
- Canon (formerly Toshiba) Medical Systems Corporation 1440 Warnall Ave Los Angeles CA 90024 USA
| | - Dianna Cody
- University of Texas, M.D. Anderson Cancer Center 7163 Spanish Grant Galveston TX 77554‐7756 USA
| | - Xinhui Duan
- Southwestern Medical Center University of Texas 5323 Harry Hines Blvd Dallas TX 75390‐9071 USA
| | - Thomas Flohr
- Siemens Healthcare GmbH Siemensstr. 3 Forchheim BY 91031 Germany
| | | | - Jiang Hsieh
- GE Healthcare Technologies 3000 N. Grandview Blvd. W-1190 Waukesha WI 53188 USA
| | - Rick R. Layman
- University of Texas, M.D. Anderson Cancer Center 7163 Spanish Grant Galveston TX 77554‐7756 USA
| | - Norbert J. Pelc
- Stanford University 443 Via Ortega, Room 203 Stanford CA 94305‐4125 USA
| |
Collapse
|
21
|
Substantial radiation dose reduction with consistent image quality using a novel low-dose stone composition protocol. World J Urol 2020; 38:2971-2979. [PMID: 31993735 DOI: 10.1007/s00345-020-03082-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 01/06/2020] [Indexed: 10/25/2022] Open
Abstract
PURPOSE To assess a novel low-dose CT-protocol, combining a 150 kV spectral filtration unenhanced protocol (Sn150 kVp) and a stone-targeted dual-energy CT (DECT) in patients with urolithiasis. METHODS 232 (151 male, 49 ± 16.4 years) patients with urolithiasis received a low-dose non-contrast enhanced CT (NCCT) for suspected urinary stones either on a third-generation dual-source CT system (DSCT) using Sn150 kVp (n = 116, group 1), or on a second-generation DSCT (n = 116 group 2) using single energy (SE) 120 kVp. For group 1, a subsequent dual-energy CT (DECT) with a short stone-targeted scan range was performed. Objective and subjective image qualities were assessed. Radiation metrics were compared. RESULTS 534 stones (group 1: n = 242 stones; group 2: n = 292 stones) were found. In group 1, all 215 stones within the stone-targeted DECT-scan range were identified. DE analysis was able to distinguish between UA and non-UA calculi in all collected stones. 11 calculi (5.12%) were labeled as uric acid (UA) while 204 (94.88%) were labeled as non-UA calculi. There was no significant difference in overall Signal-to-noise-ratio between group 1 and group 2 (p = 0.819). On subjective analysis both protocols achieved a median Likert rating of 2 (p = 0.171). Mean effective dose was significantly lower for combined Sn150 kVp and stone-targeted DECT (3.34 ± 1.84 mSv) compared to single energy 120 kVp NCCT (4.45 ± 2.89 mSv) (p < 0.001), equaling a 24.9% dose reduction. CONCLUSION The evaluated novel low-dose stone composition protocol allows substantial radiation dose reduction with consistent high diagnostic image quality.
Collapse
|
22
|
Diagnostic accuracy of dual-energy computed tomography (DECT) to differentiate uric acid from non-uric acid calculi: systematic review and meta-analysis. Eur Radiol 2020; 30:2791-2801. [DOI: 10.1007/s00330-019-06559-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/22/2019] [Accepted: 10/30/2019] [Indexed: 01/16/2023]
|
23
|
Trabzonlu TA, Mozaffary A, Kim D, Yaghmai V. Dual-energy CT evaluation of gastrointestinal bleeding. Abdom Radiol (NY) 2020; 45:1-14. [PMID: 31728614 DOI: 10.1007/s00261-019-02226-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Gastrointestinal bleeding is a common cause for hospital admissions and is an important cause of morbidity and mortality. Although endoscopy is accepted as the standard initial diagnostic modality for the evaluation of gastrointestinal bleeding, multiphasic computed tomography (CT) imaging has become an alternative diagnostic tool. Dual-energy CT with post-processing techniques may have additional advantages over single-energy computed tomography in evaluation of gastrointestinal bleeding. In this article, we discuss the role of dual-energy CT in the evaluation of gastrointestinal bleeding with potential advantages over conventional CT and limitations.
Collapse
|
24
|
Udare A, Walker D, Krishna S, Chatelain R, McInnes MD, Flood TA, Schieda N. Characterization of clear cell renal cell carcinoma and other renal tumors: evaluation of dual-energy CT using material-specific iodine and fat imaging. Eur Radiol 2019; 30:2091-2102. [PMID: 31858204 DOI: 10.1007/s00330-019-06590-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/02/2019] [Accepted: 11/12/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE This study aimed to assess material-specific iodine and fat images for diagnosis of clear cell renal cell carcinoma (cc-RCC) compared to papillary RCC (p-RCC) and other renal masses. MATERIALS AND METHODS With IRB approval, we identified histologically confirmed solid renal masses that underwent rapid-kVp-switch DECT between 2016 and 2018: 25 cc-RCC (7 low grade versus 18 high grade), 11 p-RCC, and 6 other tumors (2 clear cell papillary RCC, 2 chromophobe RCC, 1 oncocytoma, 1 renal angiomyomatous tumor). A blinded radiologist measured iodine and fat concentration on material-specific iodine-water and fat-water basis pair images. Comparisons were performed between groups using univariate analysis and diagnostic accuracy calculated by ROC. RESULTS Iodine concentration was higher in cc-RCC (6.14 ± 1.79 mg/mL) compared to p-RCC (1.40 ± 0.54 mg/mL, p < 0.001), but not compared to other tumors (5.0 ± 2.2 mg/mL, p = 0.370). Intratumoral fat was seen in 36.0% (9/25) cc-RCC (309.6 ± 234.3 mg/mL [71.1-762.3 ng/mL]), 9.1% (1/11) papillary RCC (97.11 mg/mL), and no other tumors (p = 0.036). Iodine concentration ≥ 3.99 mg/mL achieved AUC and sensitivity/specificity of 0.88 (CI 0.76-1.00) and 92.31%/82.40% to diagnose cc-RCC. To diagnose p-RCC, iodine concentration ≤ 2.5 mg/mL achieved AUC and sensitivity/specificity of 0.99 (0.98-1.00) and 100%/100%. The presence of intratumoral fat had AUC 0.64 (CI 0.53-0.75) and sensitivity/specificity of 34.6%/93.8% to diagnose cc-RCC. A logistic regression model combining iodine concentration and presence of fat increased AUC to 0.91 (CI 0.81-1.0) with sensitivity/specificity of 80.8%/93.8% to diagnose cc-RCC. CONCLUSION Iodine concentration values are highly accurate to differentiate clear cell RCC from papillary RCC; however, they overlap with other tumors. Fat-specific images may improve differentiation of clear cell RCC from other avidly enhancing tumors. KEY POINTS • Clear cell renal cell carcinoma (RCC) has significantly higher iodine concentration than papillary RCC, but there is an overlap in values comparing clear cell RCC to other renal tumors. • Iodine concentration ≤ 2.5 mg/mL is highly accurate to differentiate papillary RCC from clear cell RCC and other renal tumors. • The presence of microscopic fat on material-specific fat images was specific for clear cell RCC, helping to differentiate clear cell RCC from other avidly enhancing renal tumors.
