1
|
Singnurkar A, Poon R, Metser U. Head-to-Head Comparison of the Diagnostic Performance of FDG PET/CT and FDG PET/MRI in Patients With Cancer: A Systematic Review and Meta-Analysis. AJR Am J Roentgenol 2024; 223:e2431519. [PMID: 39016450 DOI: 10.2214/ajr.24.31519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
BACKGROUND. The available evidence on the use of FDG PET/MRI performed using an integrated system in patients with cancer has grown substantially. OBJECTIVE. The purpose of this study was to perform a systematic review and meta-analysis comparing the diagnostic performance of FDG PET/CT and FDG PET/MRI in patients with cancer. EVIDENCE ACQUISITION. MEDLINE, Embase, and the Cochrane Database of Systematic Reviews were searched for studies reporting a head-to-head comparison of the diagnostic performance of FDG PET/CT and FDG PET/MRI in patients with cancer from July 1, 2015, to January 25, 2023. The two modalities' diagnostic performance was summarized, stratified by performance end point. For end points with sufficient data, a meta-analysis was performed using bivariate modeling to produce summary estimates of pooled sensitivity and specificity. For the remaining end points, reported performance in individual studies was recorded. EVIDENCE SYNTHESIS. The systematic review included 29 studies with a total of 1656 patients. For patient-level detection of regional nodal metastases (five studies), pooled sensitivity and specificity for PET/MRI were 88% (95% CI, 74-95%) and 92% (95% CI, 71-98%), respectively, and for PET/CT were 86% (95% CI, 70-94%) and 86% (95% CI, 68-95%). For lesion-level detection of recurrence and/or metastases (five studies), pooled sensitivity and specificity for PET/MRI were 94% (95% CI, 78-99%) and 83% (95% CI, 76-88%), respectively, and for PET/CT were 91% (95% CI, 77-96%) and 81% (95% CI, 72-88%). In individual studies not included in the meta-analysis, PET/MRI in comparison with PET/CT showed staging accuracy in breast cancer of 98.0% versus 74.5% and in colorectal cancer of 96.2% versus 69.2%; sensitivity for primary tumor detection in cervical cancer of 93.2% versus 66.2%; and sensitivity, specificity, and accuracy for lesion-level liver metastasis detection of 91.1-98.0% versus 42.3-71.1%, 100.0% versus 83.3-98.6%, and 96.5-98.2% versus 44.7-86.7%, respectively. In three studies, management was more commonly impacted by information from PET/MRI (5.2-11.1%) than PET/CT (0.0-2.6%). CONCLUSION. PET/MRI showed comparable or superior diagnostic performance versus PET/CT across a range of cancers and end points. CLINICAL IMPACT. The findings help to identify clinical settings where PET/MRI may provide clinical benefit for oncologic evaluation. TRIAL REGISTRATION. Prospective Register of Systematic Reviews CRD42023433857.
Collapse
Affiliation(s)
- Amit Singnurkar
- Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Raymond Poon
- Department of Oncology, Program in Evidence-Based Care, Ontario Health, Cancer Care Ontario, McMaster University, Juravinski Hospital and Cancer Centre, 711 Concession St, G Wing, 2nd Fl, Hamilton, ON L8V 1C3, Canada
| | - Ur Metser
- Department of Medical Imaging, University of Toronto, Princess Margaret Cancer Centre, Toronto, ON, Canada
| |
Collapse
|
2
|
Chianca V, Lanckoroński M, Curti M, Chalian M, Sudoł-Szopińska I, Giraudo C, Del Grande F. Whole-Body Magnetic Resonance Imaging in Rheumatology. Radiol Clin North Am 2024; 62:865-876. [PMID: 39059977 DOI: 10.1016/j.rcl.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
This review focuses on the most frequent whole-body MRI applications in patients with rheumatological pathologies, for which this tool can be helpful to both radiologists and clinicians. It reports technical aspects of the acquisition of both 1.5 and 3.0 T scanners. The article lists the main findings that help radiologists during the evaluation of a specific pathology, both in the diagnostic phase and during follow-up.
Collapse
Affiliation(s)
- Vito Chianca
- Istituto di Imaging Della Svizzera Italiana (IIMSI), Ente Ospedaliero Cantonale (EOC), Via Tesserete 46, Lugano 6900 Switzerland.
| | - Michał Lanckoroński
- Department of Radiology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartanska 1 Street, Warsaw 02-637, Poland
| | - Marco Curti
- Istituto di Imaging Della Svizzera Italiana (IIMSI), Ente Ospedaliero Cantonale (EOC), Via Tesserete 46, Lugano 6900 Switzerland
| | - Majid Chalian
- Division of Musculoskeletal Imaging and Intervention, Department of Radiology, University of Washington, Seattle, WA, USA
| | - Iwona Sudoł-Szopińska
- Department of Radiology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartanska 1 Street, Warsaw 02-637, Poland
| | - Chiara Giraudo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health - DCTV, University of Padova, Padova, Italy
| | - Filippo Del Grande
- Istituto di Imaging Della Svizzera Italiana (IIMSI), Ente Ospedaliero Cantonale (EOC), Via Tesserete 46, Lugano 6900 Switzerland; Facoltà di Scienze Biomediche, Università Della Svizzera Italiana, Via Buffi 13, Lugano 6900, Switzerland
| |
Collapse
|
3
|
Zugni F, Mariani L, Lambregts DMJ, Maggioni R, Summers PE, Granata V, Pecchi A, Di Costanzo G, De Muzio F, Cardobi N, Giovagnoni A, Petralia G. Whole-body MRI in oncology: acquisition protocols, current guidelines, and beyond. LA RADIOLOGIA MEDICA 2024; 129:1352-1368. [PMID: 38990426 DOI: 10.1007/s11547-024-01851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Acknowledging the increasing use of whole-body magnetic resonance imaging (WB-MRI) in the oncological setting, we conducted a narrative review focusing on practical aspects of the examination and providing a synthesis of various acquisition protocols described in the literature. Firstly, we addressed the topic of patient preparation, emphasizing methods to enhance examination acceptance. This included strategies for reducing anxiety and patient distress, improving staff-patient interactions, and increasing overall patient comfort. Secondly, we analysed WB-MRI acquisition protocols recommended in existing imaging guidelines, such as MET-RADS-P, MY-RADS, and ONCO-RADS, and provided an overview of acquisition protocols reported in the literature regarding other expanding applications of WB-MRI in oncology, in patients with breast cancer, ovarian cancer, melanoma, colorectal and lung cancer, lymphoma, and cancers of unknown primary. Finally, we suggested possible acquisition parameters for whole-body images across MR systems from three different vendors.
Collapse
Affiliation(s)
- Fabio Zugni
- Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy.
| | - Leonardo Mariani
- Postgraduation School in Radiodiagnostics, University of Milan, Milan, Italy
| | - Doenja M J Lambregts
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Roberta Maggioni
- Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Paul E Summers
- Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori Di Napoli, IRCCS "G. Pascale", Naples, Italy
| | - Annarita Pecchi
- Department of Radiology, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Federica De Muzio
- Department of Radiology, Pineta Grande Hospital, Via Domitiana Km 30, Castel Volturno, Italy
| | - Nicolò Cardobi
- Radiology Unit, Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Andrea Giovagnoni
- Department of Radiology, University Hospital "Azienda Ospedaliera Universitaria Delle Marche", Ancona, Italy
- Department of Clinical, Special and Dental Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | - Giuseppe Petralia
- Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
4
|
Deininger K, Korf P, Lauber L, Grimm R, Strecker R, Steinacker J, Lisson CS, Mühling BM, Schmidtke-Schrezenmeier G, Rasche V, Speidel T, Glatting G, Beer M, Beer AJ, Thaiss W. From Phantoms to Patients: Improved Fusion and Voxel-Wise Analysis of Diffusion-Weighted Imaging and FDG-Positron Emission Tomography in Positron Emission Tomography/Magnetic Resonance Imaging for Combined Metabolic-Diffusivity Index (cDMI). Diagnostics (Basel) 2024; 14:1787. [PMID: 39202275 PMCID: PMC11353375 DOI: 10.3390/diagnostics14161787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Hybrid positron emission tomography/magnetic resonance imaging (PET/MR) opens new possibilities in multimodal multiparametric (m2p) image analyses. But even the simultaneous acquisition of positron emission tomography (PET) and magnetic resonance imaging (MRI) does not guarantee perfect voxel-by-voxel co-registration due to organs and distortions, especially in diffusion-weighted imaging (DWI), which would be, however, crucial to derive biologically meaningful information. Thus, our aim was to optimize fusion and voxel-wise analyses of DWI and standardized uptake values (SUVs) using a novel software for m2p analyses. Using research software, we evaluated the precision of image co-registration and voxel-wise analyses including the rigid and elastic 3D registration of DWI and [18F]-Fluorodeoxyglucose (FDG)-PET from an integrated PET/MR system. We analyzed DWI distortions with a volume-preserving constraint in three different 3D-printed phantom models. A total of 12 PET/MR-DWI clinical datasets (bronchial carcinoma patients) were referenced to the T1 weighted-DIXON sequence. Back mapping of scatterplots and voxel-wise registration was performed and compared to the non-optimized datasets. Fusion was rated using a 5-point Likert scale. Using the 3D-elastic co-registration algorithm, geometric shapes were restored in phantom measurements; the measured ADC values did not change significantly (F = 1.12, p = 0.34). Reader assessment showed a significant improvement in fusion precision for DWI and morphological landmarks in the 3D-registered datasets (4.3 ± 0.2 vs. 4.6 ± 0.2, p = 0.009). Most pronounced differences were noted for the chest wall (p = 0.006), tumor (p = 0.007), and skin contour (p = 0.014). Co-registration increased the number of plausible ADC and SUV combinations by 25%. The volume-preserving elastic 3D registration of DWI significantly improved the precision of fusion with anatomical sequences in phantom and clinical datasets. The research software allowed for a voxel-wise analysis and visualization of [18F]FDG-PET/MR data as a "combined diffusivity-metabolic index" (cDMI). The clinical value of the optimized PET/MR biomarker can thus be tested in future PET/MR studies.
Collapse
Affiliation(s)
| | - Patrick Korf
- Siemens Healthineers AG, 91052 Erlangen, Germany
| | - Leonard Lauber
- Experimental Cardiovascular Imaging (ExCaVI), Department of Internal Medicine II, Ulm University Medical Center, 89081 Ulm, Germany
| | - Robert Grimm
- Siemens Healthineers AG, 91052 Erlangen, Germany
| | | | - Jochen Steinacker
- Department of Nuclear Medicine, University Hospital Ulm, 89081 Ulm, Germany
| | - Catharina S. Lisson
- Department of Diagnostic and Interventional Radiology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Bernd M. Mühling
- Section Thoracic and Vascular Surgery, Department of Cardiac and Thoracic Surgery, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Volker Rasche
- Experimental Cardiovascular Imaging (ExCaVI), Department of Internal Medicine II, Ulm University Medical Center, 89081 Ulm, Germany
- Center for Translational Imaging (MoMAN), Ulm University, 89081 Ulm, Germany
| | - Tobias Speidel
- Experimental Cardiovascular Imaging (ExCaVI), Department of Internal Medicine II, Ulm University Medical Center, 89081 Ulm, Germany
- Center for Translational Imaging (MoMAN), Ulm University, 89081 Ulm, Germany
| | - Gerhard Glatting
- Department of Nuclear Medicine, University Hospital Ulm, 89081 Ulm, Germany
| | - Meinrad Beer
- Department of Diagnostic and Interventional Radiology, Ulm University Medical Center, 89081 Ulm, Germany
- Center for Translational Imaging (MoMAN), Ulm University, 89081 Ulm, Germany
- Surgical Oncology Ulm, i2SOUL Consortium, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Core Facility PET/MR, Medical Faculty, Ulm University, 89081 Ulm, Germany
| | - Ambros J. Beer
- Department of Nuclear Medicine, University Hospital Ulm, 89081 Ulm, Germany
- Center for Translational Imaging (MoMAN), Ulm University, 89081 Ulm, Germany
- Surgical Oncology Ulm, i2SOUL Consortium, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Core Facility PET/MR, Medical Faculty, Ulm University, 89081 Ulm, Germany
| | - Wolfgang Thaiss
- Department of Nuclear Medicine, University Hospital Ulm, 89081 Ulm, Germany
- Department of Diagnostic and Interventional Radiology, Ulm University Medical Center, 89081 Ulm, Germany
- Center for Translational Imaging (MoMAN), Ulm University, 89081 Ulm, Germany
- Surgical Oncology Ulm, i2SOUL Consortium, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Core Facility PET/MR, Medical Faculty, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
5
|
Gosangi B, Dixe de Oliveira Santo I, Keraliya A, Wang Y, Irugu D, Thomas R, Khandelwal A, Rubinowitz AN, Bader AS. Li-Fraumeni Syndrome: Imaging Features and Guidelines. Radiographics 2024; 44:e230202. [PMID: 39024172 DOI: 10.1148/rg.230202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Li-Fraumeni syndrome (LFS) is a rare autosomal dominant familial cancer syndrome caused by germline mutations of the tumor protein p53 gene (TP53), which encodes the p53 transcription factor, also known as the "guardian of the genome." The most common types of cancer found in families with LFS include sarcomas, leukemia, breast malignancies, brain tumors, and adrenocortical cancers. Osteosarcoma and rhabdomyosarcoma are the most common sarcomas. Patients with LFS are at increased risk of developing early-onset gastric and colon cancers. They are also at increased risk for several other cancers involving the thyroid, lungs, ovaries, and skin. The lifetime risk of cancer in individuals with LFS is greater than 70% in males and greater than 90% in females. Some patients with LFS develop multiple primary cancers during their lifetime, and guidelines have been established for screening these patients. Whole-body MRI is the preferred modality for annual screening of these patients. The management guidelines for patients with LFS vary, as these individuals are more susceptible to developing radiation-induced cancers-for example, women with LFS and breast cancer are treated with total mastectomy instead of lumpectomy with radiation to the breast. The authors review the role of imaging, imaging guidelines, and imaging features of tumors in the setting of LFS. ©RSNA, 2024 Supplemental material is available for this article.
