1
|
Imokawa T, Yokoyama K, Takahashi K, Oyama J, Tsuchiya J, Sanjo N, Tateishi U. Brain perfusion SPECT in dementia: what radiologists should know. Jpn J Radiol 2024; 42:1215-1230. [PMID: 38888851 PMCID: PMC11522095 DOI: 10.1007/s11604-024-01612-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
The findings of brain perfusion single-photon emission computed tomography (SPECT), which detects abnormalities often before changes manifest in morphological imaging, mainly reflect neurodegeneration and contribute to dementia evaluation. A major shift is about to occur in dementia practice to the approach of diagnosing based on biomarkers and treating with disease-modifying drugs. Accordingly, brain perfusion SPECT will be required to serve as a biomarker of neurodegeneration. Hypoperfusion in Alzheimer's disease (AD) is typically seen in the posterior cingulate cortex and precuneus early in the disease, followed by the temporoparietal cortices. On the other hand, atypical presentations of AD such as the posterior variant, logopenic variant, frontal variant, and corticobasal syndrome exhibit hypoperfusion in areas related to symptoms. Additionally, hypoperfusion especially in the precuneus and parietal association cortex can serve as a predictor of progression from mild cognitive impairment to AD. In dementia with Lewy bodies (DLB), the differentiating feature is the presence of hypoperfusion in the occipital lobes in addition to that observed in AD. Hypoperfusion of the occipital lobe is not a remarkable finding, as it is assumed to reflect functional loss due to impairment of the cholinergic and dopaminergic systems rather than degeneration per se. Moreover, the cingulate island sign reflects the degree of AD pathology comorbid in DLB. Frontotemporal dementia is characterized by regional hypoperfusion according to the three clinical types, and the background pathology is diverse. Idiopathic normal pressure hydrocephalus shows apparent hypoperfusion around the Sylvian fissure and corpus callosum and apparent hyperperfusion in high-convexity areas. The cortex or striatum with diffusion restriction on magnetic resonance imaging in prion diseases reflects spongiform degeneration and brain perfusion SPECT reveals hypoperfusion in the same areas. Brain perfusion SPECT findings in dementia should be carefully interpreted considering background pathology.
Collapse
Affiliation(s)
- Tomoki Imokawa
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Bunkyo-Ku, Tokyo, Japan
- Department of Radiology, Japanese Red Cross Omori Hospital, Ota-Ku, Tokyo, Japan
| | - Kota Yokoyama
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Bunkyo-Ku, Tokyo, Japan.
| | - Kanae Takahashi
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Bunkyo-Ku, Tokyo, Japan
| | - Jun Oyama
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Bunkyo-Ku, Tokyo, Japan
| | - Junichi Tsuchiya
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Bunkyo-Ku, Tokyo, Japan
| | - Nobuo Sanjo
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-Ku, Tokyo, Japan
| | - Ukihide Tateishi
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Bunkyo-Ku, Tokyo, Japan
| |
Collapse
|
2
|
Xu F, Dai Z, Zhang W, Ye Y, Dai F, Hu P, Cheng H. Exploring research hotspots and emerging trends in neuroimaging of vascular cognitive impairment: a bibliometric and visualized analysis. Front Aging Neurosci 2024; 16:1408336. [PMID: 39040547 PMCID: PMC11260638 DOI: 10.3389/fnagi.2024.1408336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Background Vascular cognitive impairment (VCI) manifests in memory impairment, mental slowness, executive dysfunction, behavioral changes, and visuospatial abnormalities, significantly compromising the quality of daily life for patients and causing inconvenience to caregivers. Neuroimaging serves as a crucial approach to evaluating the extent, location, and type of vascular lesions in patients suspected of VCI. Nevertheless, there is still a lack of comprehensive bibliometric analysis to discern the research status and emerging trends concerning VCI neuroimaging. Objective This study endeavors to explore the collaboration relationships of authors, countries, and institutions, as well as the research hotspots and frontiers of VCI neuroimaging by conducting a bibliometric analysis. Methods We performed a comprehensive retrieval within the Core Collection of Web of Science, spanning from 2000 to 2023. After screening the included literature, CiteSpace and VOSviewer were utilized for a visualized analysis aimed at identifying the most prolific author, institution, and journal, as well as extracting valuable information from the analysis of references. Results A total of 1,024 publications were included in this study, comprising 919 articles and 105 reviews. Through the analysis of keywords and references, the research hotspots involve the relationship between neuroimaging of cerebral small vessel disease (CSVD) and VCI, the diagnosis of VCI, and neuroimaging methods pertinent to VCI. Moreover, potential future research directions encompass CSVD, functional and structural connectivity, neuroimaging biomarkers, and lacunar stroke. Conclusion The research in VCI neuroimaging is constantly developing, and we hope to provide insights and references for future studies by delving into the research hotspots and frontiers within this field.