Collapse
Affiliation(s)
- Amar Udare
- Department of Medical Imaging, The Ottawa Hospital, University of Ottawa, 1053 Carling Avenue, Ottawa, ON, K1Y 4E9, Canada
| | - Daniel Walker
- Department of Medical Imaging, The Ottawa Hospital, University of Ottawa, 1053 Carling Avenue, Ottawa, ON, K1Y 4E9, Canada
| | - Satheesh Krishna
- Joint Department of Medical Imaging, Toronto General Hospital, The University of Toronto, Toronto, Canada
| | - Robert Chatelain
- Department of Medical Imaging, The Ottawa Hospital, University of Ottawa, 1053 Carling Avenue, Ottawa, ON, K1Y 4E9, Canada
| | - Matthew Df McInnes
- Department of Medical Imaging, The Ottawa Hospital, University of Ottawa, 1053 Carling Avenue, Ottawa, ON, K1Y 4E9, Canada
| | - Trevor A Flood
- Department of Anatomical Pathology, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | - Nicola Schieda
- Department of Medical Imaging, The Ottawa Hospital, University of Ottawa, 1053 Carling Avenue, Ottawa, ON, K1Y 4E9, Canada.
| |
Collapse
|
25
|
Renard-Penna R, Rocher L, Roy C, André M, Bellin MF, Boulay I, Eiss D, Girouin N, Grenier N, Hélénon O, Lapray JF, Lefèvre A, Matillon X, Ménager JM, Millet I, Ronze S, Sanzalone T, Tourniaire J, Brunelle S, Rouvière O. Imaging protocols for CT urography: results of a consensus conference from the French Society of Genitourinary Imaging. Eur Radiol 2019; 30:1387-1396. [PMID: 31848742 DOI: 10.1007/s00330-019-06529-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/17/2019] [Accepted: 10/18/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To develop technical guidelines for computed tomography urography. METHODS The French Society of Genitourinary Imaging organised a Delphi consensus conference with a two-round Delphi survey followed by a face-to-face meeting. Consensus was strictly defined using a priori criteria. RESULTS Forty-two expert uro-radiologists completed both survey rounds with no attrition between the rounds. Ninety-six (70%) of the initial 138 statements of the questionnaire achieved final consensus. An intravenous injection of 20 mg of furosemide before iodinated contrast medium injection was judged mandatory. Improving the quality of excretory phase imaging through oral or intravenous hydration of the patient or through the use of an abdominal compression device was not deemed necessary. The patient should be imaged in the supine position and placed in the prone position only at the radiologist's request. The choice between single-bolus and split-bolus protocols depends on the context, but split-bolus protocols should be favoured whenever possible to decrease patient irradiation. Repeated single-slice test acquisitions should not be performed to decide of the timing of excretory phase imaging; instead, excretory phase imaging should be performed 7 min after the injection of the contrast medium. The optimal combination of unenhanced, corticomedullary phase and nephrographic phase imaging depends on the context; suggestions of protocols are provided for eight different clinical situations. CONCLUSION This expert-based consensus conference provides recommendations to standardise the imaging protocol for computed tomography urography. KEY POINTS • To improve excretory phase imaging, an intravenous injection of furosemide should be performed before the injection of iodinated contrast medium. • Systematic oral or intravenous hydration is not necessary to improve excretory phase imaging. • The choice between single-bolus and split-bolus protocols depends on the context, but split-bolus protocols should be favoured whenever possible to decrease patient irradiation.
Collapse
Affiliation(s)
- Raphaële Renard-Penna
- Academic Department of Radiology, Hôpital Pitié-Salpêtrière and Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Paris, France.
- Sorbonne Universités, GRC no 5, ONCOTYPE-URO, Paris, France.
| | - Laurence Rocher
- Department of Diagnostic and Interventional Radiology, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Paris Sud, Le Kremlin Bicêtre, France
- Université Paris Sud, Le Kremlin Bicêtre, France
- IR4M, UMR 8081, Service hospitalier Joliot Curie, Orsay, France
| | - Catherine Roy
- Department of Radiology B, CHU de Strasbourg, Nouvel Hôpital Civil, Strasbourg, France
| | - Marc André
- Department of Radiology, Hôpital Européen, Marseille, France
| | - Marie-France Bellin
- Department of Diagnostic and Interventional Radiology, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Paris Sud, Le Kremlin Bicêtre, France
- Université Paris Sud, Le Kremlin Bicêtre, France
- IR4M, UMR 8081, Service hospitalier Joliot Curie, Orsay, France
| | - Isabelle Boulay
- Department of Radiology, Fondation Hôpital Saint Joseph, Paris, France
| | - David Eiss
- Department of Adult Radiology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | | | - Nicolas Grenier
- Department of Diagnostic and Interventional Adult Imaging, CHU de Bordeaux, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Olivier Hélénon
- Department of Adult Radiology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | | | - Arnaud Lefèvre
- Centre d'Imagerie Médicale Tourville, Paris, France
- Department of Radiology, American Hospital of Paris, Neuilly, France
| | - Xavier Matillon
- Department of Urology and Transplantation, Hospices Civils de Lyon, Lyon, France
- Faculté de médecine Lyon Est, Université de Lyon, Université Lyon 1, Lyon, France
- CarMeN Laboratory, INSERM U1060, Lyon, France
| | | | - Ingrid Millet
- Department of Radiology, Hôpital Lapeyronie, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Sébastien Ronze
- Imagerie médicale Val d'Ouest Charcot (IMVOC), Ecully, France
| | - Thomas Sanzalone
- Department of Radiology, Centre Hospitalier de Valence, Valence, France
| | - Jean Tourniaire
- Department of Radiology, Clinique Rhône Durance, Avignon, France
| | - Serge Brunelle
- Department of Radiology, Institut Paoli-Calmettes, Marseille, France
| | - Olivier Rouvière
- Faculté de médecine Lyon Est, Université de Lyon, Université Lyon 1, Lyon, France
- Department of Urinary and Vascular Imaging, Hôpital Edouard Herriot, Hospices Civils de Lyon, 5 Place d'Arsonval, 69 347, Lyon, France
| |
Collapse
|
26
|
Cheng K, Cassidy F, Aganovic L, Taddonio M, Vahdat N. CT urography: how to optimize the technique. Abdom Radiol (NY) 2019; 44:3786-3799. [PMID: 31317210 DOI: 10.1007/s00261-019-02111-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE Computed tomography urography (CTU) has emerged as the modality of choice for imaging the urinary tract within the past few decades. It is a powerful tool that enables detailed anatomic evaluation of the urinary tract in order to identify primary urothelial malignancies, benign urinary tract conditions, and associated abdominopelvic pathologies. As such, there have been extensive efforts to optimize CTU protocol. METHODS This article reviews the published literature on CTU protocol optimization, including contrast bolus timing, dose reduction, reconstruction algorithms, and ancillary practices. CONCLUSION There have been many advances in CTU techniques, which allow for imaging diagnosis of a wide spectrum of diseases while minimizing radiation dose and maximizing urinary tract distension and opacification.