Collapse
Affiliation(s)
- Babina Gosangi
- From the Department of Radiology and Biomedical Imaging (B.G., I.D.d.O.S., A.N.R., A.S.B.), Section of Interventional Radiology (Y.W.), Yale School of Medicine, 333 Cedar Street, PO Box 208042, Rm TE-2, New Haven, CT 06520; Department of Radiology, Brigham and Women's Hospital, Boston, Mass (A. Keraliya); Magnus Hospital, Hyderabad, India (D.I.); Department of Radiology, Lahey Hospital and Medical Care Center, Burlington, Mass (R.T.); and Department of Radiology, Mayo University, Rochester, Minn (A. Khandelwal)
| | - Irene Dixe de Oliveira Santo
- From the Department of Radiology and Biomedical Imaging (B.G., I.D.d.O.S., A.N.R., A.S.B.), Section of Interventional Radiology (Y.W.), Yale School of Medicine, 333 Cedar Street, PO Box 208042, Rm TE-2, New Haven, CT 06520; Department of Radiology, Brigham and Women's Hospital, Boston, Mass (A. Keraliya); Magnus Hospital, Hyderabad, India (D.I.); Department of Radiology, Lahey Hospital and Medical Care Center, Burlington, Mass (R.T.); and Department of Radiology, Mayo University, Rochester, Minn (A. Khandelwal)
| | - Abhishek Keraliya
- From the Department of Radiology and Biomedical Imaging (B.G., I.D.d.O.S., A.N.R., A.S.B.), Section of Interventional Radiology (Y.W.), Yale School of Medicine, 333 Cedar Street, PO Box 208042, Rm TE-2, New Haven, CT 06520; Department of Radiology, Brigham and Women's Hospital, Boston, Mass (A. Keraliya); Magnus Hospital, Hyderabad, India (D.I.); Department of Radiology, Lahey Hospital and Medical Care Center, Burlington, Mass (R.T.); and Department of Radiology, Mayo University, Rochester, Minn (A. Khandelwal)
| | - Yifan Wang
- From the Department of Radiology and Biomedical Imaging (B.G., I.D.d.O.S., A.N.R., A.S.B.), Section of Interventional Radiology (Y.W.), Yale School of Medicine, 333 Cedar Street, PO Box 208042, Rm TE-2, New Haven, CT 06520; Department of Radiology, Brigham and Women's Hospital, Boston, Mass (A. Keraliya); Magnus Hospital, Hyderabad, India (D.I.); Department of Radiology, Lahey Hospital and Medical Care Center, Burlington, Mass (R.T.); and Department of Radiology, Mayo University, Rochester, Minn (A. Khandelwal)
| | - David Irugu
- From the Department of Radiology and Biomedical Imaging (B.G., I.D.d.O.S., A.N.R., A.S.B.), Section of Interventional Radiology (Y.W.), Yale School of Medicine, 333 Cedar Street, PO Box 208042, Rm TE-2, New Haven, CT 06520; Department of Radiology, Brigham and Women's Hospital, Boston, Mass (A. Keraliya); Magnus Hospital, Hyderabad, India (D.I.); Department of Radiology, Lahey Hospital and Medical Care Center, Burlington, Mass (R.T.); and Department of Radiology, Mayo University, Rochester, Minn (A. Khandelwal)
| | - Richard Thomas
- From the Department of Radiology and Biomedical Imaging (B.G., I.D.d.O.S., A.N.R., A.S.B.), Section of Interventional Radiology (Y.W.), Yale School of Medicine, 333 Cedar Street, PO Box 208042, Rm TE-2, New Haven, CT 06520; Department of Radiology, Brigham and Women's Hospital, Boston, Mass (A. Keraliya); Magnus Hospital, Hyderabad, India (D.I.); Department of Radiology, Lahey Hospital and Medical Care Center, Burlington, Mass (R.T.); and Department of Radiology, Mayo University, Rochester, Minn (A. Khandelwal)
| | - Ashish Khandelwal
- From the Department of Radiology and Biomedical Imaging (B.G., I.D.d.O.S., A.N.R., A.S.B.), Section of Interventional Radiology (Y.W.), Yale School of Medicine, 333 Cedar Street, PO Box 208042, Rm TE-2, New Haven, CT 06520; Department of Radiology, Brigham and Women's Hospital, Boston, Mass (A. Keraliya); Magnus Hospital, Hyderabad, India (D.I.); Department of Radiology, Lahey Hospital and Medical Care Center, Burlington, Mass (R.T.); and Department of Radiology, Mayo University, Rochester, Minn (A. Khandelwal)
| | - Ami N Rubinowitz
- From the Department of Radiology and Biomedical Imaging (B.G., I.D.d.O.S., A.N.R., A.S.B.), Section of Interventional Radiology (Y.W.), Yale School of Medicine, 333 Cedar Street, PO Box 208042, Rm TE-2, New Haven, CT 06520; Department of Radiology, Brigham and Women's Hospital, Boston, Mass (A. Keraliya); Magnus Hospital, Hyderabad, India (D.I.); Department of Radiology, Lahey Hospital and Medical Care Center, Burlington, Mass (R.T.); and Department of Radiology, Mayo University, Rochester, Minn (A. Khandelwal)
| | - Anna S Bader
- From the Department of Radiology and Biomedical Imaging (B.G., I.D.d.O.S., A.N.R., A.S.B.), Section of Interventional Radiology (Y.W.), Yale School of Medicine, 333 Cedar Street, PO Box 208042, Rm TE-2, New Haven, CT 06520; Department of Radiology, Brigham and Women's Hospital, Boston, Mass (A. Keraliya); Magnus Hospital, Hyderabad, India (D.I.); Department of Radiology, Lahey Hospital and Medical Care Center, Burlington, Mass (R.T.); and Department of Radiology, Mayo University, Rochester, Minn (A. Khandelwal)
| |
Collapse
|
6
|
Keaveney S, Hopkinson G, Markus JE, Priest AN, Scurr E, Hughes J, Robertson S, Doran SJ, Collins DJ, Messiou C, Koh DM, Winfield JM. A scan-specific quality control acquisition for clinical whole-body (WB) MRI protocols. Phys Med Biol 2024; 69:125027. [PMID: 38648786 DOI: 10.1088/1361-6560/ad4195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Objective.Image quality in whole-body MRI (WB-MRI) may be degraded by faulty radiofrequency (RF) coil elements or mispositioning of the coil arrays. Phantom-based quality control (QC) is used to identify broken RF coil elements but the frequency of these acquisitions is limited by scanner and staff availability. This work aimed to develop a scan-specific QC acquisition and processing pipeline to detect broken RF coil elements, which is sufficiently rapid to be added to the clinical WB-MRI protocol. The purpose of this is to improve the quality of WB-MRI by reducing the number of patient examinations conducted with suboptimal equipment.Approach.A rapid acquisition (14 s additional acquisition time per imaging station) was developed that identifies broken RF coil elements by acquiring images from each individual coil element and using the integral body coil. This acquisition was added to one centre's clinical WB-MRI protocol for one year (892 examinations) to evaluate the effect of this scan-specific QC. To demonstrate applicability in multi-centre imaging trials, the technique was also implemented on scanners from three manufacturers.Main results. Over the course of the study RF coil elements were flagged as potentially broken on five occasions, with the faults confirmed in four of those cases. The method had a precision of 80% and a recall of 100% for detecting faulty RF coil elements. The coil array positioning measurements were consistent across scanners and have been used to define the expected variation in signal.Significance. The technique demonstrated here can identify faulty RF coil elements and positioning errors and is a practical addition to the clinical WB-MRI protocol. This approach was fully implemented on systems from two manufacturers and partially implemented on a third. It has potential to reduce the number of clinical examinations conducted with suboptimal hardware and improve image quality across multi-centre studies.
Collapse
Affiliation(s)
- Sam Keaveney
- MRI Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | | | - Julia E Markus
- Centre for Medical Imaging, University College London, London, United Kingdom
| | - Andrew N Priest
- Department of Imaging, Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
| | - Erica Scurr
- MRI Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Julie Hughes
- MRI Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Scott Robertson
- MRI Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Simon J Doran
- MRI Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - David J Collins
- MRI Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Christina Messiou
- MRI Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Dow-Mu Koh
- MRI Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Jessica M Winfield
- MRI Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
7
|
Nickel B, Heiss R, Shih P, Gram EG, Copp T, Taba M, Moynihan R, Zadro J. Social Media Promotion of Health Tests With Potential for Overdiagnosis or Overuse: Protocol for a Content Analysis. JMIR Res Protoc 2024; 13:e56899. [PMID: 38833693 PMCID: PMC11185923 DOI: 10.2196/56899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/19/2024] [Accepted: 05/02/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND In recent years, social media have emerged as important spaces for commercial marketing of health tests, which can be used for the screening and diagnosis of otherwise generally healthy people. However, little is known about how health tests are promoted on social media, whether the information provided is accurate and balanced, and if there is transparency around conflicts of interest. OBJECTIVE This study aims to understand and quantify how social media is being used to discuss or promote health tests with the potential for overdiagnosis or overuse to generally healthy people. METHODS Content analysis of social media posts on the anti-Mullerian hormone test, whole-body magnetic resonance imaging scan, multicancer early detection, testosterone test, and gut microbe test from influential international social media accounts on Instagram and TikTok. The 5 tests have been identified as having the following criteria: (1) there are evidence-based concerns about overdiagnosis or overuse, (2) there is evidence or concerns that the results of tests do not lead to improved health outcomes for generally healthy people and may cause harm or waste, and (3) the tests are being promoted on social media to generally healthy people. English language text-only posts, images, infographics, articles, recorded videos including reels, and audio-only posts are included. Posts from accounts with <1000 followers as well as stories, live videos, and non-English posts are excluded. Using keywords related to the test, the top posts were searched and screened until there were 100 eligible posts from each platform for each test (total of 1000 posts). Data from the caption, video, and on-screen text are being summarized and extracted into a Microsoft Excel (Microsoft Corporation) spreadsheet and included in the analysis. The analysis will take a combined inductive approach when generating key themes and a deductive approach using a prespecified framework. Quantitative data will be analyzed in Stata SE (version 18.0; Stata Corp). RESULTS Data on Instagram and TikTok have been searched and screened. Analysis has now commenced. The findings will be disseminated via publications in peer-reviewed international medical journals and will also be presented at national and international conferences in late 2024 and 2025. CONCLUSIONS This study will contribute to the limited evidence base on the nature of the relationship between social media and the problems of overdiagnosis and overuse of health care services. This understanding is essential to develop strategies to mitigate potential harm and plan solutions, with the aim of helping to protect members of the public from being marketed low-value tests, becoming patients unnecessarily, and taking resources away from genuine needs within the health system. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/56899.
Collapse
Affiliation(s)
- Brooke Nickel
- Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Raffael Heiss
- Center for Social & Health Innovation, Management Centre Innsbruk, Innsbruk, Austria
| | - Patti Shih
- Australian Centre for Health Engagement Evidence and Values, School of Health and Society, University of Wollongong, Wollongong, Australia
| | - Emma Grundtvig Gram
- Center for General Practice, Department of Public Health, University of Copenhagen, Denmark, Australia
| | - Tessa Copp
- Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Melody Taba
- Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Ray Moynihan
- Institute for Evidence-Based Healthcare, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Australia
| | - Joshua Zadro
- Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
8
|
Conti L, Mazzoni D, Marzorati C, Grasso R, Busacchio D, Petralia G, Pravettoni G. Observations Regarding the Detection of Abnormal Findings Following a Cancer Screening Whole-Body MRI in Asymptomatic Subjects: The Psychological Consequences and the Role of Personality Traits Over Time. J Magn Reson Imaging 2024. [PMID: 38821883 DOI: 10.1002/jmri.29461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND The use of whole-body MRI (WB-MRI) in oncology has uncovered frequent unexpected abnormal findings (AFs). However, the impact of AFs on the patients' mental well-being is still poorly examined. PURPOSE To investigate the long-term psychological consequences of AF detection following WB-MRI for cancer screening in asymptomatic individuals. STUDY TYPE Prospective, longitudinal. POPULATION 121 consecutive subjects of the general population (mean age = 52.61 ± 11.39 years; 63% males) scheduled for cancer screening by WB-MRI. FIELD STRENGTH/SEQUENCE 1.5-T and 3-T; protocol complied with Oncologically Relevant Findings Reporting and Data System (ONCO-RADS) guidelines. ASSESSMENT Participants completed the first psychological investigation (T0) immediately after the WB-MRI. Subsequently, it was repeated after 1-year (T1), and 4-years (T2, subgroup of 61 participants) without an MRI exam, assessing personality traits, tumor risk perception, quality of life, depressive, and anxious symptoms. Radiologists directly reported WB-MRI findings to the participants, explaining the clinical implications and the location of the AFs. The number and severity of AFs were assessed. STATISTICAL TESTS Pearson's correlations and analysis of variance with repeated measures assessed the psychological health variables' relationship and their changes over time. A P-value <0.05 was considered statistically significant. RESULTS All participants presented AFs, with 101 individuals categorized as ONCO-RADS 2 and 19 as ONCO-RADS 3. The AFs were most prevalent in bones (31.5%). The overall participants showed only a slight increase in depressive symptoms at T1 [F(1,112) = 7.54]. The severity and the number of AFs were not significantly related to psychological changes [ranging from P = 0.503 to P = 0.997]. Depressive and anxious symptoms over time were significantly affected by the traits of conscientiousness [T1: F(1,112) = 7.87; T2: F(1.708,90.544) = 3.40] and openness [T1: F(1,112) = 4.41]. DATA CONCLUSION Disclosing AFs by WB-MRI exams for cancer screening may not lead to long-term psychosocial consequences. Certain personality traits may, however, influence the psychological distress experienced by individuals with AFs after WB-MRI exams. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY Stage 5.
Collapse
Affiliation(s)
- Lorenzo Conti
- Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology IRCCS, Milan, Italy
| | - Davide Mazzoni
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy
| | - Chiara Marzorati
- Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology IRCCS, Milan, Italy
| | - Roberto Grasso
- Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy
| | - Derna Busacchio
- Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology IRCCS, Milan, Italy
| | - Giuseppe Petralia
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy
- Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Gabriella Pravettoni
- Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
9
|
Vandecaveye V. Can diffusion-weighted MRI improve response assessment of neo-adjuvant therapy in pancreatic cancer? Eur Radiol 2024; 34:3236-3237. [PMID: 38133678 DOI: 10.1007/s00330-023-10528-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Affiliation(s)
- Vincent Vandecaveye
- Radiology Department, University Hospitals Leuven, Leuven, Belgium.
- Translational MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
10
|
Bilreiro C, Andrade L, Marques RM, Matos C. Diffusion-weighted imaging for determining response to neoadjuvant therapy in pancreatic cancer: a systematic review and meta-analysis. Eur Radiol 2024; 34:3238-3248. [PMID: 37907761 PMCID: PMC11126427 DOI: 10.1007/s00330-023-10381-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/15/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023]
Abstract
OBJECTIVES To determine the role of diffusion-weighted imaging (DWI) for predicting response to neoadjuvant therapy (NAT) in pancreatic cancer. MATERIALS AND METHODS MEDLINE, EMBASE, and Cochrane Library databases were searched for studies evaluating the performance of apparent diffusion coefficient (ADC) to assess response to NAT. Data extracted included ADC pre- and post-NAT, for predicting response as defined by imaging, histopathology, or clinical reference standards. ADC values were compared with standardized mean differences. Risk of bias was assessed using the Quality Assessment of Diagnostic Studies (QUADAS-2). RESULTS Of 337 studies, 7 were included in the analysis (161 patients). ADC values reported for the pre- and post-NAT assessments overlapped between responders and non-responders. One study reported inability of ADC increase after NAT for distinguishing responders and non-responders. A correlation with histopathological response was reported for pre- and post-NAT ADC in 4 studies. DWI's diagnostic performance was reported to be high in three studies, with a 91.6-100% sensitivity and 62.5-94.7% specificity. Finally, heterogeneity and high risk of bias were identified across studies, affecting the domains of patient selection, index test, reference standard, and flow and timing. CONCLUSION DWI might be useful for determining response to NAT in pancreatic cancer. However, there are still too few studies on this matter, which are also heterogeneous and at high risk for bias. Further studies with standardized procedures for data acquisition and accurate reference standards are needed. CLINICAL RELEVANCE STATEMENT Diffusion-weighted MRI might be useful for assessing response to neoadjuvant therapy in pancreatic cancer. However, further studies with robust data are needed to provide specific recommendations for clinical practice. KEY POINTS •The role of DWI with ADC measurements for assessing response to neoadjuvant therapy in pancreatic cancer is still unclear. •Pre- and post-neoadjuvant therapy ADC values overlap between responders and non-responders. •DWI has a reported high diagnostic performance for determining response when using histopathological or clinical reference standards; however, studies are still few and at high risk for bias.