Collapse
Affiliation(s)
- Fangyuan Xu
- The First Clinical Medical School, Anhui University of Chinese Medicine, Hefei, China
| | - Ziliang Dai
- Department of Rehabilitation Medicine, The Second Hospital of Wuhan Iron and Steel (Group) Corp., Wuhan, China
| | - Wendong Zhang
- Department of Neurology, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Yu Ye
- The Second Clinical Medical School, Anhui University of Chinese Medicine, Hefei, China
| | - Fan Dai
- The Second Clinical Medical School, Anhui University of Chinese Medicine, Hefei, China
| | - Peijia Hu
- Department of Endocrinology, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Hongliang Cheng
- Department of Neurology, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
3
|
Honoré d’Este S, Andersen FL, Andersen JB, Jakobsen AL, Sanchez Saxtoft E, Schulze C, Hansen NL, Andersen KF, Reichkendler MH, Højgaard L, Fischer BM. Potential Clinical Impact of LAFOV PET/CT: A Systematic Evaluation of Image Quality and Lesion Detection. Diagnostics (Basel) 2023; 13:3295. [PMID: 37958190 PMCID: PMC10650426 DOI: 10.3390/diagnostics13213295] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
We performed a systematic evaluation of the diagnostic performance of LAFOV PET/CT with increasing acquisition time. The first 100 oncologic adult patients referred for 3 MBq/kg 2-[18F]fluoro-2-deoxy-D-glucose PET/CT on the Siemens Biograph Vision Quadra were included. A standard imaging protocol of 10 min was used and scans were reconstructed at 30 s, 60 s, 90 s, 180 s, 300 s, and 600 s. Paired comparisons of quantitative image noise, qualitative image quality, lesion detection, and lesion classification were performed. Image noise (n = 50, 34 women) was acceptable according to the current standard of care (coefficient-of-varianceref < 0.15) after 90 s and improved significantly with increasing acquisition time (PB < 0.001). The same was seen in observer rankings (PB < 0.001). Lesion detection (n = 100, 74 women) improved significantly from 30 s to 90 s (PB < 0.001), 90 s to 180 s (PB = 0.001), and 90 s to 300 s (PB = 0.002), while lesion classification improved from 90 s to 180 s (PB < 0.001), 180 s to 300 s (PB = 0.021), and 90 s to 300 s (PB < 0.001). We observed improved image quality, lesion detection, and lesion classification with increasing acquisition time while maintaining a total scan time of less than 5 min, which demonstrates a potential clinical benefit. Based on these results we recommend a standard imaging acquisition protocol for LAFOV PET/CT of minimum 180 s to maximum 300 s after injection of 3 MBq/kg 2-[18F]fluoro-2-deoxy-D-glucose.