Collapse
Affiliation(s)
- Karen Cheng
- Department of Radiology, University of California, San Diego, 200 W. Arbor Drive, San Diego, CA, 92103, USA
| | - Fiona Cassidy
- Department of Radiology, University of California, San Diego, 200 W. Arbor Drive, San Diego, CA, 92103, USA
| | - Lejla Aganovic
- Department of Radiology, University of California, San Diego, 200 W. Arbor Drive, San Diego, CA, 92103, USA
| | - Michael Taddonio
- Department of Radiology, University of California, San Diego, 200 W. Arbor Drive, San Diego, CA, 92103, USA
| | - Noushin Vahdat
- Department of Radiology, University of California, San Diego, 200 W. Arbor Drive, San Diego, CA, 92103, USA.
- Department of Radiology, VA Medical Center, San Diego, 3350 La Jolla Village Drive, Mail Code: 114, San Diego, CA, 92161, USA.
| |
Collapse
|
27
|
Clinical and Payer-Based Analysis of Value of Dual-Energy Computed Tomography for Workup of Incidental Abdominal Findings. J Comput Assist Tomogr 2019; 43:605-611. [PMID: 31162230 DOI: 10.1097/rct.0000000000000886] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To perform a clinical and payer-based analysis of the value of dual-energy computed tomography (DECT) for workup of incidental abdominal findings. METHODS This was a single-center, retrospectively designed, Health Insurance Portability and Accountability Act-compliant study approved by our institutional review board. Sixty-nine examinations in 69 patients (45 men, 24 women; mean age, 57.7 years) who underwent single-phase postcontrast abdominal DECT studies between January 1, 2011, and December 31, 2017, were included. Two radiologists, blinded to study objective and design, reviewed all cases and identified incidental abdominal findings needing further imaging. All incidental findings were reviewed by 2 other investigators, who determined whether an imaging-based diagnosis could be made using DECT virtual noncontrast images and iodine maps. Additional studies and associated payer-reimbursement amounts avoided by use of DECT were estimated. All imaging costs were estimated based on the US Centers for Medicare & Medicaid Services reimbursement amounts. RESULTS Thirty-four incidental findings (renal mass, n = 20; adrenal nodule, n = 8; pancreatic cystic lesions, n = 3; others, n = 3) were identified in 19 (27.5%) of 69 patients. Dual-energy computed tomography characterized 27 incidental findings in 15 patients and accounted for cost savings of 15 additional imaging examinations (abdominal magnetic resonance imaging, n = 11; abdominal computed tomography, n = 4). Based on Centers for Medicare & Medicaid Services reimbursement amounts, we estimated that, by abolishing the need for additional imaging use, DECT saved US $84.95 per patient. CONCLUSIONS Dual-energy computed tomography can provide an imaging-based diagnosis of incidental abdominal findings, otherwise incompletely characterized on routine abdominal computed tomography, in approximately 21% of patients. In select patients, the monetary savings from abolishing additional imaging may reduce payer costs associated with use of DECT.
Collapse
|
28
|
Kessner R, Große Hokamp N, Ciancibello L, Ramaiya N, Herrmann KA. Renal cystic lesions characterization using spectral detector CT (SDCT): Added value of spectral results. Br J Radiol 2019; 92:20180915. [PMID: 31124701 DOI: 10.1259/bjr.20180915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES To evaluate the added value of spectral results derived from Spectral Detector CT (SDCT) to the characterization of renal cystic lesions (RCL). METHODS This retrospective study was approved by the local Institutional review board. 70 consecutive patients who underwent abdominopelvic SDCT and had at least one RCL were included. 84 RCL were categorized as simple, complex or neoplastic based on attenuation values on single-phase post-contrast images. Attenuation values were measured in each lesion on standard conventional CT images (stCI) and virtual monoenergetic images of 40keV and 100keV. A spectral curve slope was calculated and intra lesional iodine concentration (IC) was measured using iodine-density maps. Reference standard was established using histopathologic correlation, prior and follow-up imaging. Analysis of variance (ANOVA) was used to compare between the groups. RESULTS Mean attenuation values for benign simple and complex RCL differed significantly (42 ± 16 vs 8 ± 3 HU; p < 0.001). IC was almost identical in benign simple and complex RCL (0.23 ± 0.04 mg ml-1 vs 0.24 ± 0.04 mg ml-1), while IC in neoplastic RCL was significantly higher (2.10 ± 0.08 mg ml-1 ; p < 0.001). The mean spectral curve slope did not differ significantly between simple and complex RCL (0.30 ± 0.03 vs 0.33 ± 0.05) but was significantly higher in neoplastic RCL (2.60 ± 0.10; p < 0.001). CONCLUSIONS Spectral results of SDCT are highly promising in distinguishing benign complex RCL from enhancing neoplastic RCL based on single-phase post-contrast imaging only. ADVANCES IN KNOWLEDGE SDCT can assist in differentiating between benign complex and neoplastic renal cystic lesions.