Collapse
Affiliation(s)
- Carlos Bilreiro
- Radiology Department, Champalimaud Foundation, Lisbon, Portugal.
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal.
- Nova Medical School, Lisbon, Portugal.
| | - Luísa Andrade
- Radiology Department, Champalimaud Foundation, Lisbon, Portugal
| | - Rui Mateus Marques
- Nova Medical School, Lisbon, Portugal
- Radiology Department, Hospital de S. José, Lisbon, Portugal
| | - Celso Matos
- Radiology Department, Champalimaud Foundation, Lisbon, Portugal
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| |
Collapse
|
11
|
Vulasala SS, Virarkar M, Karbasian N, Calimano-Ramirez LF, Daoud T, Amini B, Bhosale P, Javadi S. Whole-body MRI in oncology: A comprehensive review. Clin Imaging 2024; 108:110099. [PMID: 38401295 DOI: 10.1016/j.clinimag.2024.110099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/26/2024]
Abstract
Whole-Body Magnetic Resonance Imaging (WB-MRI) has cemented its position as a pivotal tool in oncological diagnostics. It offers unparalleled soft tissue contrast resolution and the advantage of sidestepping ionizing radiation. This review explores the diverse applications of WB-MRI in oncology. We discuss its transformative role in detecting and diagnosing a spectrum of cancers, emphasizing conditions like multiple myeloma and cancers with a proclivity for bone metastases. WB-MRI's capability to encompass the entire body in a singular scan has ushered in novel paradigms in cancer screening, especially for individuals harboring hereditary cancer syndromes or at heightened risk for metastatic disease. Additionally, its contribution to the clinical landscape, aiding in the holistic management of multifocal and systemic malignancies, is explored. The article accentuates the technical strides achieved in WB-MRI, its myriad clinical utilities, and the challenges in integration into standard oncological care. In essence, this review underscores the transformative potential of WB-MRI, emphasizing its promise as a cornerstone modality in shaping the future trajectory of cancer diagnostics and treatment.
Collapse
Affiliation(s)
- Sai Swarupa Vulasala
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL, United States.
| | - Mayur Virarkar
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL, United States
| | - Niloofar Karbasian
- Department of Radiology, McGovern Medical School at University of Texas Health Houston, Houston, TX, United States
| | - Luis F Calimano-Ramirez
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL, United States
| | - Taher Daoud
- Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Behrang Amini
- Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Priya Bhosale
- Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sanaz Javadi
- Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
12
|
Zhang G, Deh K, Park H, Cunningham CH, Bragagnolo ND, Lyashchenko S, Ahmmed S, Leftin A, Coffee E, Kelsen D, Hricak H, Miloushev V, Mayerhoefer M, Keshari KR. Assessment of the Feasibility of Hyperpolarized [1- 13 C]pyruvate Whole-Abdomen MRI using D 2 O Solvation in Humans. J Magn Reson Imaging 2024. [PMID: 38440941 PMCID: PMC11374927 DOI: 10.1002/jmri.29322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 03/06/2024] Open
Affiliation(s)
- Guannan Zhang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Kofi Deh
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Hijin Park
- Radiochemistry and Molecular Imaging Probes (RMIP) Core, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Charles H Cunningham
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | | - Serge Lyashchenko
- Radiochemistry and Molecular Imaging Probes (RMIP) Core, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Shake Ahmmed
- Radiochemistry and Molecular Imaging Probes (RMIP) Core, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | | | - Elizabeth Coffee
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - David Kelsen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Hedvig Hricak
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Vesselin Miloushev
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Marius Mayerhoefer
- Department of Radiology, NYU Grossman School of Medicine, New York City, New York, USA
| | - Kayvan R Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| |
Collapse
|
13
|
Rodrigues MMC, Lederman HM, Grossman I, Castiglioni MLV, Marchetti R, Grass DC, Luisi FAV, Caran EMM. Comparison between whole-body magnetic resonance imaging and whole-body metaiodobenzylguanidine scintigraphy in the evaluation of primary tumor and metastases in neuroblastoma. Pediatr Blood Cancer 2024; 71:e30820. [PMID: 38153317 DOI: 10.1002/pbc.30820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Whole-body metaiodobenzylguanidine (131 I-MIBG) scintigraphy is the gold standard method to detect neuroblastoma; however, it depends on radioactive material and is expensive. In contrast, whole-body magnetic resonance imaging (WB-MRI) is affordable in developing countries and has been shown to be effective in the evaluation of solid tumors. This study aimed to compare the sensitivity and specificity of WB-MRI with MIBG in the detection of primary tumors and neuroblastoma metastases. PROCEDURE This retrospective study enrolled patients with neuroblastoma between 2013 and 2020. All patients underwent WB-MRI and MIBG at intervals of up to 15 days. The results were marked in a table that discriminated anatomical regions for each patient. Two experts evaluated, independently and in anonymity, the WB-MRI images, and two others evaluated MIBG. The results were compared in terms of sensitivity and specificity, for each patient, considering MIBG as the gold standard. This study was approved by the UNIFESP Ethics Committee. RESULTS Thirty patients with neuroblastoma were enrolled in this study. The age ranged from 1 to 15 years, with a mean of 5.7 years. The interval between exams (WB-MRI and MIBG) ranged from 1 to 13 days, with an average of 6.67 days. Compared to MIBG, WB-MRI presented a sensitivity and specificity greater than or equal to 90% for the detection of primary neuroblastoma in bones and lymph nodes. When we consider the patient without individualizing the anatomical regions, WB-MRI presented sensitivity of 90% and specificity of 73.33%. CONCLUSION In conclusion, WB-MRI is a sensitive and specific method to detect neuroblastoma in bone and lymph nodes and highly sensible to primary tumor diagnosis, suggesting that this test is a viable alternative in places where MIBG is difficult to access. Studies with a larger number of cases are necessary for definitive conclusions.
Collapse
Affiliation(s)
- Monica Matos Correia Rodrigues
- Division of Pediatric Oncology, Institute of Pediatric Oncology, Support Group for Adolescents and Children with Cancer/Paulista School of Medicine, Federal University of São Paulo (Escola Paulista de Medicina, Universidade Federal de São Paulo), São Paulo, São Paulo, Brazil
| | - Henrique Manoel Lederman
- Division of Radiology, Institute of Pediatric Oncology, Support Group for Adolescents and Children with Cancer (IOP/GRAACC)/Paulista School of Medicine, Federal University of São Paulo (Escola Paulista de Medicina, Universidade Federal de São Paulo), São Paulo, São Paulo, Brazil
| | - Iona Grossman
- Division of Radiology, Institute of Pediatric Oncology, Support Group for Adolescents and Children with Cancer (IOP/GRAACC)/Paulista School of Medicine, Federal University of São Paulo (Escola Paulista de Medicina, Universidade Federal de São Paulo), São Paulo, São Paulo, Brazil
| | - Mario Luiz V Castiglioni
- Nuclear Medicine - Imaging Diagnostic Department (DDI), HU, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Renata Marchetti
- Nuclear Medicine - Imaging Diagnostic Department (DDI), HU, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Daphne Centola Grass
- Division of Radiology, Institute of Pediatric Oncology, Support Group for Adolescents and Children with Cancer (IOP/GRAACC)/Paulista School of Medicine, Federal University of São Paulo (Escola Paulista de Medicina, Universidade Federal de São Paulo), São Paulo, São Paulo, Brazil
| | - Flavio Augusto Vercillo Luisi
- Division of Pediatric Oncology, Institute of Pediatric Oncology, Support Group for Adolescents and Children with Cancer/Paulista School of Medicine, Federal University of São Paulo (Escola Paulista de Medicina, Universidade Federal de São Paulo), São Paulo, São Paulo, Brazil
| | - Eliana Maria Monteiro Caran
- Division of Pediatric Oncology, Institute of Pediatric Oncology, Support Group for Adolescents and Children with Cancer/Paulista School of Medicine, Federal University of São Paulo (Escola Paulista de Medicina, Universidade Federal de São Paulo), São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Candito A, Holbrey R, Ribeiro A, Messiou C, Tunariu N, Koh DM, Blackledge MD. Deep Learning for Delineation of the Spinal Canal in Whole-Body Diffusion-Weighted Imaging: Normalising Inter- and Intra-Patient Intensity Signal in Multi-Centre Datasets. Bioengineering (Basel) 2024; 11:130. [PMID: 38391616 PMCID: PMC10885936 DOI: 10.3390/bioengineering11020130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Whole-Body Diffusion-Weighted Imaging (WBDWI) is an established technique for staging and evaluating treatment response in patients with multiple myeloma (MM) and advanced prostate cancer (APC). However, WBDWI scans show inter- and intra-patient intensity signal variability. This variability poses challenges in accurately quantifying bone disease, tracking changes over follow-up scans, and developing automated tools for bone lesion delineation. Here, we propose a novel automated pipeline for inter-station, inter-scan image signal standardisation on WBDWI that utilizes robust segmentation of the spinal canal through deep learning. METHODS We trained and validated a supervised 2D U-Net model to automatically delineate the spinal canal (both the spinal cord and surrounding cerebrospinal fluid, CSF) in an initial cohort of 40 patients who underwent WBDWI for treatment response evaluation (80 scans in total). Expert-validated contours were used as the target standard. The algorithm was further semi-quantitatively validated on four additional datasets (three internal, one external, 207 scans total) by comparing the distributions of average apparent diffusion coefficient (ADC) and volume of the spinal cord derived from a two-component Gaussian mixture model of segmented regions. Our pipeline subsequently standardises WBDWI signal intensity through two stages: (i) normalisation of signal between imaging stations within each patient through histogram equalisation of slices acquired on either side of the station gap, and (ii) inter-scan normalisation through histogram equalisation of the signal derived within segmented spinal canal regions. This approach was semi-quantitatively validated in all scans available to the study (N = 287). RESULTS The test dice score, precision, and recall of the spinal canal segmentation model were all above 0.87 when compared to manual delineation. The average ADC for the spinal cord (1.7 × 10-3 mm2/s) showed no significant difference from the manual contours. Furthermore, no significant differences were found between the average ADC values of the spinal cord across the additional four datasets. The signal-normalised, high-b-value images were visualised using a fixed contrast window level and demonstrated qualitatively better signal homogeneity across scans than scans that were not signal-normalised. CONCLUSION Our proposed intensity signal WBDWI normalisation pipeline successfully harmonises intensity values across multi-centre cohorts. The computational time required is less than 10 s, preserving contrast-to-noise and signal-to-noise ratios in axial diffusion-weighted images. Importantly, no changes to the clinical MRI protocol are expected, and there is no need for additional reference MRI data or follow-up scans.
Collapse
Affiliation(s)
- Antonio Candito
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK
| | - Richard Holbrey
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK
| | - Ana Ribeiro
- Department of Radiology, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Christina Messiou
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK
- Department of Radiology, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Nina Tunariu
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK
- Department of Radiology, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Dow-Mu Koh
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK
- Department of Radiology, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Matthew D Blackledge
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK
| |
Collapse
|
15
|
Hottat NA, Badr DA, Ben Ghanem M, Besse-Hammer T, Lecomte SM, Vansteelandt C, Lecomte SL, Khaled C, De Grove V, Salem Wehbe G, Cannie MM, Jani JC. Assessment of whole-body MRI including diffusion-weighted sequences in the initial staging of breast cancer patients at high risk of metastases in comparison with PET-CT: a prospective cohort study. Eur Radiol 2024; 34:165-178. [PMID: 37555959 DOI: 10.1007/s00330-023-10060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/19/2023] [Accepted: 06/13/2023] [Indexed: 08/10/2023]
Abstract
OBJECTIVE The aim of this study was to assess the diffusion-weighted whole-body-MRI (WBMRI) in the initial staging of breast cancer at high risk of metastases in comparison with positron emission tomography (PET)-CT. METHODS Forty-five women were prospectively enrolled. The inclusion criteria were female gender, age >18, invasive breast cancer, an initial PET-CT, and a performance status of 0-2. The exclusion criteria were contraindication to WB-MRI and breast cancer recurrence. The primary outcome was the concordance of WB-MRI and PET-CT in the diagnosis of distant metastases, whereas secondary outcomes included their concordance for the primary tumor and regional lymph nodes (LN), as well as the agreement of WB-MRI interpretation between two radiologists. RESULTS The mean age was 51.2 years with a median size of the primary tumor of 30 mm. Concordance between the two modalities was almost perfect for metastases staging, all sites included (k = 0.862), with excellent interobserver agreement. The accuracy of WB-MRI for detecting regional LN, distant LN, lung, liver, or bone metastases ranged from 91 to 96%. In 2 patients, WB-MRI detected bone metastases that were overlooked by PET-CT. WB-MRI showed a substantial agreement with PET-CT for staging the primary tumor, regional LN status, and stage (k = 0.766, k = 0.756, and k = 0.785, respectively) with a high interobserver agreement. CONCLUSION WB-MRI including DWI could be a reliable and reproducible examination in the initial staging of breast cancer patients at high risk of metastases, especially for bone metastases and therefore could be used as a surrogate to PET-CT. CLINICAL RELEVANCE STATEMENT Whole-body-MRI including DWI is a promising technique for detecting metastases in the initial staging of breast cancer at high risk of metastases. KEY POINTS Whole-body-MRI (WB-MRI) was effective for detecting metastases in the initial staging of 45 breast cancer patients at high risk of metastases in comparison with PET-CT. Concordance between WB-MRI and PET-CT was almost perfect for metastases staging, all sites included, with excellent interobserver agreement. The accuracy of WB-MRI for detecting bone metastases was 92%.
Collapse
Affiliation(s)
- Nathalie A Hottat
- Department of Radiology, University Hospital Brugmann, Université Libre de Bruxelles, Place A. Van Gehuchten 4, 1020, Brussels, Belgium.