Collapse
Affiliation(s)
- Sabrina Honoré d’Este
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Flemming Littrup Andersen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Julie Bjerglund Andersen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Annika Loft Jakobsen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Eunice Sanchez Saxtoft
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Christina Schulze
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Naja Liv Hansen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Kim Francis Andersen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Michala Holm Reichkendler
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Liselotte Højgaard
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health, Copenhagen University, Blegdamsvej 3b, 2200 Copenhagen, Denmark
| | - Barbara Malene Fischer
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health, Copenhagen University, Blegdamsvej 3b, 2200 Copenhagen, Denmark
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| |
Collapse
|
4
|
Yang X, Chen C, Wang A, Li C, Cheng G. Imaging, Genetic, and Pathological Features of Vascular Dementia. Eur Neurol 2023; 86:277-284. [PMID: 37271126 DOI: 10.1159/000531088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/14/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Over the past decades, marked progress has been made in detecting vascular dementia (VD) both through maturation of diagnostic concepts and advances in brain imaging, especially MRI. We summarized the imaging, genetic, and pathological features of VD in this review. SUMMARY It is a challenge for the diagnosis and treatment of VD, particularly in patients where there is no evident temporal relation between cerebrovascular events and cognitive dysfunction. In patients with cognitive dysfunction with poststroke onset, the etiological classification is still complicated. KEY MESSAGES In this review, we summarized the clinical, imaging, and genetic as well as pathological features of VD. We hope to offer a framework to translate diagnostic criteria to daily practice, address treatment, and highlight some future perspectives.
Collapse
Affiliation(s)
- Xiaoni Yang
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Chao Chen
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Aishuai Wang
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Changsheng Li
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Guangqing Cheng
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
5
|
Loftus JR, Puri S, Meyers SP. Multimodality imaging of neurodegenerative disorders with a focus on multiparametric magnetic resonance and molecular imaging. Insights Imaging 2023; 14:8. [PMID: 36645560 PMCID: PMC9842851 DOI: 10.1186/s13244-022-01358-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/13/2022] [Indexed: 01/17/2023] Open
Abstract
Neurodegenerative diseases afflict a large number of persons worldwide, with the prevalence and incidence of dementia rapidly increasing. Despite their prevalence, clinical diagnosis of dementia syndromes remains imperfect with limited specificity. Conventional structural-based imaging techniques also lack the accuracy necessary for confident diagnosis. Multiparametric magnetic resonance imaging and molecular imaging provide the promise of improving specificity and sensitivity in the diagnosis of neurodegenerative disease as well as therapeutic monitoring of monoclonal antibody therapy. This educational review will briefly focus on the epidemiology, clinical presentation, and pathologic findings of common and uncommon neurodegenerative diseases. Imaging features of each disease spanning from conventional magnetic resonance sequences to advanced multiparametric methods such as resting-state functional magnetic resonance imaging and arterial spin labeling imaging will be described in detail. Additionally, the review will explore the findings of each diagnosis on molecular imaging including single-photon emission computed tomography and positron emission tomography with a variety of clinically used and experimental radiotracers. The literature and clinical cases provided demonstrate the power of advanced magnetic resonance imaging and molecular techniques in the diagnosis of neurodegenerative diseases and areas of future and ongoing research. With the advent of combined positron emission tomography/magnetic resonance imaging scanners, hybrid protocols utilizing both techniques are an attractive option for improving the evaluation of neurodegenerative diseases.
Collapse
Affiliation(s)
- James Ryan Loftus
- grid.412750.50000 0004 1936 9166Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642 USA
| | - Savita Puri
- grid.412750.50000 0004 1936 9166Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642 USA
| | - Steven P. Meyers
- grid.412750.50000 0004 1936 9166Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642 USA
| |
Collapse
|
6
|
Chiam K, Lee L, Kuo PH, Gaudet VC, Black SE, Zukotynski KA. Brain PET and Cerebrovascular Disease. PET Clin 2023; 18:115-122. [PMID: 36718716 DOI: 10.1016/j.cpet.2022.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cerebrovascular disease encompasses a broad spectrum of diseases such as stroke, hemorrhage, and cognitive decline associated with vascular narrowing, obstruction, rupture, and inflammation, among other issues. Recent advances in hardware and software have led to improvements in brain PET. Although still in its infancy, machine learning using convolutional neural networks is gaining traction in this area, often with a focus on providing high-quality images with reduced noise using a shorter acquisition time or less radiation exposure for the patient.