Collapse
Affiliation(s)
- Rivka Kessner
- 1 Department of Radiology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, Ohio, USA.,2 Department of Diagnostic Imaging, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nils Große Hokamp
- 1 Department of Radiology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, Ohio, USA.,3 University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Cologne, Germany
| | - Les Ciancibello
- 1 Department of Radiology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, Ohio, USA
| | - Nikhil Ramaiya
- 1 Department of Radiology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, Ohio, USA
| | - Karin A Herrmann
- 1 Department of Radiology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
29
|
Meyer M, Nelson RC, Vernuccio F, González F, Farjat AE, Patel BN, Samei E, Henzler T, Schoenberg SO, Marin D. Virtual Unenhanced Images at Dual-Energy CT: Influence on Renal Lesion Characterization. Radiology 2019; 291:381-390. [DOI: 10.1148/radiol.2019181100] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
30
|
Çamlıdağ İ, Nural MS, Danacı M, Özden E. Usefulness of rapid kV-switching dual energy CT in renal tumor characterization. Abdom Radiol (NY) 2019; 44:1841-1849. [PMID: 30637472 DOI: 10.1007/s00261-019-01897-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE To investigate whether iodine content can discriminate between benign or malignant renal tumors, malign tumor subtypes, low-grade and high-grade tumors on rapid kv-switching dual-energy CT (rsDECT). METHODS This prospective study enrolled 95 patients with renal tumors who underwent rsDECT for tumor characterization between 2016 and 2018. Attenuation on true and virtual unenhanced images, absolute enhancement and enhancement ratio and iodine content of each lesion on nephrographic phase iodine density images were measured. Histopathological diagnosis was obtained following either surgery or core biopsy. RESULTS Eighty-five tumors were renal cell carcinoma (RCC) (56 clear cell, 20 papillary, 9 chromophobe) and 10 were benign (6 angiomyolipoma,4 oncocytoma). 46 tumors were low-grade and 23 high-grade. There was significant difference between iodine content of clear cell and non-clear cell (papillary + chromophobe) RCC (p < 0.001). However, no significant iodine content differences were found between papillary and chromophobe RCC, benign and malignant tumors, low-grade and high-grade tumors. The best cut-off iodine content for differentiating clear cell from non-clear cell RCC was 3.2 mg/ml and clear cell from papillary RCC was 2.9 mg/ml with a high sensitivity and specificity. Also, significant difference was found between attenuation values of true and virtual unenhanced images (p = 0.007). Mean iodine content, absolute enhancement and enhancement ratio were highly correlated. CONCLUSION rsDECT contributes to renal tumor characterization by showing higher iodine content in clear cell RCCs compared with non-clear cell RCCs.
Collapse
|
31
|
Recommendations for the Management of the Incidental Renal Mass in Adults: Endorsement and Adaptation of the 2017 ACR Incidental Findings Committee White Paper by the Canadian Association of Radiologists Incidental Findings Working Group. Can Assoc Radiol J 2019; 70:125-133. [DOI: 10.1016/j.carj.2019.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/26/2019] [Accepted: 03/02/2019] [Indexed: 12/14/2022] Open
|
32
|
Diagnostic Accuracy of Dual-Energy CT for Evaluation of Renal Masses: Systematic Review and Meta-Analysis. AJR Am J Roentgenol 2019; 212:W100-W105. [DOI: 10.2214/ajr.18.20527] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
33
|
Comparison of Iodine Quantification and Conventional Attenuation Measurements for Differentiating Small, Truly Enhancing Renal Masses From High-Attenuation Nonenhancing Renal Lesions With Dual-Energy CT. AJR Am J Roentgenol 2019; 213:W26-W37. [PMID: 30917024 DOI: 10.2214/ajr.18.20547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE. The purpose of this study is to determine whether iodine quantification techniques from contrast-enhanced dual-energy CT (DECT) data allow equal differentiation of small enhancing renal masses from high-attenuation (> 20 HU of unenhanced attenuation) nonenhancing lesions, compared with conventional attenuation measurements. MATERIALS AND METHODS. A total of 220 nonconsecutive patients (mean [± SD] age, 66 ± 13 years; 130 men and 90 women) with 265 high-attenuation renal lesions (mean attenuation, 54 ± 33 HU; 91 enhancing lesions) were included. Each patient underwent single-energy unenhanced CT followed by DECT during the nephrographic phase using one of four different high-end DECT platforms (first- and second-generation rapid-kilovoltage-switching DECT platforms and second- and third-generation dual-source DECT platforms). Iodine quantification measurements and conventional attenuation change measurements were calculated for each lesion. Diagnostic accuracy was determined by pathologic analysis, confirmation with another imaging modality, or greater than 24 months of imaging follow-up as the reference standard. RESULTS. The diagnostic accuracy for differentiating enhancing from nonenhancing renal lesions was significantly higher for conventional attenuation change measurements, compared with iodine quantification measurements (AUC values, 0.973 vs 0.875; p < 0.0001). The diagnostic performance of iodine quantification measurements improved only marginally with the utilization of DECT platform-specific optimized iodine quantification thresholds, yielding AUC values of 0.907 and 0.893 for the rapid-kilovoltage-switching DECT and dual-source DECT platforms, respectively. Unenhanced lesion attenuation (p = 0.0010) and intraparenchymal location (p = 0.0249) significantly influenced the diagnostic accuracy of the iodine quantification techniques. CONCLUSION. Iodine quantification from DECT data yields inferior diagnostic accuracy when compared with conventional attenuation change measurements for differentiating small, truly enhancing renal masses and high-attenuation renal lesions.
Collapse
|
34
|
Siegel MJ, Ramirez-Giraldo JC. Dual-Energy CT in Children: Imaging Algorithms and Clinical Applications. Radiology 2019; 291:286-297. [PMID: 30912717 DOI: 10.1148/radiol.2019182289] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dual-energy CT enables the simultaneous acquisition of CT images at two different x-ray energy spectra. By acquiring high- and low-energy spectral data, dual-energy CT can provide unique qualitative and quantitative information about tissue composition, allowing differentiation of multiple materials including iodinated contrast agents. The two dual-energy CT postprocessing techniques that best exploit the advantages of dual-energy CT in children are the material-decomposition images (which include virtual nonenhanced, iodine, perfused lung blood volume, lung vessel, automated bone removal, and renal stone characterization images) and virtual monoenergetic images. Clinical applications include assessment of the arterial system, lung perfusion, neoplasm, bowel diseases, renal calculi, tumor response to treatment, and metal implants. Of importance, the radiation exposure level of dual-energy CT is equivalent to or less than that of conventional single-energy CT. In this review, the authors discuss the basic principles of the dual-energy CT technologies and postprocessing techniques and review current clinical applications in the pediatric chest and abdomen.