- Department of Radiology, UZ Brussel, Vrije Universiteit Brussel, Brussel, Belgium.
| | - Dominique A Badr
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Meriem Ben Ghanem
- Department of Radiology, University Hospital Brugmann, Université Libre de Bruxelles, Place A. Van Gehuchten 4, 1020, Brussels, Belgium
| | - Tatiana Besse-Hammer
- Clinical Research Unit, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Sylvie M Lecomte
- Department of Oncology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Catherine Vansteelandt
- Department of Oncology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Sophie L Lecomte
- Department of Pathology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Chirine Khaled
- Department of Pathology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Veerle De Grove
- Department of Radiology, University Hospital Brugmann, Université Libre de Bruxelles, Place A. Van Gehuchten 4, 1020, Brussels, Belgium
| | - Georges Salem Wehbe
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Mieke M Cannie
- Department of Radiology, University Hospital Brugmann, Université Libre de Bruxelles, Place A. Van Gehuchten 4, 1020, Brussels, Belgium
- Department of Radiology, UZ Brussel, Vrije Universiteit Brussel, Brussel, Belgium
| | - Jacques C Jani
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
16
|
Shetty AS, Ludwig DR, Ippolito JE, Andrews TJ, Narra VR, Fraum TJ. Low-Field-Strength Body MRI: Challenges and Opportunities at 0.55 T. Radiographics 2023; 43:e230073. [PMID: 37917537 DOI: 10.1148/rg.230073] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Advances in MRI technology have led to the development of low-field-strength (hereafter, "low-field") (0.55 T) MRI systems with lower weight, fewer shielding requirements, and lower cost than those of traditional (1.5-3 T) systems. The trade-offs of lower signal-to-noise ratio (SNR) at 0.55 T are partially offset by patient safety and potential comfort advantages (eg, lower specific absorption rate and a more cost-effective larger bore diameter) and physical advantages (eg, decreased T2* decay, shorter T1 relaxation times). Image reconstruction advances leveraging developing technologies (such as deep learning-based denoising) can be paired with traditional techniques (such as increasing the number of signal averages) to improve SNR. The overall image quality produced by low-field MRI systems, although perhaps somewhat inferior to 1.5-3 T MRI systems in terms of SNR, is nevertheless diagnostic for a broad variety of body imaging applications. Effective low-field body MRI requires (a) an understanding of the trade-offs resulting from lower field strengths, (b) an approach to modifying routine sequences to overcome SNR challenges, and (c) a workflow for carefully selecting appropriate patients. The authors describe the rationale, opportunities, and challenges of low-field body MRI; discuss important considerations for low-field imaging with common body MRI sequences; and delineate a variety of use cases for low-field body MRI. The authors also include lessons learned from their preliminary experience with a new low-field MRI system at a tertiary care center. Finally, they explore the future of low-field MRI, summarizing current limitations and potential future developments that may enhance the clinical adoption of this technology. ©RSNA, 2023 Supplemental material is available for this article. Quiz questions for this article are available through the Online Learning Center. See the invited commentary by Venkatesh in this issue.
Collapse
Affiliation(s)
- Anup S Shetty
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St. Louis, MO 63110
| | - Daniel R Ludwig
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St. Louis, MO 63110
| | - Joseph E Ippolito
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St. Louis, MO 63110
| | - Trevor J Andrews
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St. Louis, MO 63110
| | - Vamsi R Narra
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St. Louis, MO 63110
| | - Tyler J Fraum
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St. Louis, MO 63110
| |
Collapse
|
17
|
Dewaguet J, Beaujot J, Leguillette C, Decanter G, Cordoba A, Penel N, Ceugnart L, Taieb S, Amor MBH. [Contribution of whole-body MRI to the initial assessment of myxoid liposarcoma]. Bull Cancer 2023; 110:1015-1026. [PMID: 37507239 DOI: 10.1016/j.bulcan.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 07/30/2023]
Abstract
INTRODUCTION Myxoid liposarcoma is a soft tissue sarcoma associated with multifocal metastases at diagnosis. These metastases are asymptomatic and occult on CT and FDG-PET and can alter the therapeutic management and prognosis. In this context, we evaluated the contribution of whole-body MRI to the initial workup of patients with myxoid liposarcoma. METHOD This retrospective study was conducted between January 2015 and December 2020 at the Oscar Lambret Center. We enrolled 22 patients who were diagnosed with myxoid liposarcoma and underwent whole-body MRI at diagnosis. The number of metastases at diagnosis, their location, and the visibility of these lesions on CT were evaluated. Associations between clinical features, presence of metastasis, and their impact on management were assessed. RESULTS Sixteen patients (72.7%) had non-metastatic disease at the initial diagnosis, and 15 of these patients were managed using local treatment. Six patients (27.3%) had metastases at multiple locations and received chemotherapy. The main locations were the bones (n=5) and lungs (n=3). In five patients with metastases, whole-body MRI demonstrated additional lesions that were not visible on CT (bone and soft tissue lesions). Only the presence of a round cell contingent (P=0.009) was found as a criterion associated with the presence of metastases. CONCLUSION The patients' young age, absence of reliable prognostic factors at diagnosis, asymptomatic nature of the lesions, and the benefits of early and targeted therapeutic management encourage the use of whole-body MRI as part of the initial work-up as it seems to provide a better initial staging compared with conventional imaging.
Collapse
Affiliation(s)
- Julie Dewaguet
- Centre Oscar-Lambret, département d'imagerie, 3, rue Combemale, 59020 Lille cedex, France.
| | - Juliette Beaujot
- Centre Oscar-Lambret, département d'anatomie et cytologie pathologique, 3, rue Combemale, 59020 Lille cedex, France
| | - Clémence Leguillette
- Centre Oscar-Lambret, unité de méthodologie et de biostatistiques, 3, rue Combemale, 59020 Lille cedex, France
| | - Gauthier Decanter
- Centre Oscar-Lambret, département de chirurgie, 3, rue Combemale, 59020 Lille cedex, France
| | - Abel Cordoba
- Centre Oscar-Lambret, département de radiothérapie, 3, rue Combemale, 59020 Lille cedex, France
| | - Nicolas Penel
- Centre Oscar-Lambret, Clinical Research and Innovation Department, Medical Oncology Department, 3, rue Combemale, 59020 Lille cedex, France; University Lille, CHU de Lille, ULR 2694 - Metrics : évaluation des technologies de santé et des pratiques médicales, 59000 Lille, France
| | - Luc Ceugnart
- Centre Oscar-Lambret, département d'imagerie, 3, rue Combemale, 59020 Lille cedex, France
| | - Sophie Taieb
- Centre Oscar-Lambret, département d'imagerie, 3, rue Combemale, 59020 Lille cedex, France
| | - Mariem Ben Haj Amor
- Centre Oscar-Lambret, département d'imagerie, 3, rue Combemale, 59020 Lille cedex, France
| |
Collapse
|
18
|
Reinert CP, Liang C, Weissinger M, Vogel J, Forschner A, Nikolaou K, la Fougère C, Seith F. Whole-Body Magnetic Resonance Imaging (MRI) for Staging Melanoma Patients in Direct Comparison to Computed Tomography (CT): Results from a Prospective Positron Emission Tomography (PET)/CT and PET/MRI Study. Diagnostics (Basel) 2023; 13:diagnostics13111963. [PMID: 37296815 DOI: 10.3390/diagnostics13111963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
PURPOSE The consideration of radiation exposure is becoming more important in metastatic melanoma due to improved prognoses. The aim of this prospective study was to investigate the diagnostic performance of whole-body (WB) magnetic resonance imaging (MRI) in comparison to computed tomography (CT) with 18F-FDG positron emission tomography (PET)/CT and 18F-PET/MRI together with a follow-up as the reference standard. METHODS Between April 2014 and April 2018, a total of 57 patients (25 females, mean age of 64 ± 12 years) underwent WB-PET/CT and WB-PET/MRI on the same day. The CT and MRI scans were independently evaluated by two radiologists who were blinded to the patients' information. The reference standard was evaluated by two nuclear medicine specialists. The findings were categorized into different regions: lymph nodes/soft tissue (I), lungs (II), abdomen/pelvis (III), and bone (IV). A comparative analysis was conducted for all the documented findings. Inter-reader reliability was assessed using Bland-Altman procedures, and McNemar's test was utilized to determine the differences between the readers and the methods. RESULTS Out of the 57 patients, 50 were diagnosed with metastases in two or more regions, with the majority being found in region I. The accuracies of CT and MRI did not show significant differences, except in region II where CT detected more metastases compared to MRI (0.90 vs. 0.68, p = 0.008). On the other hand, MRI had a higher detection rate in region IV compared to CT (0.89 vs. 0.61, p > 0.05). The level of agreement between the readers varied depending on the number of metastases and the specific region, with the highest agreement observed in region III and the lowest observed in region I. CONCLUSIONS In patients with advanced melanoma, WB-MRI has the potential to serve as an alternative to CT with comparable diagnostic accuracy and confidence across most regions. The observed limited sensitivity for the detection of pulmonary lesions might be improved through dedicated lung imaging sequences.
Collapse
Affiliation(s)
- Christian Philipp Reinert
- Department of Radiology, Diagnostic and Interventional Radiology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - Cecilia Liang
- Department of Radiology, Diagnostic and Interventional Radiology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - Matthias Weissinger
- Department of Radiology, Diagnostic and Interventional Radiology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - Jonas Vogel
- Department of Radiology, Diagnostic and Interventional Radiology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - Andrea Forschner
- Department of Dermatology, University Hospital Tübingen, Liebermeisterstrasse 25, 72076 Tübingen, Germany
| | - Konstantin Nikolaou
- Department of Radiology, Diagnostic and Interventional Radiology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Christian la Fougère
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Ferdinand Seith
- Department of Radiology, Diagnostic and Interventional Radiology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| |
Collapse
|
19
|
Kiryu S, Akai H, Yasaka K, Tajima T, Kunimatsu A, Yoshioka N, Akahane M, Abe O, Ohtomo K. Clinical Impact of Deep Learning Reconstruction in MRI. Radiographics 2023; 43:e220133. [PMID: 37200221 DOI: 10.1148/rg.220133] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Deep learning has been recognized as a paradigm-shifting tool in radiology. Deep learning reconstruction (DLR) has recently emerged as a technology used in the image reconstruction process of MRI, which is an essential procedure in generating MR images. Denoising, which is the first DLR application to be realized in commercial MRI scanners, improves signal-to-noise ratio. When applied to lower magnetic field-strength scanners, the signal-to-noise ratio can be increased without extending the imaging time, and image quality is comparable to that of higher-field-strength scanners. Shorter imaging times decrease patient discomfort and reduce MRI scanner running costs. The incorporation of DLR into accelerated acquisition imaging techniques, such as parallel imaging or compressed sensing, shortens the reconstruction time. DLR is based on supervised learning using convolutional layers and is divided into the following three categories: image domain, k-space learning, and direct mapping types. Various studies have reported other derivatives of DLR, and several have shown the feasibility of DLR in clinical practice. Although DLR efficiently reduces Gaussian noise from MR images, denoising makes image artifacts more prominent, and a solution to this problem is desired. Depending on the training of the convolutional neural network, DLR may change the imaging features of lesions and obscure small lesions. Therefore, radiologists may need to adopt the habit of questioning whether any information has been lost on images that appear clean. ©RSNA, 2023 Quiz questions for this article are available in the supplemental material.
Collapse
Affiliation(s)
- Shigeru Kiryu
- From the Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita 286-0124, Japan (S.K., H.A., K.Y., T.T., A.K., N.Y., M.A.); Department of Radiology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan (H.A.); Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (K.Y., O.A.); Department of Radiology, International University of Health and Welfare Mita Hospital, Tokyo, Japan (T.T., A.K.); and International University of Health and Welfare, Otawara, Japan (K.O.)
| | - Hiroyuki Akai
- From the Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita 286-0124, Japan (S.K., H.A., K.Y., T.T., A.K., N.Y., M.A.); Department of Radiology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan (H.A.); Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (K.Y., O.A.); Department of Radiology, International University of Health and Welfare Mita Hospital, Tokyo, Japan (T.T., A.K.); and International University of Health and Welfare, Otawara, Japan (K.O.)
| | - Koichiro Yasaka
- From the Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita 286-0124, Japan (S.K., H.A., K.Y., T.T., A.K., N.Y., M.A.); Department of Radiology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan (H.A.); Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (K.Y., O.A.); Department of Radiology, International University of Health and Welfare Mita Hospital, Tokyo, Japan (T.T., A.K.); and International University of Health and Welfare, Otawara, Japan (K.O.)
| | - Taku Tajima
- From the Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita 286-0124, Japan (S.K., H.A., K.Y., T.T., A.K., N.Y., M.A.); Department of Radiology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan (H.A.); Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (K.Y., O.A.); Department of Radiology, International University of Health and Welfare Mita Hospital, Tokyo, Japan (T.T., A.K.); and International University of Health and Welfare, Otawara, Japan (K.O.)
| | - Akira Kunimatsu
- From the Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita 286-0124, Japan (S.K., H.A., K.Y., T.T., A.K., N.Y., M.A.); Department of Radiology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan (H.A.); Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (K.Y., O.A.); Department of Radiology, International University of Health and Welfare Mita Hospital, Tokyo, Japan (T.T., A.K.); and International University of Health and Welfare, Otawara, Japan (K.O.)
| | - Naoki Yoshioka
- From the Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita 286-0124, Japan (S.K., H.A., K.Y., T.T., A.K., N.Y., M.A.); Department of Radiology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan (H.A.); Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (K.Y., O.A.); Department of Radiology, International University of Health and Welfare Mita Hospital, Tokyo, Japan (T.T., A.K.); and International University of Health and Welfare, Otawara, Japan (K.O.)
| | - Masaaki Akahane
- From the Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita 286-0124, Japan (S.K., H.A., K.Y., T.T., A.K., N.Y., M.A.); Department of Radiology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan (H.A.); Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (K.Y., O.A.); Department of Radiology, International University of Health and Welfare Mita Hospital, Tokyo, Japan (T.T., A.K.); and International University of Health and Welfare, Otawara, Japan (K.O.)
| | - Osamu Abe
- From the Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita 286-0124, Japan (S.K., H.A., K.Y., T.T., A.K., N.Y., M.A.); Department of Radiology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan (H.A.); Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (K.Y., O.A.); Department of Radiology, International University of Health and Welfare Mita Hospital, Tokyo, Japan (T.T., A.K.); and International University of Health and Welfare, Otawara, Japan (K.O.)
| | - Kuni Ohtomo
- From the Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita 286-0124, Japan (S.K., H.A., K.Y., T.T., A.K., N.Y., M.A.); Department of Radiology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan (H.A.); Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (K.Y., O.A.); Department of Radiology, International University of Health and Welfare Mita Hospital, Tokyo, Japan (T.T., A.K.); and International University of Health and Welfare, Otawara, Japan (K.O.)
| |
Collapse
|
20
|
Czeyda-Pommersheim F, Kluger H, Langdon J, Menias C, VanBuren W, Leventhal J, Baumann R, Revzin M. Melanoma in pregnancy. Abdom Radiol (NY) 2023; 48:1740-1751. [PMID: 36719425 DOI: 10.1007/s00261-022-03796-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 02/01/2023]
Abstract
Melanoma is one of the most common types of cancer diagnosed during pregnancy. Patients with advanced disease require frequent staging examinations (e.g., CT, PET, MRI, ultrasound), which, during pregnancy must be modified from routine protocol to minimize risk to the fetus. We will review the diagnostic and treatment approach to pregnant patients with melanoma, with a discussion and pictorial examples of imaging protocol modifications, and the appearance of metastatic melanoma on radiology exams using modified protocols due to pregnancy.