Collapse
Affiliation(s)
- Katarina Chiam
- Division of Engineering Science, University of Toronto, 40 St. George St., Toronto, ON M5S 2E4, Canada
| | - Louis Lee
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Phillip H Kuo
- Departments of Medical Imaging, Medicine, Biomedical Engineering, University of Arizona, 1501 N. Campbell, Tucson, AZ 85724, USA
| | - Vincent C Gaudet
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Sandra E Black
- Departments of Neurology, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Departments of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | - Katherine A Zukotynski
- Departments of Medicine and Radiology, McMaster University, 1200 Main Street West, Hamilton, ON L9G 4X5, Canada.
| |
Collapse
|
7
|
Kandiah N, Choi SH, Hu CJ, Ishii K, Kasuga K, Mok VC. Current and Future Trends in Biomarkers for the Early Detection of Alzheimer's Disease in Asia: Expert Opinion. J Alzheimers Dis Rep 2022; 6:699-710. [PMID: 36606209 PMCID: PMC9741748 DOI: 10.3233/adr-220059] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/23/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) poses a substantial healthcare burden in the rapidly aging Asian population. Early diagnosis of AD, by means of biomarkers, can lead to interventions that might alter the course of the disease. The amyloid, tau, and neurodegeneration (AT[N]) framework, which classifies biomarkers by their core pathophysiological features, is a biomarker measure of amyloid plaques and neurofibrillary tangles. Our current AD biomarker armamentarium, comprising neuroimaging biomarkers and cerebrospinal fluid biomarkers, while clinically useful, may be invasive and expensive and hence not readily available to patients. Several studies have also investigated the use of blood-based measures of established core markers for detection of AD, such as amyloid-β and phosphorylated tau. Furthermore, novel non-invasive peripheral biomarkers and digital biomarkers could potentially expand access to early AD diagnosis to patients in Asia. Despite the multiplicity of established and potential biomarkers in AD, a regional framework for their optimal use to guide early AD diagnosis remains lacking. A group of experts from five regions in Asia gathered at a meeting in March 2021 to review the current evidence on biomarkers in AD diagnosis and discuss best practice around their use, with the goal of developing practical guidance that can be implemented easily by clinicians in Asia to support the early diagnosis of AD. This article summarizes recent key evidence on AD biomarkers and consolidates the experts' insights into the current and future use of these biomarkers for the screening and early diagnosis of AD in Asia.
Collapse
Affiliation(s)
- Nagaendran Kandiah
- Dementia Research Centre (Singapore), Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore,Correspondence to: Nagaendran Kandiah, Dementia Research Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232. Tel.: +65 6592 2653; Fax: +65 6339 2889; E-mail: ; ORCID: 0000-0001-9244-4298
| | - Seong Hye Choi
- Department of Neurology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Chaur-Jong Hu
- Department of Neurology, Dementia Center, Shuang Ho Hospital, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kenji Ishii
- Team for Neuroimaging Research, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kensaku Kasuga
- Department of Molecular Genetics, Center for Bioresources, Brain Research Institute, Niigata University, Niigata, Japan
| | - Vincent C.T. Mok
- Division of Neurology, Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China,Li Ka Shing Institute of Health Sciences, Gerald Choa Neuroscience Institute, Lui Che Woo Institute of Innovative Medicine, Therese Pei Fong Chow Research Centre for Prevention of Dementia, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
8
|
Fan Y, Liu W, Chen S, Li M, Zhao L, Wu C, Liu H, Zhu M. Association Between High Serum Tetrahydrofolate and Low Cognitive Functions in the United States: A Cross-Sectional Study. J Alzheimers Dis 2022; 89:163-179. [PMID: 35871329 DOI: 10.3233/jad-220058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: The relationship between serum folate status and cognitive functions is still controversial. Objective: To evaluate the association between serum tetrahydrofolate and cognitive functions. Methods: A total of 3,132 participants (60–80 years old) from the 2011–2014 NHANES were included in this cross-sectional study. The primary outcome measure was cognitive function assessment, determined by the Consortium to Establish a Registry for Alzheimer’s Disease Word Learning Test (CERAD-WL), CERAD-Delayed Recall Test (CERAD-DR), Animal Fluency Test (AF), Digit Symbol Substitution Test (DSST), and global cognitive score. Generalized linear model (GLM), multivariate logistic regression models, weighted generalized additive models (GAM), and subgroup analyses were performed to evaluate the association between serum tetrahydrofolate and low cognitive functions. Results: In GLM, and the crude model, model 1, model 2 of multivariate logistic regression models, increased serum tetrahydrofolate was associated with reduced cognitive functions via AF, DSST, CERAD-WL, CERAD-DR, and global cognitive score (p < 0.05). In GAM, the inflection points were 1.1, 2.8, and 2.8 nmol/L tetrahydrofolate, determined by a two-piece wise linear regression model of AF, DSST, and global cognitive score, respectively. Also, in GAM, there were no non-linear relationship between serum tetrahydrofolate and low cognitive functions, as determined by CERAD-WL or CERAD-DR. The results of subgroup analyses found that serum tetrahydrofolate levels and reduced cognitive functions as determined by AF had significant interactions for age and body mass index. The association between high serum tetrahydrofolate level and reduced cognitive functions as determined using DSST, CERAD-WL, CERAD-DR, or global cognitive score had no interaction with the associations between cognition and gender, or age, or so on. Conclusion: High serum tetrahydrofolate level is associated with significantly reduced cognitive function.