Collapse
Affiliation(s)
- Marilyn J Siegel
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, St Louis, Mo 63110 (M.J.S.); and Siemens Healthineers, Malvern, Pa (J.C.R.G.)
| | - Juan Carlos Ramirez-Giraldo
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, St Louis, Mo 63110 (M.J.S.); and Siemens Healthineers, Malvern, Pa (J.C.R.G.)
| |
Collapse
|
35
|
Role of dual energy CT to improve diagnosis of non-traumatic abdominal vascular emergencies. Abdom Radiol (NY) 2019; 44:406-421. [PMID: 30143817 DOI: 10.1007/s00261-018-1741-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Computed tomography angiography (CTA) is the modality of choice to evaluate abdominal vascular emergencies (AVE). CTA protocols are often complex and require acquisition of multiple phases to enable a variety of diagnosis such as acute bleeding, pseudoaneurysms, bowel ischemia, and dissection. With single energy CT (SECT), differentiating between calcium, coagulated blood, and contrast agents can be challenging based on their attenuation, especially when in small quantity or present as a mixture. With dual-energy CT (DECT), virtual monoenergetic (VM) and material decomposition (MD) image reconstructions enable more robust tissue characterization, improve contrast-enhancement, and reduce beam hardening artifacts. This article will demonstrate how radiologists can utilize DECT for various clinical scenarios in assessment of non-traumatic AVE.
Collapse
|
36
|
Narayanasamy S, Krishna S, Prasad Shanbhogue AK, Flood TA, Sadoughi N, Sathiadoss P, Schieda N. Contemporary update on imaging of cystic renal masses with histopathological correlation and emphasis on patient management. Clin Radiol 2018; 74:83-94. [PMID: 30314810 DOI: 10.1016/j.crad.2018.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/06/2018] [Indexed: 01/21/2023]
Abstract
This article presents an updated review of cystic renal mass imaging. Most cystic renal masses encountered incidentally are benign and can be diagnosed confidently on imaging and require no follow-up. Hyperattenuating masses discovered at unenhanced or single-phase enhanced computed tomography (CT) measuring between 20-70 HU are indeterminate and can be further investigated first by using ultrasound and, then with multi-phase CT or magnetic resonance imaging (MRI); as the majority represent haemorrhagic/proteinaceous cysts (HPCs). Dual-energy CT may improve differentiation between HPCs and masses by suppressing unwanted pseudo-enhancement observed with conventional CT. HPCs can be diagnosed confidently when measuring >70 HU at unenhanced CT or showing markedly increased signal on T1-weighted imaging. Although the Bosniak criteria remains the reference standard for diagnosis and classification of cystic renal masses, histopathological classification and current management has evolved: multilocular cystic renal cell carcinoma (RCC) has been reclassified as a cystic renal neoplasm of low malignant potential, few Bosniak 2F cystic masses progress radiologically during follow-up; RCC with predominantly cystic components are less aggressive than solid RCC; and Bosniak III cystic masses behave non-aggressively. These advances have led to an increase in non-radical management or surveillance of cystic renal masses including Bosniak 3 lesions. Tubulocystic RCC is a newly described entity with distinct imaging characteristics, resembling a pancreatic serous microcystadenoma. Other benign cystic masses including: mixed epithelial stromal tumours (MEST) are now considered in the spectrum of cystic nephroma and angiomyolipoma (AML) with epithelial cysts (AMLEC) resemble a fat-poor AML with cystic components.
Collapse
Affiliation(s)
- S Narayanasamy
- Department of Medical Imaging, The Ottawa Hospital, University of Ottawa, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | - S Krishna
- Department of Medical Imaging, The Ottawa Hospital, University of Ottawa, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | - A K Prasad Shanbhogue
- Department of Radiology, New York University School of Medicine, 660 First Avenue, New York, NY 10016, USA
| | - T A Flood
- Department of Anatomic Pathology, The Ottawa Hospital, University of Ottawa, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | - N Sadoughi
- Department of Medical Imaging, The Ottawa Hospital, University of Ottawa, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | - P Sathiadoss
- Department of Medical Imaging, The Ottawa Hospital, University of Ottawa, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | - N Schieda
- Department of Medical Imaging, The Ottawa Hospital, University of Ottawa, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
| |
Collapse
|
37
|
Tirosh A, Journy N, Folio LR, Lee C, Leite C, Yao J, Kovacs W, Linehan WM, Malayeri A, Kebebew E, Berrington de González A. Cumulative Radiation Exposures from CT Screening and Surveillance Strategies for von Hippel-Lindau-associated Solid Pancreatic Tumors. Radiology 2018; 290:116-124. [PMID: 30299237 DOI: 10.1148/radiol.2018180687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purpose To assess the potential ionizing radiation exposure from CT scans for both screening and surveillance of patients with von Hippel-Lindau (VHL) syndrome. Materials and Methods For this retrospective study, abdomen-pelvic (AP) and chest-abdomen-pelvic (CAP) CT scans were performed with either a three-phase (n = 1242) or a dual-energy virtual noncontrast protocol (VNC; n = 149) in 747 patients with VHL syndrome in the National Institutes of Health Clinical Center between 2009 and 2015 (mean age, 47.6 years ± 14.6 [standard deviation]; age range, 12-83 years; 320 women [42.8%]). CT scanning parameters for patients with pancreatic neuroendocrine tumors (PNETs; 124 patients and 381 scans) were compared between a tumor diameter-based surveillance protocol and a VHL genotype and tumor diameter-based algorithm (a tailored algorithm) developed by three VHL clinicians. Organ and lifetime radiation doses were estimated by two radiologists and five radiation scientists. Cumulative radiation doses were compared between the PNET surveillance algorithms by analyses of variance, and a two-tailed P value less than .05 indicated statistical significance. Results Median cumulative colon doses for annual CAP and AP CT scans from age 15 to 40 years ranged from 0.34 Gy (5th-95th percentiles, 0.18-0.75; dual-energy VNC CT) to 0.89 Gy (5th-95th percentiles, 0.42-1.0; three-phase CT). For the current PNET surveillance protocol, the cumulative effective radiation dose from age 40 to 65 years was 682 mSv (tumors < 1.2 cm) and 2125 mSv (tumors > 3 cm). The tailored algorithm could halve these doses for patients with initial tumor diameter less than 1.2 cm (P < .001). Conclusion CT screening of patients with von Hippel-Lindau syndrome can lead to substantial radiation exposures, even with dual-energy virtual noncontrast CT. A genome and tumor diameter-based algorithm for pancreatic neuroendocrine tumor surveillance may potentially reduce lifetime radiation exposure. © RSNA, 2018 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Amit Tirosh
- From the Neuroendocrine Tumors Service, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel 52621 (A.T.); Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (A.T.); Division of Cancer Epidemiology and Genetics (N.J., C. Lee, A.B.d.G.), Department of Radiology and Imaging Sciences (L.R.F., J.Y., W.K., A.M.), and Urologic Oncology Branch (C. Leite, W.M.L.), National Cancer Institute, National Institutes of Health, Bethesda, Md; Centre for Research in Epidemiology and Population Health (CESP), INSERM U1018, Villejuif, France (N.J.); and Department of Surgery and Stanford Cancer Institute, Stanford University, Stanford, Calif (E.K.)