Collapse
Affiliation(s)
| | - Harriet Kluger
- Department of Medical Oncology, Yale School of Medicine, New Haven, CT, USA
| | - Jonathan Langdon
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | | | | | | | | | - Margarita Revzin
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
21
|
Eltonbary HTAI, Elmashad NM, Khodair SA, Abou Khadrah RS. Suppression of background body signals in whole-body diffusion-weighted imaging for detection of bony metastases: a pilot study. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2023. [DOI: 10.1186/s43055-023-01012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
Abstract
Abstract
Background
Whole-body diffusion-weighted magnetic resonance is being developed as a tool for assessing tumor spread. Patients with known primary tumors require meticulous evaluation to assess metastasis for better staging; we attempted to detect bony metastasis without radiation exposure. Our study's goal was to use whole-body diffusion-weighted imaging with background body signal suppression (WB-DWBIS) to evaluate bony metastasis in confirmed patients who have primary tumors.
Results
Our study included 90 patients with known primary cancer, 10 patients were excluded as they had no bony metastasis, from 80 patients: 36 (45.0%) having one site of metastasis, 36 (45%) having two sites of metastasis, and 8 (10.0%) having three sites of metastasis. 56 (70.0%) of the metastasis sites were bony metastasis, and 76 were mixed both bony and non-bony, including 32(40.0%) lung, 16 (20.0%) liver, and 28 (35%) lymph nodes. Sensitivity of bone scanning in detecting metastasis was as follows: 95.1% sensitivity and 92.0% accuracy, while that of whole-body diffusion-weighted image with background signals suppression was 94.8% sensitivity and 91.7% accuracy, WB-DWBIS inter-observer agreement in the detection of bony metastatic deposits in cancer patients was good (0.7 45, agreement = 93.2%).
Conclusions
Using WB-DWBIS images, bone lesion identification and characterization (site and number) were improved, producing outcomes similar to bone scanning without the use of ionizing radiation.
Collapse
|
22
|
Guedes A, Oliveira MBDR, Melo ASD, Carmo CCMD. Update in Imaging Evaluation of Bone and Soft Tissue Sarcomas. Rev Bras Ortop 2023; 58:179-190. [PMID: 37252301 PMCID: PMC10212631 DOI: 10.1055/s-0041-1736569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 07/08/2021] [Indexed: 10/19/2022] Open
Abstract
The evolution in imaging evaluation of musculoskeletal sarcomas contributed to a significant improvement in the prognosis and survival of patients with these neoplasms. The precise characterization of these lesions, using the most appropriate imaging modalities to each clinical condition presented, is of paramount importance in the design of the therapeutic approach to be instituted, with a direct impact on clinical outcomes. The present article seeks to update the reader regarding imaging methodologies in the context of local and systemic evaluation of bone sarcomas and soft tissues.
Collapse
Affiliation(s)
- Alex Guedes
- Grupo de Oncologia Ortopédica, Hospital Santa Izabel, Santa Casa de Misericórdia da Bahia, Salvador, BA, Brasil
| | - Marcelo Bragança dos Reis Oliveira
- Serviço de Traumato-ortopedia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Adelina Sanches de Melo
- Serviço de Medicina Nuclear, Hospital Santa Izabel, Santa Casa da Misericórdia da Bahia, Salvador, BA, Brasil
| | | |
Collapse
|
23
|
Neves R, Perez BDD, Tindall T, Fernandez NS, Panek R, Wilne S, Suri M, Whitehouse W, Jagani S, Dandapani M, Dineen RA, Glazebrook C. Whole-body MRI for cancer surveillance in ataxia-telangiectasia: A qualitative study of the perspectives of people affected by A-T and their families. Health Expect 2023; 26:1358-1367. [PMID: 36929011 PMCID: PMC10154855 DOI: 10.1111/hex.13756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/21/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND/OBJECTIVES Ataxia-telangiectasia (A-T) is a complex inherited disease associated with an increased risk of malignancy. Surveillance guidelines have demonstrated significant health benefits in other cancer predisposition syndromes. However, evidence-based guidelines for cancer screening are not currently used in the United Kingdom for people affected by A-T. This study aims to understand how people with A-T and their parents feel about cancer surveillance using whole-body magnetic resonance imaging (MRI) to inform the future development of cancer surveillance guidelines. DESIGN/METHODS We conducted semistructured interviews with people affected by A-T. Data were analysed inductively using thematic analysis. RESULTS Nine parents of children with A-T and four adults with A-T were interviewed. Five main themes emerged from the data, including (1) cancer screening was considered invaluable with the perceived value of early detection highlighted; (2) the cancer fear can increase anxiety; (3) the perceived limitations around current practice, with the responsibility for monitoring falling too strongly on parents and patients; (4) the need for effective preparation for cancer screening, including clear communication and (5) the challenges associated with MRI screening, where specific recommendations were made for improving the child's experience. CONCLUSION This study suggests that stakeholders are positive about the perceived advantages of a cancer screening programme. Ongoing support and preparation techniques should be adopted to maximise adherence and minimise adverse psychosocial outcomes. PATIENT OR PUBLIC CONTRIBUTION People with A-T and parents of people with A-T were actively involved in this study by giving their consent to be interviewed. An independent parent representative contributed to the study, supporting the research team in interpreting and commenting on the appropriateness of the language used in this report.
Collapse
Affiliation(s)
- Renata Neves
- Radiological Sciences, Mental Health and Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK.,Department of Radiology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Blanca de Dios Perez
- Division of Rehabilitation, Ageing and Wellbeing, Centre for Rehabilitation and Ageing Research, School of Medicine, University of Nottingham, Nottingham, UK
| | - Tierney Tindall
- Mental Health and Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK
| | | | - Rafal Panek
- Department of Medical Physics and Clinical Engineering, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Sophie Wilne
- Department of Paediatric Oncology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Mohnish Suri
- Nottingham Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - William Whitehouse
- Division of Child Health, Obstetrics and Gynaecology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Sumit Jagani
- Department of Radiology, Nottingham Children's Hospital, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Madhumita Dandapani
- Children's Brain Tumour Research Centre, Medical School, University of Nottingham, Nottingham, UK
| | - Robert A Dineen
- Radiological Sciences, Mental Health and Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK.,NIHR Nottingham Biomedical Research Centre, Nottingham, UK.,Division of Clinical Neuroscience, Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
| | - Cris Glazebrook
- Institute of Mental Health, University of Nottingham, Nottingham, UK
| |
Collapse
|
24
|
Automated volume measurement of abdominal adipose tissue from entire abdominal cavity in Dixon MR images using deep learning. Radiol Phys Technol 2023; 16:28-38. [PMID: 36344662 DOI: 10.1007/s12194-022-00687-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
The purpose of this study was to realize an automated volume measurement of abdominal adipose tissue from the entire abdominal cavity in Dixon magnetic resonance (MR) images using deep learning. Our algorithm involves a combination of extraction of the abdominal cavity and body trunk regions using deep learning and extraction of a fat region based on automatic thresholding. To evaluate the proposed method, we calculated the Dice coefficient (DC) between the extracted regions using deep learning and labeled images. We also compared the visceral adipose tissue (VAT) and subcutaneous adipose tissue volumes calculated by employing the proposed method with those calculated from computed tomography (CT) images scanned on the same day using the automatic calculation method previously developed by our group. We implemented our method as a plug-in in a web-based medical image processing platform. The DCs of the abdominal cavity and body trunk regions were 0.952 ± 0.014 and 0.995 ± 0.002, respectively. The VAT volume measured from MR images using the proposed method was almost equivalent to that measured from CT images. The time required for our plug-in to process the test set was 118.9 ± 28.0 s. Using our proposed method, the VAT volume measured from MR images can be an alternative to that measured from CT images.
Collapse
|
25
|
Evaluating prostate cancer bone metastasis using accelerated whole-body isotropic 3D T1-weighted Dixon MRI with compressed SENSE: a feasibility study. Eur Radiol 2023; 33:1719-1728. [PMID: 36269371 DOI: 10.1007/s00330-022-09181-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES The study aimed to assess the efficiency of whole-body high-resolution compressed sensing-sensitivity encoding isotropic T1-Weighted Dixon (CSI-T1W-Dixon) scans in evaluating bone metastasis. METHODS Forty-five high-risk prostate cancer patients with bone metastases were enrolled prospectively and underwent whole-body MRI sequences, which included the following: pre- and post-contrast CSI-T1W-Dixon and conventional multi-planar T1-Weighted Dixon (CMP-T1W-Dixon) (coronal, sagittal, and axial scans), short tau inversion recovery (STIR), and DWI. Comparison between the CMP-T1W-Dixon and CSI-T1W-Dixon images was done for the subjective image quality, the quantitative contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR). Furthermore, the diagnostic performance based on per-lesion and per-patient basis utilizing non-contrast T1-weighted (T1)/T1+ contrasted T1-weighted (T1C)/T1 + T1C + STIR + DWI sequences was compared between the CSI-T1W-Dixon and CMP-T1W-Dixon methods using reference standards (combining biopsy data and 6-month imaging follow-up). RESULT The CSI-T1W-Dixon images produced fewer image artifacts in the axial and coronal planes compared to the CMP-T1W-Dixon images. Also, the CSI-T1W-Dixon images provided better a CNR in fat-only images of all three planes and water-only images of the axial plane (p < 0.05). The CSI-T1W-Dixon showed a higher sensitivity than the CMP-T1W-Dixon techniques in analyzing T1-only images on a per-lesion basis (82.7% vs. 53.8% for sensitivity, p = 0.03). On a per-patient basis, no difference was found in the diagnostic capacity between the CSI-T1W-Dixon and CMP-T1W-Dixon sequences either alone or in combinations (p = 0.57-1). CONCLUSION High-resolution CSI-T1W-Dixon with higher image quality and diagnostic capacity can replace the CMP-T1W-Dixon method in evaluating bone metastasis in clinical practice. KEY POINTS • Compressed sensing isotropic acquisition for 3D T1-weighted Dixon images can improve the image quality with fewer artifacts compared to the anisotropic multiplanar acquisition. • Compressed sensing isotropic acquisition can save 67% of scanning time compared to anisotropic multiplanar acquisition. • Compressed sensing isotropic 3D T1-weighted Dixon images can offer better diagnostic performance with higher sensitivity compared to anisotropic multiplanar images.
Collapse
|
26
|
Vicentini JRT, Bredella MA. Whole body imaging in musculoskeletal oncology: when, why, and how. Skeletal Radiol 2023; 52:281-295. [PMID: 35809098 DOI: 10.1007/s00256-022-04112-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/03/2022] [Accepted: 06/29/2022] [Indexed: 02/02/2023]
Abstract
The use of whole-body imaging has become increasingly popular in oncology due to the possibility of evaluating total tumor burden with a single imaging study. This is particularly helpful in cases of widespread disease where dedicated regional imaging would make the evaluation more expensive, time consuming, and prone to more risks. Different techniques can be used, including whole-body MRI, whole-body CT, and PET-CT. Common indications include surveillance of cancer predisposing syndromes, evaluation of osseous metastases and clonal plasma cell disorders such as multiple myeloma, and evaluation of soft tissue lesions, including peripheral nerve sheath tumors. This review focuses on advanced whole-body imaging techniques and their main uses in musculoskeletal oncology.
Collapse
Affiliation(s)
- Joao R T Vicentini
- Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, YAW 6, Boston, MA, 02114, USA.
| | - Miriam A Bredella
- Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, YAW 6, Boston, MA, 02114, USA
| |
Collapse
|
27
|
Busacchio D, Mazzoni D, Mazzocco K, Pricolo P, Summers PE, Petralia G, Pravettoni G. Psychological characteristics and satisfaction for the whole-body MRI in cancer screening. PSYCHOL HEALTH MED 2023; 28:548-554. [PMID: 36148490 DOI: 10.1080/13548506.2022.2126989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Whole-body magnetic resonance imaging (WB-MRI) is an all-in-one non-invasive technique that can be used also in early cancer diagnosis in asymptomatic individuals. The aim of this work was to identify the personal characteristics predicting the satisfaction for the WB-MRI in a sample of healthy subjects. Before undergoing a WB-MRI examination, 154 participants completed a questionnaire covering sociodemographics (age, gender, education), personality traits (agreeableness, conscientiousness, emotional stability, extroversion, openness), and expectations about the procedure (expected usefulness, risks, noise, lack of air, duration). After the examination, participants reported their satisfaction with the WB-MRI. Results showed that agreeableness had a significant and positive effect on satisfaction. Expectations about its utility and the possible noise had a positive effect on satisfaction. Expectations of lack of air showed a negative significant effect on satisfaction. Sociodemographics showed no significant effects. Our study confirmed the important impact of individuals' personality and expectations on satisfaction with the procedure. Moreover, it provides useful insights for developing consultations aimed at increasing the acceptability of the procedure.
Collapse
Affiliation(s)
- Derna Busacchio
- Applied Research Division for Cognitive and Psychological Science, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Davide Mazzoni
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Ketti Mazzocco
- Applied Research Division for Cognitive and Psychological Science, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Paola Pricolo
- Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Paul E Summers
- Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Giuseppe Petralia
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Precision Imaging and Research Unit - Department of Medical Imaging and Radiation Sciences, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Gabriella Pravettoni
- Applied Research Division for Cognitive and Psychological Science, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
28
|
Koch V, Merklein D, Zangos S, Eichler K, Gruenewald LD, Mahmoudi S, Booz C, Yel I, D'Angelo T, Martin SS, Bernatz S, Hammerstingl RM, Albrecht MH, Scholtz JE, Kaltenbach B, Vogl TJ, Langenbach M, Gruber-Rouh T. Free-breathing accelerated whole-body MRI using an automated workflow: Comparison with conventional breath-hold sequences. NMR IN BIOMEDICINE 2023; 36:e4828. [PMID: 36082477 DOI: 10.1002/nbm.4828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/15/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Whole-body magnetic resonance imaging (MRI) has become increasingly popular in oncology. However, the long acquisition time might hamper its widespread application. We sought to assess and compare free-breathing sequences with conventional breath-hold examinations in whole-body MRI using an automated workflow process. This prospective study consisted of 20 volunteers and six patients with a variety of pathologies who had undergone whole-body 1.5-T MRI that included T1-weighted radial and Dixon volumetric interpolated breath-hold examination sequences. Free-breathing sequences were operated by using an automated user interface. Image quality, diagnostic confidence, and image noise were evaluated by two experienced radiologists. Additionally, signal-to-noise ratio was measured. Diagnostic performance for the overall detection of pathologies was assessed using the area under the receiver operating characteristics curve (AUC). Study participants were asked to rate their examination experiences in a satisfaction survey. MR free-breathing scans were rated as at least equivalent to conventional MR scans in more than 92% of cases, showing high overall diagnostic accuracy (95% [95% CI 92-100]) and performance (AUC 0.971, 95% CI 0.942-0.988; p < 0.0001) for the assessment of pathologies at simultaneously reduced examination times (25 ± 2 vs. 32 ± 3 min; p < 0.0001). Interrater agreement was excellent for both free-breathing (ϰ = 0.96 [95% CI 0.88-1.00]) and conventional scans (ϰ = 0.93 [95% CI 0.84-1.00]). Qualitative and quantitative assessment for image quality, image noise, and diagnostic confidence did not differ between the two types of MR image acquisition (all p > 0.05). Scores for patient satisfaction were significantly better for free-breathing compared with breath-hold examinations (p = 0.0145), including significant correlations for the grade of noise (r = 0.79, p < 0.0001), tightness (r = 0.71, p < 0.0001), and physical fatigue (r = 0.52, p = 0.0065). In summary, free-breathing whole-body MRI in tandem with an automated user interface yielded similar diagnostic performance at equivalent image quality and shorter acquisition times compared to conventional breath-hold sequences.