Collapse
Affiliation(s)
- Yaohua Fan
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Wen Liu
- Department of OphthalmologyGuangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Si Chen
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mengzhu Li
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lijun Zhao
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Chunxiao Wu
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Helu Liu
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Meiling Zhu
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
9
|
Liu Y, Xu Y, Guo Z, Wang X, Xu Y, Tang L. Identifying the neural basis for rosacea using positron emission tomography‐computed tomography cerebral functional imaging analysis: A cross‐sectional study. Skin Res Technol 2022; 28:708-713. [PMID: 35644027 PMCID: PMC9907641 DOI: 10.1111/srt.13171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND The neural basis of rosacea is not well understood. This study aimed to determine whether cerebral glucose metabolism (CGM) changes on 18 F-fluorodeoxyglucose (18 F-FDG) positron emission tomography (PET)/computed tomography (CT) scans can detect functional network changes in specific brain areas in patients with rosacea. MATERIALS AND METHODS Eight adults with rosacea and 10 age/sex-matched healthy adults (controls) were enrolled in the study. 18 F-FDG PET/CT brain images for all eight patients and whole-body images for two of the patients were analyzed qualitatively and semi-quantitatively. Differences between the study groups were examined using Fischer's exact test and a Student's t-test. A voxel-based analysis using statistical parametric mapping was performed to compare the brain metabolism of the patients with that of the controls. RESULTS Compared with the controls, the patients with rosacea showed extensive changes in the CGM signals in the cerebral cortex and limbic system, with less CGM shown in the right superior parietal lobule, right postcentral gyrus, right parahippocampal gyrus, left superior frontal gyrus, and lateral posterior thalamic nucleus and more CGM in the right precentral gyrus, left inferior frontal gyrus, and cerebellar tonsil. No dysmetabolic lesions were found in the whole-body 18 F-FDG PET/CT images. CONCLUSION Specific neural functional changes occur in patients with rosacea that may explain its pathogenesis.
Collapse
Affiliation(s)
- Yunyi Liu
- Department of Dermatology The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Yingna Xu
- Department of Nuclear Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Zhe Guo
- Department of Nuclear Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Xiaoyan Wang
- Department of Dermatology The Second Affiliated Hospital of Nanchang University Nanchang China
| | - Yang Xu
- Department of Dermatology The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Lijun Tang
- Department of Nuclear Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| |
Collapse
|
10
|
Díaz-Álvarez J, Matias-Guiu JA, Cabrera-Martín MN, Pytel V, Segovia-Ríos I, García-Gutiérrez F, Hernández-Lorenzo L, Matias-Guiu J, Carreras JL, Ayala JL. Genetic Algorithms for Optimized Diagnosis of Alzheimer's Disease and Frontotemporal Dementia Using Fluorodeoxyglucose Positron Emission Tomography Imaging. Front Aging Neurosci 2022; 13:708932. [PMID: 35185510 PMCID: PMC8851241 DOI: 10.3389/fnagi.2021.708932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Genetic algorithms have a proven capability to explore a large space of solutions, and deal with very large numbers of input features. We hypothesized that the application of these algorithms to 18F-Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) may help in diagnosis of Alzheimer's disease (AD) and Frontotemporal Dementia (FTD) by selecting the most meaningful features and automating diagnosis. We aimed to develop algorithms for the three main issues in the diagnosis: discrimination between patients with AD or FTD and healthy controls (HC), differential diagnosis between behavioral FTD (bvFTD) and AD, and differential diagnosis between primary progressive aphasia (PPA) variants. Genetic algorithms, customized with K-Nearest Neighbor and BayesNet Naives as the fitness function, were developed and compared with Principal Component Analysis (PCA). K-fold cross validation within the same sample and external validation with ADNI-3 samples were performed. External validation was performed for the algorithms distinguishing AD and HC. Our study supports the use of FDG-PET imaging, which allowed a very high accuracy rate for the diagnosis of AD, FTD, and related disorders. Genetic algorithms identified the most meaningful features with the minimum set of features, which may be relevant for automated assessment of brain FDG-PET images. Overall, our study contributes to the development of an automated, and optimized diagnosis of neurodegenerative disorders using brain metabolism.