| | - Neige Journy
- From the Neuroendocrine Tumors Service, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel 52621 (A.T.); Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (A.T.); Division of Cancer Epidemiology and Genetics (N.J., C. Lee, A.B.d.G.), Department of Radiology and Imaging Sciences (L.R.F., J.Y., W.K., A.M.), and Urologic Oncology Branch (C. Leite, W.M.L.), National Cancer Institute, National Institutes of Health, Bethesda, Md; Centre for Research in Epidemiology and Population Health (CESP), INSERM U1018, Villejuif, France (N.J.); and Department of Surgery and Stanford Cancer Institute, Stanford University, Stanford, Calif (E.K.)
| | - Les R Folio
- From the Neuroendocrine Tumors Service, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel 52621 (A.T.); Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (A.T.); Division of Cancer Epidemiology and Genetics (N.J., C. Lee, A.B.d.G.), Department of Radiology and Imaging Sciences (L.R.F., J.Y., W.K., A.M.), and Urologic Oncology Branch (C. Leite, W.M.L.), National Cancer Institute, National Institutes of Health, Bethesda, Md; Centre for Research in Epidemiology and Population Health (CESP), INSERM U1018, Villejuif, France (N.J.); and Department of Surgery and Stanford Cancer Institute, Stanford University, Stanford, Calif (E.K.)
| | - Choonsik Lee
- From the Neuroendocrine Tumors Service, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel 52621 (A.T.); Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (A.T.); Division of Cancer Epidemiology and Genetics (N.J., C. Lee, A.B.d.G.), Department of Radiology and Imaging Sciences (L.R.F., J.Y., W.K., A.M.), and Urologic Oncology Branch (C. Leite, W.M.L.), National Cancer Institute, National Institutes of Health, Bethesda, Md; Centre for Research in Epidemiology and Population Health (CESP), INSERM U1018, Villejuif, France (N.J.); and Department of Surgery and Stanford Cancer Institute, Stanford University, Stanford, Calif (E.K.)
| | - Christiane Leite
- From the Neuroendocrine Tumors Service, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel 52621 (A.T.); Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (A.T.); Division of Cancer Epidemiology and Genetics (N.J., C. Lee, A.B.d.G.), Department of Radiology and Imaging Sciences (L.R.F., J.Y., W.K., A.M.), and Urologic Oncology Branch (C. Leite, W.M.L.), National Cancer Institute, National Institutes of Health, Bethesda, Md; Centre for Research in Epidemiology and Population Health (CESP), INSERM U1018, Villejuif, France (N.J.); and Department of Surgery and Stanford Cancer Institute, Stanford University, Stanford, Calif (E.K.)
| | - Jianhua Yao
- From the Neuroendocrine Tumors Service, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel 52621 (A.T.); Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (A.T.); Division of Cancer Epidemiology and Genetics (N.J., C. Lee, A.B.d.G.), Department of Radiology and Imaging Sciences (L.R.F., J.Y., W.K., A.M.), and Urologic Oncology Branch (C. Leite, W.M.L.), National Cancer Institute, National Institutes of Health, Bethesda, Md; Centre for Research in Epidemiology and Population Health (CESP), INSERM U1018, Villejuif, France (N.J.); and Department of Surgery and Stanford Cancer Institute, Stanford University, Stanford, Calif (E.K.)
| | - William Kovacs
- From the Neuroendocrine Tumors Service, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel 52621 (A.T.); Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (A.T.); Division of Cancer Epidemiology and Genetics (N.J., C. Lee, A.B.d.G.), Department of Radiology and Imaging Sciences (L.R.F., J.Y., W.K., A.M.), and Urologic Oncology Branch (C. Leite, W.M.L.), National Cancer Institute, National Institutes of Health, Bethesda, Md; Centre for Research in Epidemiology and Population Health (CESP), INSERM U1018, Villejuif, France (N.J.); and Department of Surgery and Stanford Cancer Institute, Stanford University, Stanford, Calif (E.K.)
| | - W Marston Linehan
- From the Neuroendocrine Tumors Service, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel 52621 (A.T.); Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (A.T.); Division of Cancer Epidemiology and Genetics (N.J., C. Lee, A.B.d.G.), Department of Radiology and Imaging Sciences (L.R.F., J.Y., W.K., A.M.), and Urologic Oncology Branch (C. Leite, W.M.L.), National Cancer Institute, National Institutes of Health, Bethesda, Md; Centre for Research in Epidemiology and Population Health (CESP), INSERM U1018, Villejuif, France (N.J.); and Department of Surgery and Stanford Cancer Institute, Stanford University, Stanford, Calif (E.K.)
| | - Ashkan Malayeri
- From the Neuroendocrine Tumors Service, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel 52621 (A.T.); Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (A.T.); Division of Cancer Epidemiology and Genetics (N.J., C. Lee, A.B.d.G.), Department of Radiology and Imaging Sciences (L.R.F., J.Y., W.K., A.M.), and Urologic Oncology Branch (C. Leite, W.M.L.), National Cancer Institute, National Institutes of Health, Bethesda, Md; Centre for Research in Epidemiology and Population Health (CESP), INSERM U1018, Villejuif, France (N.J.); and Department of Surgery and Stanford Cancer Institute, Stanford University, Stanford, Calif (E.K.)
| | - Electron Kebebew
- From the Neuroendocrine Tumors Service, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel 52621 (A.T.); Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (A.T.); Division of Cancer Epidemiology and Genetics (N.J., C. Lee, A.B.d.G.), Department of Radiology and Imaging Sciences (L.R.F., J.Y., W.K., A.M.), and Urologic Oncology Branch (C. Leite, W.M.L.), National Cancer Institute, National Institutes of Health, Bethesda, Md; Centre for Research in Epidemiology and Population Health (CESP), INSERM U1018, Villejuif, France (N.J.); and Department of Surgery and Stanford Cancer Institute, Stanford University, Stanford, Calif (E.K.)
| | - Amy Berrington de González
- From the Neuroendocrine Tumors Service, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel 52621 (A.T.); Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (A.T.); Division of Cancer Epidemiology and Genetics (N.J., C. Lee, A.B.d.G.), Department of Radiology and Imaging Sciences (L.R.F., J.Y., W.K., A.M.), and Urologic Oncology Branch (C. Leite, W.M.L.), National Cancer Institute, National Institutes of Health, Bethesda, Md; Centre for Research in Epidemiology and Population Health (CESP), INSERM U1018, Villejuif, France (N.J.); and Department of Surgery and Stanford Cancer Institute, Stanford University, Stanford, Calif (E.K.)