Collapse
Affiliation(s)
- Vitali Koch
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Domenica Merklein
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Stephan Zangos
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Katrin Eichler
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Leon D Gruenewald
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Scherwin Mahmoudi
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Christian Booz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Ibrahim Yel
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Tommaso D'Angelo
- Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy
| | - Simon S Martin
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Simon Bernatz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Renate M Hammerstingl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Moritz H Albrecht
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Jan-Erik Scholtz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Benjamin Kaltenbach
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Thomas J Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Marcel Langenbach
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Tatjana Gruber-Rouh
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
29
|
Ohno Y, Yui M, Takenaka D, Yoshikawa T, Koyama H, Kassai Y, Yamamoto K, Oshima Y, Hamabuchi N, Hanamatsu S, Obama Y, Ueda T, Ikeda H, Hattori H, Murayama K, Toyama H. Computed DWI MRI Results in Superior Capability for N-Stage Assessment of Non-Small Cell Lung Cancer Than That of Actual DWI, STIR Imaging, and FDG-PET/CT. J Magn Reson Imaging 2023; 57:259-272. [PMID: 35753082 DOI: 10.1002/jmri.28288] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Computed diffusion-weighted imaging (cDWI) is a mathematical computation technique that generates DWIs for any b-value by using actual DWI (aDWI) data with at least two different b-values and may improve differentiation of metastatic from nonmetastatic lymph nodes. PURPOSE To determine the appropriate b-value for cDWI to achieve a better diagnostic capability for lymph node staging (N-staging) in non-small cell lung cancer (NSCLC) patients compared to aDWI, short inversion time (TI) inversion recovery (STIR) imaging, or positron emission tomography with 2-[fluorine-18] fluoro-2-deoxy-d-glucose combined with computed tomography (FDG-PET/CT). STUDY TYPE Prospective. SUBJECTS A total of 245 (127 males and 118 females; mean age 72 years) consecutive histopathologically confirmed NSCLC patients. FIELD STRENGTH/SEQUENCE A 3 T, half-Fourier single-shot turbo spin-echo sequence, electrocardiogram (ECG)-triggered STIR fast advanced spin-echo (FASE) sequence with black blood and STIR acquisition and DWI obtained by FASE with b-values of 0 and 1000 sec/mm2 . ASSESSMENT From aDWIs with b-values of 0 and 1000 (aDWI1000 ) sec/mm2 , cDWI using 400 (cDWI400 ), 600 (cDWI600 ), 800 (cDWI800 ), and 2000 (cDWI2000 ) sec/mm2 were generated. Then, 114 metastatic and 114 nonmetastatic nodes (mediastinal and hilar lymph nodes) were selected and evaluated with a contrast ratio (CR) for each cDWI and aDWI, apparent diffusion coefficient (ADC), lymph node-to-muscle ratio (LMR) on STIR, and maximum standard uptake value (SUVmax ). STATISTICAL TESTS Receiver operating characteristic curve (ROC) analysis, Youden index, and McNemar's test. RESULTS Area under the curve (AUC) of CR600 was significantly larger than the CR400 , CR800 , CR2000 , aCR1000 , and SUVmax . Comparison of N-staging accuracy showed that CR600 was significantly higher than CR400 , CR2000 , ADC, aCR1000 , and SUVmax , although there were no significant differences with CR800 (P = 0.99) and LMR (P = 0.99). DATA CONCLUSION cDWI with b-value at 600 sec/mm2 may have potential to improve N-staging accuracy as compared with aDWI, STIR, and PET/CT. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Yoshiharu Ohno
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan.,Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan.,Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masao Yui
- Canon Medical Systems Corporation, Otawara, Japan
| | | | - Takeshi Yoshikawa
- Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of Radiology, Hyogo Cancer Center, Akashi, Japan
| | - Hisanobu Koyama
- Department of Radiology, Osaka Police Hospital, Osaka, Japan
| | | | | | - Yuka Oshima
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Nayu Hamabuchi
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Satomu Hanamatsu
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yuki Obama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takahiro Ueda
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hirotaka Ikeda
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hidekazu Hattori
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kazuhiro Murayama
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
30
|
Son AY, Chung HW. [Imaging for Multiple Myeloma according to the Recent International Myeloma Working Group Guidelines: Analysis of Image Acquisition Techniques and Response Evaluation in Whole-Body MRI according to MY-RADS]. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2023; 84:150-169. [PMID: 36818702 PMCID: PMC9935955 DOI: 10.3348/jksr.2021.0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/16/2022] [Accepted: 02/12/2022] [Indexed: 11/15/2022]
Abstract
Multiple myeloma (MM) is a malignant hematologic disease caused by the proliferation of clonal plasma cells in the bone marrow, and its incidence is increasing in Korea. With the development of treatments for MM, the need for early diagnosis and treatment has emerged. In recent years, the International Myeloma Working Group (IMWG) has been constantly revising the laboratory and radiological diagnostic criteria for MM. In addition, as whole-body MRI (WBMR) has been increasing used in the diagnosis and treatment response evaluation of patients with MM, the Myeloma Response Assessment and Diagnosis System (MY-RADS) was created to standardize WBMR image acquisition techniques, image interpretation, and response evaluation methods. Radiologists need to have a detailed knowledge of the features of MM for accurate diagnosis. Thus, in this review article, we describe the imaging method for MM according to the latest IMWG guidelines as well as the image acquisition and response evaluation technique for WBMR according to MY-RADS.
Collapse
Affiliation(s)
- A Yeon Son
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hye Won Chung
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
31
|
Sedlaczek OL, Kleesiek J, Gallagher FA, Murray J, Prinz S, Perez-Lopez R, Sala E, Caramella C, Diffetock S, Lassau N, Priest AN, Suzuki C, Vargas R, Giandini T, Vaiani M, Messina A, Blomqvist LK, Beets-Tan RGH, Oberrauch P, Schlemmer HP, Bach M. Quantification and reduction of cross-vendor variation in multicenter DWI MR imaging: results of the Cancer Core Europe imaging task force. Eur Radiol 2022; 32:8617-8628. [PMID: 35678860 PMCID: PMC9705481 DOI: 10.1007/s00330-022-08880-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 03/25/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVES In the Cancer Core Europe Consortium (CCE), standardized biomarkers are required for therapy monitoring oncologic multicenter clinical trials. Multiparametric functional MRI and particularly diffusion-weighted MRI offer evident advantages for noninvasive characterization of tumor viability compared to CT and RECIST. A quantification of the inter- and intraindividual variation occurring in this setting using different hardware is missing. In this study, the MRI protocol including DWI was standardized and the residual variability of measurement parameters quantified. METHODS Phantom and volunteer measurements (single-shot T2w and DW-EPI) were performed at the seven CCE sites using the MR hardware produced by three different vendors. Repeated measurements were performed at the sites and across the sites including a traveling volunteer, comparing qualitative and quantitative ROI-based results including an explorative radiomics analysis. RESULTS For DWI/ADC phantom measurements using a central post-processing algorithm, the maximum deviation could be decreased to 2%. However, there is no significant difference compared to a decentralized ADC value calculation at the respective MRI devices. In volunteers, the measurement variation in 2 repeated scans did not exceed 11% for ADC and is below 20% for single-shot T2w in systematic liver ROIs. The measurement variation between sites amounted to 20% for ADC and < 25% for single-shot T2w. Explorative radiomics classification experiments yield better results for ADC than for single-shot T2w. CONCLUSION Harmonization of MR acquisition and post-processing parameters results in acceptable standard deviations for MR/DW imaging. MRI could be the tool in oncologic multicenter trials to overcome the limitations of RECIST-based response evaluation. KEY POINTS • Harmonizing acquisition parameters and post-processing homogenization, standardized protocols result in acceptable standard deviations for multicenter MR-DWI studies. • Total measurement variation does not to exceed 11% for ADC in repeated measurements in repeated MR acquisitions, and below 20% for an identical volunteer travelling between sites. • Radiomic classification experiments were able to identify stable features allowing for reliable discrimination of different physiological tissue samples, even when using heterogeneous imaging data.
Collapse
Affiliation(s)
- Oliver Lukas Sedlaczek
- Department of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Division of Translational Medical Oncology, National Center for Tumor Diseases Heidelberg (NCT) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany.
- Department of Radiology, University Hospital Heidelberg, Heidelberg, Germany.
| | - Jens Kleesiek
- Department of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | | | - Jacob Murray
- Department of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Sebastian Prinz
- Department of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Raquel Perez-Lopez
- Department of Radiology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Evia Sala
- Department of Radiology, University of Cambridge and Cancer Research UK Cambridge Centre, Cambridge, UK
| | - Caroline Caramella
- Imaging Department, Gustave Roussy, BIOMAPS, UMR1281, INSERM, CEA, CNRS, Université Paris Saclay, Villejuif, Paris, France
| | - Sebastian Diffetock
- Imaging Department, Gustave Roussy, BIOMAPS, UMR1281, INSERM, CEA, CNRS, Université Paris Saclay, Villejuif, Paris, France
| | - Nathalie Lassau
- Imaging Department, Gustave Roussy, BIOMAPS, UMR1281, INSERM, CEA, CNRS, Université Paris Saclay, Villejuif, Paris, France
| | - Andrew N Priest
- Department of Radiology, University of Cambridge, Cambridge, UK
- Department of Radiology, Addenbrooke's Hospital, Cambridge, UK
| | - Chikako Suzuki
- Department of Radiation Physics and Nuclear Medicine, Karolinska University Hospital and Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | - Roberto Vargas
- Department of Radiology, Karolinska University Hospital and Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | - Tommaso Giandini
- Medical Physics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marta Vaiani
- Department of Radiology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Antonella Messina
- Department of Radiology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Lennart K Blomqvist
- Department of Radiation Physics and Nuclear Medicine, Karolinska University Hospital and Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | - Regina G H Beets-Tan
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Petra Oberrauch
- Division of Translational Medical Oncology, National Center for Tumor Diseases Heidelberg (NCT) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Heinz-Peter Schlemmer
- Department of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Division of Translational Medical Oncology, National Center for Tumor Diseases Heidelberg (NCT) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Michael Bach
- Department of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
32
|
Santoni A, Simoncelli M, Franceschini M, Ciofini S, Fredducci S, Caroni F, Sammartano V, Bocchia M, Gozzetti A. Functional Imaging in the Evaluation of Treatment Response in Multiple Myeloma: The Role of PET-CT and MRI. J Pers Med 2022; 12:jpm12111885. [PMID: 36579605 PMCID: PMC9696713 DOI: 10.3390/jpm12111885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Bone disease is among the defining characteristics of symptomatic Multiple Myeloma (MM). Imaging techniques such as fluorodeoxyglucose positron emission tomography-computed tomography (FDG PET/CT) and magnetic resonance imaging (MRI) can identify plasma cell proliferation and quantify disease activity. This function renders these imaging tools as suitable not only for diagnosis, but also for the assessment of bone disease after treatment of MM patients. The aim of this article is to review FDG PET/CT and MRI and their applications, with a focus on their role in treatment response evaluation. MRI emerges as the technique with the highest sensitivity in lesions' detection and PET/CT as the technique with a major impact on prognosis. Their comparison yields different results concerning the best tool to evaluate treatment response. The inhomogeneity of the data suggests the need to address limitations related to these tools with the employment of new techniques and the potential for a complementary use of both PET/CT and MRI to refine the sensitivity and achieve the standards for minimal residual disease (MRD) evaluation.
Collapse
|
33
|
Long-Term Psychosocial Consequences of Whole-Body Magnetic Resonance Imaging and Reporting of Incidental Findings in a Population-Based Cohort Study. Diagnostics (Basel) 2022; 12:diagnostics12102356. [PMID: 36292045 PMCID: PMC9600583 DOI: 10.3390/diagnostics12102356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/19/2022] [Accepted: 09/25/2022] [Indexed: 11/16/2022] Open
Abstract
Management of radiological incidental findings (IF) is of rising importance; however, psychosocial implications of IF reporting remain unclear. We compared long-term psychosocial effects between individuals who underwent whole-body magnetic resonance imaging (MRI) with and without reported IF, and individuals who did not undergo imaging. We used a longitudinal population-based cohort from Western Europe. Longitudinal analysis included three examinations (exam 1, 6 years prior to MRI; exam 2, MRI; exam 3, 4 years after MRI). Psychosocial outcomes included PHQ-9 (Patient Health Questionnaire), DEEX (Depression and Exhaustion Scale), PSS-10 (Perceived Stress Scale) and a Somatization Scale. Univariate analyses and adjusted linear mixed models were calculated. Among 855 included individuals, 25% (n = 212) underwent MRI and 6% (n = 50) had at least one reported IF. Compared to MRI participants, non-participants had a higher psychosocial burden indicated by PHQ-9 in exam 1 (3.3 ± 3.3 vs. 2.5 ± 2.3) and DEEX (8.6 ± 4.7 vs. 7.7 ± 4.4), Somatization Scale (5.9 ± 4.3 vs. 4.8 ± 3.8) and PSS-10 (14.7 ± 5.7 vs. 13.7 ± 5.3, all p < 0.05) in exam 3. MRI participation without IF reporting was significantly associated with lower values of DEEX, PHQ-9 and Somatization Scale. There were no significant differences at the three timepoints between MRI participants with and without IF. In conclusion, individuals who voluntarily participated in whole-body MRI had less psychosocial burden and imaging and IF reporting were not associated with adverse long-term psychosocial consequences. However, due to the study design we cannot conclude that the MRI exam itself represented a beneficial intervention causing improvement in mental health scores.
Collapse
|
34
|
Mono and Multiple Tumor-Targeting Ligand-Coated Ultrasmall Gadolinium Oxide Nanoparticles: Enhanced Tumor Imaging and Blood Circulation. Pharmaceutics 2022; 14:pharmaceutics14071458. [PMID: 35890353 PMCID: PMC9321250 DOI: 10.3390/pharmaceutics14071458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
Hydrophilic and biocompatible PAA-coated ultrasmall Gd2O3 nanoparticles (davg = 1.7 nm) were synthesized and conjugated with tumor-targeting ligands, i.e., cyclic arginylglycylaspartic acid (cRGD) and/or folic acid (FA). FA-PAA-Gd2O3 and cRGD/FA-PAA-Gd2O3 nanoparticles were successfully applied in U87MG tumor-bearing mice for tumor imaging using T1 magnetic resonance imaging (MRI). cRGD/FA-PAA-Gd2O3 nanoparticles with multiple tumor-targeting ligands exhibited higher contrasts at the tumor site than FA-PAA-Gd2O3 nanoparticles with mono tumor-targeting ligands. In addition, the cRGD/FA-PAA-Gd2O3 nanoparticles exhibited higher contrasts in all organs, especially the aorta, compared with those of the FA-PAA-Gd2O3 nanoparticles, because of the blood cell hitchhiking effect of cRGD in the cRGD/FA-PAA-Gd2O3 nanoparticles, which prolonged their circulation in the blood.