Collapse
Affiliation(s)
- Josefa Díaz-Álvarez
- Department of Computer Architecture and Communications, Centro Universitario de Mérida, Universidad de Extremadura, Badajoz, Spain
| | - Jordi A. Matias-Guiu
- Department of Neurology, Hospital Clinico San Carlos, San Carlos Research Health Institute (IdISSC), Universidad Complutense, Madrid, Spain
| | - María Nieves Cabrera-Martín
- Department of Nuclear Medicine, Hospital Clinico San Carlos, San Carlos Research Health Institute (IdISSC), Universidad Complutense, Madrid, Spain
| | - Vanesa Pytel
- Department of Neurology, Hospital Clinico San Carlos, San Carlos Research Health Institute (IdISSC), Universidad Complutense, Madrid, Spain
| | - Ignacio Segovia-Ríos
- Department of Computer Architecture and Communications, Centro Universitario de Mérida, Universidad de Extremadura, Badajoz, Spain
| | - Fernando García-Gutiérrez
- Department of Neurology, Hospital Clinico San Carlos, San Carlos Research Health Institute (IdISSC), Universidad Complutense, Madrid, Spain
- Department of Computer Architecture and Automation, Universidad Complutense, Madrid, Spain
| | - Laura Hernández-Lorenzo
- Department of Neurology, Hospital Clinico San Carlos, San Carlos Research Health Institute (IdISSC), Universidad Complutense, Madrid, Spain
- Department of Computer Architecture and Automation, Universidad Complutense, Madrid, Spain
| | - Jorge Matias-Guiu
- Department of Neurology, Hospital Clinico San Carlos, San Carlos Research Health Institute (IdISSC), Universidad Complutense, Madrid, Spain
| | - José Luis Carreras
- Department of Nuclear Medicine, Hospital Clinico San Carlos, San Carlos Research Health Institute (IdISSC), Universidad Complutense, Madrid, Spain
| | - José L. Ayala
- Department of Computer Architecture and Automation, Universidad Complutense, Madrid, Spain
| | | |
Collapse
|
11
|
Goksel S, Rakici S. The effect of prophylactic cranial irradiation on brain 18F-fluorodeoxyglucose uptake in small cell lung cancer in the metabolic imaging era. JOURNAL OF RADIATION AND CANCER RESEARCH 2022. [DOI: 10.4103/jrcr.jrcr_60_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
12
|
Bandopadhyay R, Singh T, Ghoneim MM, Alshehri S, Angelopoulou E, Paudel YN, Piperi C, Ahmad J, Alhakamy NA, Alfaleh MA, Mishra A. Recent Developments in Diagnosis of Epilepsy: Scope of MicroRNA and Technological Advancements. BIOLOGY 2021; 10:1097. [PMID: 34827090 PMCID: PMC8615191 DOI: 10.3390/biology10111097] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/18/2022]
Abstract
Epilepsy is one of the most common neurological disorders, characterized by recurrent seizures, resulting from abnormally synchronized episodic neuronal discharges. Around 70 million people worldwide are suffering from epilepsy. The available antiepileptic medications are capable of controlling seizures in around 60-70% of patients, while the rest remain refractory. Poor seizure control is often associated with neuro-psychiatric comorbidities, mainly including memory impairment, depression, psychosis, neurodegeneration, motor impairment, neuroendocrine dysfunction, etc., resulting in poor prognosis. Effective treatment relies on early and correct detection of epileptic foci. Although there are currently a few well-established diagnostic techniques for epilepsy, they lack accuracy and cannot be applied to patients who are unsupportive or harbor metallic implants. Since a single test result from one of these techniques does not provide complete information about the epileptic foci, it is necessary to develop novel diagnostic tools. Herein, we provide a comprehensive overview of the current diagnostic tools of epilepsy, including electroencephalography (EEG) as well as structural and functional neuroimaging. We further discuss recent trends and advances in the diagnosis of epilepsy that will enable more effective diagnosis and clinical management of patients.