| |
Collapse
|
38
|
Baliyan V, Kordbacheh H, Parameswaran B, Ganeshan B, Sahani D, Kambadakone A. Virtual monoenergetic imaging in rapid kVp-switching dual-energy CT (DECT) of the abdomen: impact on CT texture analysis. Abdom Radiol (NY) 2018. [PMID: 29541830 DOI: 10.1007/s00261-018-1527-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE To study the impact of keV levels of virtual monoenergetic images generated from rapid kVp-switching dual-energy CT (rsDECT) on CT texture analysis (CTTA). METHODS This study included 30 consecutive patients (59.3 ± 12 years; range 34-77 years; 17M:13F) who underwent portal venous phase abdominal CT on a rsDECT scanner. Axial 5-mm monoenergetic images at 5 energy levels (40/50/60/70/80 keV) were created and CTTA of liver was performed. CTTA comprised a filtration-histogram technique with different spatial scale filter (SSF) values (0-6). CTTA quantification at each SSF value included histogram-based statistical parameters such as mean intensity, standard deviation (SD), entropy, mean of positive pixels (MPP), skewness, and kurtosis. The values were compared using repeated measures ANOVA. RESULTS Among the different CTTA metrics, mean intensity (at SSF > 0), skewness, and kurtosis did not show variability whereas entropy, MPP, and SD varied with different keV levels. There was no change in skewness and kurtosis values for all 6 filters (p > 0.05). Mean intensity showed no change for filters 2-6 (p > 0.05). Mean intensity at SSF = 0 i.e., mean attenuations were 91.2 ± 2.9, 108.7 ± 3.6, 136.1 ± 4.7, 179.8 ± 6.9, and 250.5 ± 10.1 HU for 80, 70, 60, 50, and 40 keV images, respectively demonstrating significant variability (decrease) with increasing keV levels (p < 0.001). Entropy, MPP, and SD values showed a statistically significant decrease with increasing keV of monoenergetic images on all 6 filters (p < 0.001). CONCLUSION The energy levels of monoenergetic images have variable impact on the different CTTA parameters, with no significant change in skewness, kurtosis, and filtered mean intensity whereas significant decrease in mean attenuation, entropy, MPP, and SD values with increasing energy levels.
Collapse
|
39
|
Attenuation and Degree of Enhancement With Conventional 120-kVp Polychromatic CT and 70-keV Monochromatic Rapid Kilovoltage-Switching Dual-Energy CT in Cystic and Solid Renal Masses. AJR Am J Roentgenol 2018; 211:789-796. [DOI: 10.2214/ajr.17.19226] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
40
|
Mohammed MF, Elbanna KY, Mohammed AME, Murray N, Azzumea F, Almazied G, Nicolaou S. Practical Applications of Dual-Energy Computed Tomography in the Acute Abdomen. Radiol Clin North Am 2018; 56:549-563. [PMID: 29936947 DOI: 10.1016/j.rcl.2018.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With new developments in workflow automation, as well as technological advances enabling faster imaging with improved image quality and dose profile, dual-energy computed tomography is being used more often in the imaging of the acutely ill and injured patient. Its ability to identify iodine, differentiate it from hematoma or calcification, and improve contrast resolution has proven invaluable in the assessment of organ perfusion, organ injury, and inflammation.
Collapse
Affiliation(s)
- Mohammed F Mohammed
- Medical Imaging Department, Abdominal Imaging Section, Ministry of the National Guard, Health Affairs, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Prince Mutib Ibn Abdullah Ibn Abdulaziz Road, Ar Rimayah, Riyadh 14611, Saudi Arabia.
| | - Khaled Y Elbanna
- Department of Medical Imaging, Emergency and Trauma Radiology Division, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Abdelazim M E Mohammed
- Medical Imaging Department, Abdominal Imaging Section, Ministry of the National Guard, Health Affairs, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Prince Mutib Ibn Abdullah Ibn Abdulaziz Road, Ar Rimayah, Riyadh 14611, Saudi Arabia
| | - Nicolas Murray
- Department of Radiology, Vancouver General Hospital, 899 West 12th Avenue, Vancouver, British Columbia V5Z1M9, Canada
| | - Fahad Azzumea
- Medical Imaging Department, Abdominal Imaging Section, Ministry of the National Guard, Health Affairs, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Prince Mutib Ibn Abdullah Ibn Abdulaziz Road, Ar Rimayah, Riyadh 14611, Saudi Arabia
| | - Ghassan Almazied
- Medical Imaging Department, Abdominal Imaging Section, Ministry of the National Guard, Health Affairs, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Prince Mutib Ibn Abdullah Ibn Abdulaziz Road, Ar Rimayah, Riyadh 14611, Saudi Arabia
| | - Savvas Nicolaou
- Department of Radiology, Vancouver General Hospital, 899 West 12th Avenue, Vancouver, British Columbia V5Z1M9, Canada
| |
Collapse
|
41
|
Morgan DE. The Role of Dual-Energy Computed Tomography in Assessment of Abdominal Oncology and Beyond. Radiol Clin North Am 2018; 56:565-585. [PMID: 29936948 DOI: 10.1016/j.rcl.2018.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The added value and strength of dual energy computed tomography for the evaluation of oncologic patients revolve around the use of lower energy reconstructed images and iodine material density images. Lower keV simulated monoenergetic images optimize soft tissue tumor to nontumoral attenuation differences and increase contrast to noise ratios to improve lesion detection. Iodine material density images or maps are helpful from a qualitative standpoint for image interpretation because they result in improved detection and characterization of tumors and lymph node involvement, and from a quantitative assessment by enabling interrogation of specific properties of tissues to predict and assess therapeutic response.