Collapse
|
35
|
Tajima T, Akai H, Sugawara H, Furuta T, Yasaka K, Kunimatsu A, Yoshioka N, Akahane M, Abe O, Ohtomo K, Kiryu S. Feasibility of accelerated whole-body diffusion-weighted imaging using a deep learning-based noise-reduction technique in patients with prostate cancer. Magn Reson Imaging 2022; 92:169-179. [PMID: 35772583 DOI: 10.1016/j.mri.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/04/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE To assess the possibility of reducing the image acquisition time for diffusion-weighted whole-body imaging with background body signal suppression (DWIBS) by denoising with deep learning-based reconstruction (dDLR). METHODS Seventeen patients with prostate cancer who underwent DWIBS by 1.5 T magnetic resonance imaging with a number of excitations of 2 (NEX2) and 8 (NEX8) were prospectively enrolled. The NEX2 image data were processed by dDLR (dDLR-NEX2), and the NEX2, dDLR-NEX2, and NEX8 image data were analyzed. In qualitative analysis, two radiologists rated the perceived coarseness, conspicuity of metastatic lesions (lymph nodes and bone), and overall image quality. The contrast-to-noise ratios (CNRs), contrast ratios, and mean apparent diffusion coefficients (ADCs) of metastatic lesions were calculated in a quantitative analysis. RESULTS The image acquisition time of NEX2 was 2.8 times shorter than that of NEX8 (3 min 30 s vs 9 min 48 s). The perceived coarseness and overall image quality scores reported by both readers were significantly higher for dDLR-NEX2 than for NEX2 (P = 0.005-0.040). There was no significant difference between dDLR-NEX2 and NEX8 in the qualitative analysis. The CNR of bone metastasis was significantly greater for dDLR-NEX2 than for NEX2 and NEX8 (P = 0.012 for both comparisons). The contrast ratios and mean ADCs were not significantly different among the three image types. CONCLUSIONS dDLR improved the image quality of DWIBS with NEX2. In the context of lymph node and bone metastasis evaluation with DWIBS in patients with prostate cancer, dDLR-NEX2 has potential to be an alternative to NEX8 and reduce the image acquisition time.
Collapse
Affiliation(s)
- Taku Tajima
- Department of Radiology, International University of Health and Welfare Mita Hospital, 1-4-3 Mita, Minato-ku, Tokyo 108-8329, Japan; Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda Narita, Chiba 286-0124, Japan
| | - Hiroyuki Akai
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda Narita, Chiba 286-0124, Japan; Department of Radiology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Haruto Sugawara
- Department of Radiology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Toshihiro Furuta
- Department of Radiology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Koichiro Yasaka
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda Narita, Chiba 286-0124, Japan; Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akira Kunimatsu
- Department of Radiology, International University of Health and Welfare Mita Hospital, 1-4-3 Mita, Minato-ku, Tokyo 108-8329, Japan
| | - Naoki Yoshioka
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda Narita, Chiba 286-0124, Japan
| | - Masaaki Akahane
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda Narita, Chiba 286-0124, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kuni Ohtomo
- International University of Health and Welfare, 2600-1 kitakanamaru, Otawara, Tochigi 324-8501, Japan
| | - Shigeru Kiryu
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda Narita, Chiba 286-0124, Japan.
| |
Collapse
|
36
|
Bak SH, Kim C, Kim CH, Ohno Y, Lee HY. Magnetic resonance imaging for lung cancer: a state-of-the-art review. PRECISION AND FUTURE MEDICINE 2022. [DOI: 10.23838/pfm.2021.00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
37
|
Bajaj G, Callan AK, Weinschenk RC, Chhabra A. Multiparametric Evaluation of Soft Tissue Sarcoma: Current Perspectives and Future Directions. Semin Roentgenol 2022; 57:212-231. [DOI: 10.1053/j.ro.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 11/11/2022]
|
38
|
Review of imaging techniques for evaluating morphological and functional responses to the treatment of bone metastases in prostate and breast cancer. Clin Transl Oncol 2022; 24:1290-1310. [PMID: 35152355 PMCID: PMC9192443 DOI: 10.1007/s12094-022-02784-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/20/2022] [Indexed: 12/27/2022]
Abstract
Bone metastases are very common complications associated with certain types of cancers that frequently negatively impact the quality of life and functional status of patients; thus, early detection is necessary for the implementation of immediate therapeutic measures to reduce the risk of skeletal complications and improve survival and quality of life. There is no consensus or universal standard approach for the detection of bone metastases in cancer patients based on imaging. Endorsed by the Spanish Society of Medical Oncology (SEOM), the Spanish Society of Medical Radiology (SERAM), and the Spanish Society of Nuclear Medicine and Molecular Imaging (SEMNIM) a group of experts met to discuss and provide an up-to-date review of our current understanding of the biological mechanisms through which tumors spread to the bone and describe the imaging methods available to diagnose bone metastasis and monitor their response to oncological treatment, focusing on patients with breast and prostate cancer. According to current available data, the use of next-generation imaging techniques, including whole-body diffusion-weighted MRI, PET/CT, and PET/MRI with novel radiopharmaceuticals, is recommended instead of the classical combination of CT and bone scan in detection, staging and response assessment of bone metastases from prostate and breast cancer.Clinical trial registration: Not applicable.
Collapse
|
39
|
Ahmad MY, Yue H, Tegafaw T, Liu S, Ho SL, Lee GH, Nam SW, Chang Y. Functionalized Lanthanide Oxide Nanoparticles for Tumor Targeting, Medical Imaging, and Therapy. Pharmaceutics 2021; 13:1890. [PMID: 34834305 PMCID: PMC8624040 DOI: 10.3390/pharmaceutics13111890] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 12/17/2022] Open
Abstract
Recent progress in functionalized lanthanide oxide (Ln2O3) nanoparticles for tumor targeting, medical imaging, and therapy is reviewed. Among the medical imaging techniques, magnetic resonance imaging (MRI) is an important noninvasive imaging tool for tumor diagnosis due to its high spatial resolution and excellent imaging contrast, especially when contrast agents are used. However, commercially available low-molecular-weight MRI contrast agents exhibit several shortcomings, such as nonspecificity for the tissue of interest and rapid excretion in vivo. Recently, nanoparticle-based MRI contrast agents have become a hot research topic in biomedical imaging due to their high performance, easy surface functionalization, and low toxicity. Among them, functionalized Ln2O3 nanoparticles are applicable as MRI contrast agents for tumor-targeting and nontumor-targeting imaging and image-guided tumor therapy. Primarily, Gd2O3 nanoparticles have been intensively investigated as tumor-targeting T1 MRI contrast agents. T2 MRI is also possible due to the appreciable paramagnetic moments of Ln2O3 nanoparticles (Ln = Dy, Ho, and Tb) at room temperature arising from the nonzero orbital motion of 4f electrons. In addition, Ln2O3 nanoparticles are eligible as X-ray computed tomography contrast agents because of their high X-ray attenuation power. Since nanoparticle toxicity is of great concern, recent toxicity studies on Ln2O3 nanoparticles are also discussed.
Collapse
Affiliation(s)
- Mohammad Yaseen Ahmad
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea; (M.Y.A.); (H.Y.); (T.T.); (S.L.); (S.L.H.)
| | - Huan Yue
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea; (M.Y.A.); (H.Y.); (T.T.); (S.L.); (S.L.H.)
| | - Tirusew Tegafaw
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea; (M.Y.A.); (H.Y.); (T.T.); (S.L.); (S.L.H.)
| | - Shuwen Liu
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea; (M.Y.A.); (H.Y.); (T.T.); (S.L.); (S.L.H.)
| | - Son Long Ho
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea; (M.Y.A.); (H.Y.); (T.T.); (S.L.); (S.L.H.)
| | - Gang Ho Lee
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea; (M.Y.A.); (H.Y.); (T.T.); (S.L.); (S.L.H.)
| | - Sung-Wook Nam
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Taegu 41405, Korea;
| | - Yongmin Chang
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Taegu 41405, Korea;
| |
Collapse
|
40
|
Radbruch A, Paech D, Gassenmaier S, Luetkens J, Isaak A, Herrmann J, Othman A, Schäfer J, Nikolaou K. 1.5 vs 3 Tesla Magnetic Resonance Imaging: A Review of Favorite Clinical Applications for Both Field Strengths-Part 2. Invest Radiol 2021; 56:692-704. [PMID: 34417406 DOI: 10.1097/rli.0000000000000818] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
ABSTRACT The second part of this review deals with experiences in neuroradiological and pediatric examinations using modern magnetic resonance imaging systems with 1.5 T and 3 T, with special attention paid to experiences in pediatric cardiac imaging. In addition, whole-body examinations, which are widely used for diagnostic purposes in systemic diseases, are compared with respect to the image quality obtained in different body parts at both field strengths. A systematic overview of the technical differences at 1.5 T and 3 T has been presented in part 1 of this review, as well as several organ-based magnetic resonance imaging applications including musculoskeletal imaging, abdominal imaging, and prostate diagnostics.
Collapse
Affiliation(s)
- Alexander Radbruch
- From the Clinic for Diagnostic and Interventional Neuroradiology, University Hospital Bonn, Bonn
| | - Daniel Paech
- From the Clinic for Diagnostic and Interventional Neuroradiology, University Hospital Bonn, Bonn
| | - Sebastian Gassenmaier
- Department of Radiology, Diagnostic and Interventional Radiology, University of Tübingen, Tübingen
| | - Julian Luetkens
- Clinic for Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn
| | - Alexander Isaak
- Clinic for Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn
| | - Judith Herrmann
- Department of Radiology, Diagnostic and Interventional Radiology, University of Tübingen, Tübingen
| | | | - Jürgen Schäfer
- Department of Radiology, Diagnostic and Interventional Radiology, University of Tübingen, Tübingen
| | - Konstantin Nikolaou
- Department of Radiology, Diagnostic and Interventional Radiology, University of Tübingen, Tübingen
| |
Collapse
|
41
|
Shah A, Rosenkranz M, Thapa M. Review of spinal involvement in Chronic recurrent multifocal osteomyelitis (CRMO): What radiologists need to know about CRMO and its imitators. Clin Imaging 2021; 81:122-135. [PMID: 34710802 DOI: 10.1016/j.clinimag.2021.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/27/2021] [Accepted: 09/15/2021] [Indexed: 11/03/2022]
Abstract
Chronic recurrent multifocal osteomyelitis (CRMO) is a distinct disease entity of unknown etiology primarily affecting children and adolescents. It is an autoinflammatory process that typically affects multiple bones with a waxing and waning course. About one third of the patients diagnosed with CRMO have spinal involvement which can lead to long term morbidity. The clinical presentation and imaging features of CRMO involving the spine are nonspecific and can mimic other disease processes like infection or malignancy. Since imaging plays a very important role in the diagnosis and management of CRMO, we intend to highlight various imaging patterns of spinal CRMO alongside its clinical features and briefly discuss its imitators, management and outcomes.
Collapse
Affiliation(s)
- Amisha Shah
- Department of Radiology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States of America.
| | - Margalit Rosenkranz
- Department of Rheumatology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States of America
| | - Mahesh Thapa
- Department of Radiology, Seattle Children's Hospital, Seattle, WA, United States of America
| |
Collapse
|
42
|
Indirect comparison of the diagnostic performance of 18F-FDG PET/CT and MRI in differentiating benign and malignant ovarian or adnexal tumors: a systematic review and meta-analysis. BMC Cancer 2021; 21:1080. [PMID: 34615498 PMCID: PMC8495994 DOI: 10.1186/s12885-021-08815-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/27/2021] [Indexed: 01/23/2023] Open
Abstract
Objective To compare the value of fluorodeoxyglucose positron emission tomography (FDG-PET)/computed tomography (CT) and magnetic resonance imaging (MRI) in differentiating benign and malignant ovarian or adnexal tumors. Materials and methods English articles reporting on the diagnostic performance of MRI or 18F-FDG PET/CT in identifying benign and malignant ovarian or adnexal tumors published in PubMed and Embase between January 2000 and January 2021 were included in the meta-analysis. Two authors independently extracted the data. If the data presented in the study report could be used to construct a 2 × 2 contingency table comparing 18F-FDG PET/CT and MRI, the studies were selected for the analysis. The Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) was used to evaluate the quality of the included studies. Forest plots were generated according to the sensitivity and specificity of 18F-FDG PET/CT and MRI. Results A total of 27 articles, including 1118F-FDG PET/CT studies and 17 MRI studies on the differentiation of benign and malignant ovarian or adnexal tumors, were included in this meta-analysis. The pooled sensitivity and specificity for 18F-FDG PET/CT in differentiating benign and malignant ovarian or adnexal tumors were 0.94 (95% CI, 0.87–0.97) and 0.86 (95% CI, 0.79–0.91), respectively, and the pooled sensitivity and specificity for MRI were 0.92 (95% CI: 0.89–0.95) and 0.85 (95% CI: 0.79–0.89), respectively. Conclusion While MRI and 18F-FDG PET/CT both showed to have high and similar diagnostic performance in the differential diagnosis of benign and malignant ovarian or adnexal tumors, MRI, a promising non-radiation imaging technology, may be a more suitable choice for patients with ovarian or accessory tumors. Nonetheless, prospective studies directly comparing MRI and 18F-FDG PET/CT diagnostic performance in the differentiation of benign and malignant ovarian or adnexal tumors are needed. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08815-3.
Collapse
|
43
|
Valduga SG, Forte GC, Paganin RP, Abreu DG, Medeiros TM, Irion K, Hochhegger B, Mattiello R. Whole-body magnetic resonance imaging for the diagnosis of metastasis in children and adolescents: a systematic review and meta-analysis. Radiol Bras 2021; 54:329-335. [PMID: 34602669 PMCID: PMC8475173 DOI: 10.1590/0100-3984.2020.0183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/15/2021] [Indexed: 11/21/2022] Open
Abstract
Whole-body magnetic resonance imaging (WB-MRI) is a noninvasive imaging method that can be used to diagnose and stage tumors, as well as to assess therapeutic responses in oncology. The objective of this meta-analysis was to evaluate the accuracy of WB-MRI for the diagnosis of metastases in pediatric patients. The following electronic databases were searched: Medline, Embase, Cochrane Central Register of Controlled Trials, Scientific Electronic Library Online, Latin-American and Caribbean Health Sciences Literature, Cumulative Index to Nursing and Allied Health Literature, Web of Science, and ClinicalTrials.gov. All of the selected studies included children and adolescents with histopathological confirmation of a primary tumor. Collectively, the studies included 118 patients ranging in age from 7 months to 19 years. The pooled sensitivity and specificity of WB-MRI were, respectively, 0.964 (95% CI: 0.944-0.978; I2 = 0%) and 0.902 (95% CI: 0.882-0.919; I2 = 98.4%), with an area under the curve (AUC) of 0.991. We found that WB-MRI had good accuracy for the diagnosis of metastases in pediatric patients and could therefore provide an alternative to complete the staging of tumors in such patients, being a safer option because it does not involve the use of ionizing radiation.