Collapse
Affiliation(s)
- Ritam Bandopadhyay
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.A.); (C.P.)
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia;
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.A.); (C.P.)
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia;
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (M.A.A.)
| | - Mohamed A. Alfaleh
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (M.A.A.)
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Awanish Mishra
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)—Guwahati, Changsari, Guwahati 781101, Assam, India
| |
Collapse
|
13
|
Zukotynski K, Black SE, Kuo PH, Bhan A, Adamo S, Scott CJM, Lam B, Masellis M, Kumar S, Fischer CE, Tartaglia MC, Lang AE, Tang-Wai DF, Freedman M, Vasdev N, Gaudet V. Exploratory Assessment of K-means Clustering to Classify 18F-Flutemetamol Brain PET as Positive or Negative. Clin Nucl Med 2021; 46:616-620. [PMID: 33883495 DOI: 10.1097/rlu.0000000000003668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
RATIONALE We evaluated K-means clustering to classify amyloid brain PETs as positive or negative. PATIENTS AND METHODS Sixty-six participants (31 men, 35 women; age range, 52-81 years) were recruited through a multicenter observational study: 19 cognitively normal, 25 mild cognitive impairment, and 22 dementia (11 Alzheimer disease, 3 subcortical vascular cognitive impairment, and 8 Parkinson-Lewy Body spectrum disorder). As part of the neurocognitive and imaging evaluation, each participant had an 18F-flutemetamol (Vizamyl, GE Healthcare) brain PET. All studies were processed using Cortex ID software (General Electric Company, Boston, MA) to calculate SUV ratios in 19 regions of interest and clinically interpreted by 2 dual-certified radiologists/nuclear medicine physicians, using MIM software (MIM Software Inc, Cleveland, OH), blinded to the quantitative analysis, with final interpretation based on consensus. K-means clustering was retrospectively used to classify the studies from the quantitative data. RESULTS Based on clinical interpretation, 46 brain PETs were negative and 20 were positive for amyloid deposition. Of 19 cognitively normal participants, 1 (5%) had a positive 18F-flutemetamol brain PET. Of 25 participants with mild cognitive impairment, 9 (36%) had a positive 18F-flutemetamol brain PET. Of 22 participants with dementia, 10 (45%) had a positive 18F-flutemetamol brain PET; 7 of 11 participants with Alzheimer disease (64%), 1 of 3 participants with vascular cognitive impairment (33%), and 2 of 8 participants with Parkinson-Lewy Body spectrum disorder (25%) had a positive 18F-flutemetamol brain PET. Using clinical interpretation as the criterion standard, K-means clustering (K = 2) gave sensitivity of 95%, specificity of 98%, and accuracy of 97%. CONCLUSIONS K-means clustering may be a powerful algorithm for classifying amyloid brain PET.