Collapse
Affiliation(s)
- Desiree E Morgan
- Department of Radiology University of Alabama at Birmingham, 619 19th Street South, JTN 456, Birmingham, AL 35249-6830, USA.
| |
Collapse
|
42
|
Megibow AJ, Kambadakone A, Ananthakrishnan L. Dual-Energy Computed Tomography. Radiol Clin North Am 2018; 56:507-520. [DOI: 10.1016/j.rcl.2018.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Mahmood U, Horvat N, Horvat JV, Ryan D, Gao Y, Carollo G, DeOcampo R, Do RK, Katz S, Gerst S, Schmidtlein CR, Dauer L, Erdi Y, Mannelli L. Rapid switching kVp dual energy CT: Value of reconstructed dual energy CT images and organ dose assessment in multiphasic liver CT exams. Eur J Radiol 2018; 102:102-108. [PMID: 29685522 DOI: 10.1016/j.ejrad.2018.02.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 01/13/2018] [Accepted: 02/14/2018] [Indexed: 01/14/2023]
Abstract
PURPOSE Clinical applications of dual energy computed tomography (DECT) have been widely reported; however, the importance of the different image reconstructions and radiation organ dose remains a relevant area of investigation, particularly considering the different commercially available DECT equipment. Therefore, the purpose of this study was to assess the image reliability and compare the information content between several image reconstructions in a rapid-switching DECT (rsDECT), and assess radiation organ dose between rsDECT and conventional single-energy computed tomography (SECT) exams. MATERIALS AND METHODS This Institutional Review Board-approved retrospective study included 98 consecutive patients who had a history of liver cancer and underwent multiphasic liver CT exams with rsDECT applied during the late arterial phase between June 2015 and December 2015. Virtual monochromatic 70 keV, material density images (MDI) iodine (-water) and virtual unenhanced (VUE) images were generated. Radiation dose analysis was performed in a subset of 44 patients who had also undergone a multiphasic SECT examination within 6 months of the rsDECT. Four board-certified abdominal radiologists reviewed 24-25 patients each, and a fifth radiologist re-evaluated all the scans to reach a consensus. The following imaging aspects were assessed by the radiologists: (a) attenuation measurements were made in the liver and spleen in VUE and true unenhanced (TUE) images; (b) subjective evaluation for lesion detection and conspicuity on MDI iodine (-water)/VUE images compared with the virtual monochromatic images/TUE images; and (c) overall image quality using a five-point Likert scale. The radiation dose analyses were evaluated in the subset of 44 patients regarding the following parameters: CTDIvol, dose length product, patient's effective diameter and organ dose using a Monte Carlo-based software, VirtualDose™ (Virtual Phantoms, Inc.) to 21 organs. RESULTS On average, image noise on the TUE images was 49% higher within the liver (p < 0.0001) and 48% higher within the spleen (p < 0.0001). CT numbers for the spleen were significantly higher on VUE images (p < 0.0001). Twenty-eight lesions in 24/98 (24.5%) patients were not observed on the VUE images. The conspicuity of vascular anatomy was considered better on MDI iodine (-water) Images 26.5% of patients. Using the Likert scale, the rsDECT image quality was considered to be satisfactory. Considering the subset of 44 patients with recent SECT, the organ dose was, on average, 37.4% less with rsDECT. As the patient's effective diameter decreased, the differences in dose between the rsDECT and SECT increased, with the total average organ dose being less by 65.1% when rsDECT was used. CONCLUSION VUE images in the population had lower image noise than TUE images; however, a few small and hyperdense findings were not characterized on VUE images. Delineation of vascular anatomy was considered better in around a quarter of patients on MDI iodine (-water) images. Finally, radiation dose, particularly organ dose, was found to be lower with rsDECT, especially in smaller patients.
Collapse
Affiliation(s)
- Usman Mahmood
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Natally Horvat
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Joao Vicente Horvat
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Davinia Ryan
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Yiming Gao
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Gabriella Carollo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Rommel DeOcampo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Richard K Do
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Seth Katz
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Scott Gerst
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - C Ross Schmidtlein
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Lawrence Dauer
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Yusuf Erdi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Lorenzo Mannelli
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
44
|
Rassouli N, Etesami M, Dhanantwari A, Rajiah P. Detector-based spectral CT with a novel dual-layer technology: principles and applications. Insights Imaging 2017; 8:589-598. [PMID: 28986761 PMCID: PMC5707218 DOI: 10.1007/s13244-017-0571-4] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 01/30/2023] Open
Abstract
Detector-based spectral computed tomography is a novel dual-energy CT technology that employs two layers of detectors to simultaneously collect low- and high-energy data in all patients using standard CT protocols. In addition to the conventional polyenergetic images created for each patient, projection-space decomposition is used to generate spectral basis images (photoelectric and Compton scatter) for creating multiple spectral images, including material decomposition (iodine-only, virtual non-contrast, effective atomic number) and virtual monoenergetic images, on-demand according to clinical need. These images are useful in multiple clinical applications, including- improving vascular contrast, improving lesion conspicuity, decreasing artefacts, material characterisation and reducing radiation dose. In this article, we discuss the principles of this novel technology and also illustrate the common clinical applications. Teaching points • The top and bottom layers of dual-layer CT absorb low- and high-energy photons, respectively. • Multiple spectral images are generated by projection-space decomposition. • Spectral images can be generated in all patients scanned in this scanner.
Collapse
Affiliation(s)
- Negin Rassouli
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Maryam Etesami
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.,Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | | | - Prabhakar Rajiah
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA. .,Cardiothoracic Imaging, Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.
| |
Collapse
|
45
|
Diagnostic Performance of CT for Diagnosis of Fat-Poor Angiomyolipoma in Patients With Renal Masses: A Systematic Review and Meta-Analysis. AJR Am J Roentgenol 2017; 209:W297-W307. [PMID: 28834444 DOI: 10.2214/ajr.17.18184] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE The purpose of this article is to systematically review and perform a meta-analysis of the diagnostic performance of CT for diagnosis of fat-poor angiomyolipoma (AML) in patients with renal masses. MATERIALS AND METHODS MEDLINE and EMBASE were systematically searched up to February 2, 2017. We included diagnostic accuracy studies that used CT for diagnosis of fat-poor AML in patients with renal masses, using pathologic examination as the reference standard. Two independent reviewers assessed the methodologic quality using the Quality Assessment of Diagnostic Accuracy Studies-2 tool. Sensitivity and specificity of included studies were calculated and were pooled and plotted in a hierarchic summary ROC plot. Sensitivity analyses using several clinically relevant covariates were performed to explore heterogeneity. RESULTS Fifteen studies (2258 patients) were included. Pooled sensitivity and specificity were 0.67 (95% CI, 0.48-0.81) and 0.97 (95% CI, 0.89-0.99), respectively. Substantial and considerable heterogeneity was present with regard to sensitivity and specificity (I2 = 91.21% and 78.53%, respectively). At sensitivity analyses, the specificity estimates were comparable and consistently high across all subgroups (0.93-1.00), but sensitivity estimates showed significant variation (0.14-0.82). Studies using pixel distribution analysis (n = 3) showed substantially lower sensitivity estimates (0.14; 95% CI, 0.04-0.40) compared with the remaining 12 studies (0.81; 95% CI, 0.76-0.85). CONCLUSION CT shows moderate sensitivity and excellent specificity for diagnosis of fat-poor AML in patients with renal masses. When methods other than pixel distribution analysis are used, better sensitivity can be achieved.
Collapse
|