Collapse
Affiliation(s)
| | - Gabriele Carra Forte
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | | | - Diego Gomez Abreu
- Universidad Industrial de Santander (UIS), Bucaramanga, Santander, Colombia
| | | | - Klaus Irion
- Thoracic Imaging DIIRM, Manchester University and Manchester University NHS Foundation Trust Department of Radiology, Manchester, UK
| | - Bruno Hochhegger
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Rita Mattiello
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| |
Collapse
|
44
|
Pasoglou V, Van Nieuwenhove S, Peeters F, Duchêne G, Kirchgesner T, Lecouvet FE. 3D Whole-Body MRI of the Musculoskeletal System. Semin Musculoskelet Radiol 2021; 25:441-454. [PMID: 34547810 DOI: 10.1055/s-0041-1730401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With its outstanding soft tissue contrast, spatial resolution, and multiplanar capacities, magnetic resonance imaging (MRI) has become a widely used technique. Whole-body MRI (WB-MRI) has been introduced among diagnostic methods for the staging and follow-up assessment in oncologic patients, and international guidelines recommend its use. In nononcologic applications, WB-MRI is as a promising imaging tool in inflammatory diseases, such as seronegative arthritis and inflammatory myopathies. Technological advances have facilitated the introduction of three-dimensional (3D) almost isotropic sequences in MRI examinations covering the whole body. The possibility to reformat 3D images in any plane with equal or almost equal resolution offers comprehensive understanding of the anatomy, easier disease detection and characterization, and finally contributes to correct treatment planning. This article illustrates the basic principles, advantages, and limitations of the 3D approach in WB-MRI examinations and provides a short review of the literature.
Collapse
Affiliation(s)
- Vassiliki Pasoglou
- Department of Radiology and Medical Imaging, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Sandy Van Nieuwenhove
- Department of Radiology and Medical Imaging, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Frank Peeters
- Department of Radiology and Medical Imaging, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Gaetan Duchêne
- MR applications, General Electric Healthcare, Diegem, Belgium
| | - Thomas Kirchgesner
- Department of Radiology and Medical Imaging, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Frederic E Lecouvet
- Department of Radiology and Medical Imaging, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
45
|
Dong YC, Bouché M, Uman S, Burdick JA, Cormode DP. Detecting and Monitoring Hydrogels with Medical Imaging. ACS Biomater Sci Eng 2021; 7:4027-4047. [PMID: 33979137 PMCID: PMC8440385 DOI: 10.1021/acsbiomaterials.0c01547] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hydrogels, water-swollen polymer networks, are being applied to numerous biomedical applications, such as drug delivery and tissue engineering, due to their potential tunable rheologic properties, injectability into tissues, and encapsulation and release of therapeutics. Despite their promise, it is challenging to assess their properties in vivo and crucial information such as hydrogel retention at the site of administration and in situ degradation kinetics are often lacking. To address this, technologies to evaluate and track hydrogels in vivo with various imaging techniques have been developed in recent years, including hydrogels functionalized with contrast generating material that can be imaged with methods such as X-ray computed tomography (CT), magnetic resonance imaging (MRI), optical imaging, and nuclear imaging systems. In this review, we will discuss emerging approaches to label hydrogels for imaging, review the advantages and limitations of these imaging techniques, and highlight examples where such techniques have been implemented in biomedical applications.
Collapse
Affiliation(s)
- Yuxi C Dong
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mathilde Bouché
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54000 Nancy, France
| | - Selen Uman
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David P Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
46
|
Vermersch M, Mulé S, Chalaye J, Galletto Pregliasco A, Emsen B, Amaddeo G, Monnet A, Stemmer A, Baranes L, Laurent A, Leroy V, Itti E, Luciani A. Impact of the 18F-FDG-PET/MRI on Metastatic Staging in Patients with Hepatocellular Carcinoma: Initial Results from 104 Patients. J Clin Med 2021; 10:jcm10174017. [PMID: 34501465 PMCID: PMC8432497 DOI: 10.3390/jcm10174017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023] Open
Abstract
Optimal HCC therapeutic management relies on accurate tumor staging. Our aim was to assess the impact of 18F-FDG-WB-PET/MRI on HCC metastatic staging, compared with the standard of care CT-CAP/liver MRI combination, in patients with HCC referred on a curative intent or before transarterial radioembolization. One hundred and four consecutive patients followed for HCC were retrospectively included. The WB-PET/MRI was compared with the standard of care CT-CAP/liver MRI combination for HCC metastatic staging, with pathology, followup, and multidisciplinary board assessment as a reference standard. Thirty metastases were identified within 14 metastatic sites in 11 patients. The sensitivity of WB-PET/MRI for metastatic sites and metastatic patients was significantly higher than that of the CT-CAP/liver MRI combination (respectively 100% vs. 43%, p = 0.002; and 100% vs. 45%, p = 0.01). Metastatic sites missed by CT-CAP were bone (n = 5) and distant lymph node (n = 3) in BCLC C patients. For the remaining 93 nonmetastatic patients, three BCLC A patients identified as potentially metastatic on the CT-CAP/liver MRI combination were correctly ruled out with the WB-PET/MRI without significant increase in specificity (100% vs. 97%; p = 0.25). The WB-PET/MRI may improve HCC metastatic staging and could be performed as a “one-stop-shop” examination for HCC staging with a significant impact on therapeutic management in about 10% of patients especially in locally advanced HCC.
Collapse
Affiliation(s)
- Mathilde Vermersch
- Medical Imaging Department, Henri Mondor Hospital, APHP, 94000 Créteil, France; (S.M.); (A.G.P.); (L.B.); (A.L.)
- Institut Mondor de la Recherche Biomédicale (IMRB) Team 18, INSERM Unit 955, Henri Mondor Hospital, 94000 Créteil, France
- Medical Imaging Department, Lille University Hospital, 59000 Lille, France
- Correspondence: ; Tel.: +33-6-3119-1558
| | - Sébastien Mulé
- Medical Imaging Department, Henri Mondor Hospital, APHP, 94000 Créteil, France; (S.M.); (A.G.P.); (L.B.); (A.L.)
- Institut Mondor de la Recherche Biomédicale (IMRB) Team 18, INSERM Unit 955, Henri Mondor Hospital, 94000 Créteil, France
| | - Julia Chalaye
- Nuclear Medicine Department, Henri Mondor Hospital, APHP, 94000 Créteil, France; (J.C.); (B.E.); (E.I.)
| | - Athena Galletto Pregliasco
- Medical Imaging Department, Henri Mondor Hospital, APHP, 94000 Créteil, France; (S.M.); (A.G.P.); (L.B.); (A.L.)
| | - Berivan Emsen
- Nuclear Medicine Department, Henri Mondor Hospital, APHP, 94000 Créteil, France; (J.C.); (B.E.); (E.I.)
| | - Giuliana Amaddeo
- Department of Hepatogastroenterology, Henri Mondor Hospital, APHP, 94000 Créteil, France; (G.A.); (V.L.)
| | - Aurélien Monnet
- Siemens Healthineers, Siemens Healthcare GmbH, 91052 Erlangen, Germany; (A.M.); (A.S.)
| | - Alto Stemmer
- Siemens Healthineers, Siemens Healthcare GmbH, 91052 Erlangen, Germany; (A.M.); (A.S.)
| | - Laurence Baranes
- Medical Imaging Department, Henri Mondor Hospital, APHP, 94000 Créteil, France; (S.M.); (A.G.P.); (L.B.); (A.L.)
| | - Alexis Laurent
- Hepatobiliary Surgery and Liver Transplantation, Henri Mondor Hospital, APHP, 94000 Créteil, France;
| | - Vincent Leroy
- Department of Hepatogastroenterology, Henri Mondor Hospital, APHP, 94000 Créteil, France; (G.A.); (V.L.)
| | - Emmanuel Itti
- Nuclear Medicine Department, Henri Mondor Hospital, APHP, 94000 Créteil, France; (J.C.); (B.E.); (E.I.)
| | - Alain Luciani
- Medical Imaging Department, Henri Mondor Hospital, APHP, 94000 Créteil, France; (S.M.); (A.G.P.); (L.B.); (A.L.)
| |
Collapse
|
47
|
Ferjaoui R, Cherni MA, Boujnah S, Kraiem NEH, Kraiem T. Machine learning for evolutive lymphoma and residual masses recognition in whole body diffusion weighted magnetic resonance images. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 209:106320. [PMID: 34390938 DOI: 10.1016/j.cmpb.2021.106320] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND After the treatment of the patients with malignant lymphoma, there may persist lesions that must be labeled either as evolutive lymphoma requiring new treatments or as residual masses. We present in this work, a machine learning-based computer-aided diagnosis (CAD) applied to whole-body diffusion-weighted magnetic resonance images. METHODS The database consists of a total of 1005 MRI images with evolutive lymphoma and residual masses. More specifically, we propose a novel approach that leverages: (1)-The complementarity of the functional and anatomical criteria of MRI images through a fusion step based on the discrete wavelet transforms (DWT). (2)- The automatic segmentation of the lesions, their localization, and their enumeration using the Chan-Vese algorithm. (3)- The generation of the parametric image which contains the apparent diffusion coefficient value named ADC map. (4)- The features selection through the application of the sequential forward selection (SFS), Entropy, Symmetric uncertainty and Gain Ratio algorithm on 72 extracted features. (5)- The classification of the lesions by applying five well known supervised machine learning classification algorithms: the back-propagation artificial neural network (ANN), the support vector machine (SVM), the K-nearest neighbours (K-NN), Relevance Vectors Machine (RVM), and the random forest (RF) compared to deep learning based on convolutional neural network (CNN). Moreover, this study is achieved with an evaluation of the classification using 335 DW-MR images where 80% of them are used for the training and the remaining 20% for the test. RESULTS The obtained accuracy for the five classifiers recorded a slight superiority to the proposed method based on the back-propagation 3-9-1 ANN model which reaches 96,5%. In addition, we compared the proposed method to five other works from the literature. The proposed method gives much better results in terms of SE, SP, accuracy, F1-measure, and geometric-mean which reaches respectively 96.4%, 90.9%, 95.5%, 0.97, and 91.61%. CONCLUSIONS Our initial results suggest that Combining functional, anatomical, and morphological features of ROI's have very good accuracy (97.01%) for evolutive lymphoma and residual masses recognition when we based on the new proposed approach using the back-propagation 3-9-1 ANN model. Proposed method based on machine learning gives less than Deep learning CNN, which is 98.5%.
Collapse
Affiliation(s)
- Radhia Ferjaoui
- University of Tunis El Manar, Research Laboratory of biophysics and Medical technologies (LRBTM), ISTMT, Tunis, 1006, Tunisia.
| | - Mohamed Ali Cherni
- University of Tunis, LR13 ES03 SIME Laboratory, ENSIT, Montfleury 1008 Tunisia
| | - Sana Boujnah
- University of Tunis El Manar, National Engineering School of Tunis, Tunisia
| | | | - Tarek Kraiem
- University of Tunis El Manar, Faculty of Medicine of Tunis, Tunis, 1007, Tunisia; University of Tunis El Manar, Research Laboratory of biophysics and Medical technologies (LRBTM), ISTMT, Tunis, 1006, Tunisia
| |
Collapse
|
48
|
Whole-Body Magnetic Resonance Imaging: Current Role in Patients with Lymphoma. Diagnostics (Basel) 2021; 11:diagnostics11061007. [PMID: 34073062 PMCID: PMC8227037 DOI: 10.3390/diagnostics11061007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
Imaging of lymphoma is based on the use of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG-PET/CT) and/or contrast-enhanced CT, but concerns have been raised regarding radiation exposure related to imaging scans in patients with cancer, and its association with increased risk of secondary tumors in patients with lymphoma has been established. To date, lymphoproliferative disorders are among the most common indications to perform whole-body magnetic resonance imaging (MRI). Whole-body MRI is superior to contrast-enhanced CT for staging the disease, also being less dependent on histology if compared to 18F-FDG-PET/CT. As well, it does not require exposure to ionizing radiation and could be used for the surveillance of lymphoma. The current role of whole-body MRI in the diagnostic workup in lymphoma is examined in the present review along with the diagnostic performance in staging, response assessment and surveillance of different lymphoma subtypes.
Collapse
|
49
|
Winfield JM, Blackledge MD, Tunariu N, Koh DM, Messiou C. Whole-body MRI: a practical guide for imaging patients with malignant bone disease. Clin Radiol 2021; 76:715-727. [PMID: 33934876 DOI: 10.1016/j.crad.2021.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/08/2021] [Indexed: 01/09/2023]
Abstract
Whole-body magnetic resonance imaging (MRI) is now a crucial tool for the assessment of the extent of systemic malignant bone disease and response to treatment, and forms part of national and international recommendations for imaging patients with myeloma or metastatic prostate cancer. Recent developments in scanners have enabled acquisition of good-quality whole-body MRI data within 45 minutes on modern MRI systems from all main manufacturers. This provides complimentary morphological and functional whole-body imaging; however, lack of prior experience and acquisition times required can act as a barrier to adoption in busy radiology departments. This article aims to tackle the former by reviewing the indications and providing guidance for technical delivery and clinical interpretation of whole-body MRI for patients with malignant bone disease.
Collapse
Affiliation(s)
- J M Winfield
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK; MRI Unit, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - M D Blackledge
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK; MRI Unit, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - N Tunariu
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK; MRI Unit, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - D-M Koh
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK; MRI Unit, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - C Messiou
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK; MRI Unit, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| |
Collapse
|
50
|
Franken-CT: Head and Neck MR-Based Pseudo-CT Synthesis Using Diverse Anatomical Overlapping MR-CT Scans. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083508] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Typically, pseudo-Computerized Tomography (CT) synthesis schemes proposed in the literature rely on complete atlases acquired with the same field of view (FOV) as the input volume. However, clinical CTs are usually acquired in a reduced FOV to decrease patient ionization. In this work, we present the Franken-CT approach, showing how the use of a non-parametric atlas composed of diverse anatomical overlapping Magnetic Resonance (MR)-CT scans and deep learning methods based on the U-net architecture enable synthesizing extended head and neck pseudo-CTs. Visual inspection of the results shows the high quality of the pseudo-CT and the robustness of the method, which is able to capture the details of the bone contours despite synthesizing the resulting image from knowledge obtained from images acquired with a completely different FOV. The experimental Zero-Normalized Cross-Correlation (ZNCC) reports 0.9367 ± 0.0138 (mean ± SD) and 95% confidence interval (0.9221, 0.9512); the experimental Mean Absolute Error (MAE) reports 73.9149 ± 9.2101 HU and 95% confidence interval (66.3383, 81.4915); the Structural Similarity Index Measure (SSIM) reports 0.9943 ± 0.0009 and 95% confidence interval (0.9935, 0.9951); and the experimental Dice coefficient for bone tissue reports 0.7051 ± 0.1126 and 95% confidence interval (0.6125, 0.7977). The voxel-by-voxel correlation plot shows an excellent correlation between pseudo-CT and ground-truth CT Hounsfield Units (m = 0.87; adjusted R2 = 0.91; p < 0.001). The Bland–Altman plot shows that the average of the differences is low (−38.6471 ± 199.6100; 95% CI (−429.8827, 352.5884)). This work serves as a proof of concept to demonstrate the great potential of deep learning methods for pseudo-CT synthesis and their great potential using real clinical datasets.
Collapse
|