Collapse
Affiliation(s)
| | | | - Phillip H Kuo
- Departments of Medical Imaging, Medicine, and Biomedical Engineering, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - Aparna Bhan
- LC Campbell Cognitive Neurology Research Unit, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto
| | - Sabrina Adamo
- LC Campbell Cognitive Neurology Research Unit, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto
| | - Christopher J M Scott
- LC Campbell Cognitive Neurology Research Unit, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto
| | | | | | | | - Corinne E Fischer
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, University of Toronto
| | | | | | | | | | | | - Vincent Gaudet
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
14
|
Frantellizzi V, Pani A, Ricci M, Locuratolo N, Fattapposta F, De Vincentis G. Neuroimaging in Vascular Cognitive Impairment and Dementia: A Systematic Review. J Alzheimers Dis 2021; 73:1279-1294. [PMID: 31929166 DOI: 10.3233/jad-191046] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cerebrovascular diseases are well established causes of cognitive impairment. Different etiologic entities, such as vascular dementia (VaD), vascular cognitive impairment, subcortical (ischemic) VaD, and vascular cognitive disorder, are included in the umbrella definition of vascular cognitive impairment and dementia (VCID). Because of the variability of VCID clinical presentation, there is no agreement on criteria defining the neuropathological threshold of this disorder. In fact, VCID is characterized by cerebral hemodynamic alteration which ranges from decreased cerebral blood flow to small vessels disease and involves a multifactorial process that leads to demyelination and gliosis, including blood-brain barrier disruption, hypoxia, and hypoperfusion, oxidative stress, neuroinflammation and alteration on neurovascular unit coupling, cerebral microbleeds, or superficial siderosis. Numerous criteria for the definition of VaD have been described: the National Institute of Neurological Disorders and Stroke Association Internationale pour Recherche'-et-l'Enseignement en Neurosciences criteria, the State of California Alzheimer's Disease Diagnostic and Treatment Centers criteria, DSM-V criteria, the Diagnostic Criteria for Vascular Cognitive Disorders (a VASCOG Statement), and Vascular Impairment of Cognition Classification Consensus Study. Neuroimaging is fundamental for definition and diagnosis of VCID and should be used to assess the extent, location, and type of vascular lesions. MRI is the most sensible technique, especially if used according to standardized protocols, even if CT plays an important role in several conditions. Functional neuroimaging, in particular functional MRI and PET, may facilitate differential diagnosis among different forms of dementia. This systematic review aims to explore the state of the art and future perspective of non-invasive diagnostics of VCID.
Collapse
Affiliation(s)
| | - Arianna Pani
- Clinical Pharmacology and Toxicology, University of Milan "Statale", Italy
| | - Maria Ricci
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| | | | | | - Giuseppe De Vincentis
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
15
|
Oldan JD, Jewells VL, Pieper B, Wong TZ. Complete Evaluation of Dementia: PET and MRI Correlation and Diagnosis for the Neuroradiologist. AJNR Am J Neuroradiol 2021; 42:998-1007. [PMID: 33926896 DOI: 10.3174/ajnr.a7079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 11/14/2020] [Indexed: 12/12/2022]
Abstract
This article will familiarize neuroradiologists with the pathophysiology, clinical findings, and standard MR imaging and PET imaging features of multiple forms of dementia as well as new emerging techniques. Cases were compiled from multiple institutions with the goal of improved diagnostic accuracy and improved patient care as well as information about biomarkers on the horizon. Dementia topics addressed include the following: Alzheimer disease, frontotemporal dementia, cerebral amyloid angiopathy, Lewy body dementia, Parkinson disease and Parkinson disease variants, amyotrophic lateral sclerosis, multisystem atrophy, Huntington disease vascular dementia, and Creutzfeldt-Jakob disease.
Collapse
Affiliation(s)
- J D Oldan
- From the Department of Radiology (J.D.O., V.L.J), University of North Carolina, Chapel Hill, North Carolina
| | - V L Jewells
- From the Department of Radiology (J.D.O., V.L.J), University of North Carolina, Chapel Hill, North Carolina
| | - B Pieper
- Department of Radiology (B.P.), Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - T Z Wong
- Department of Radiology (T.Z.W.), Duke University Hospital, Durham, North Carolina
| |
Collapse
|
16
|
Razek AAKA, Elsebaie NA. Imaging of vascular cognitive impairment. Clin Imaging 2021; 74:45-54. [PMID: 33434866 DOI: 10.1016/j.clinimag.2020.12.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/21/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022]
Abstract
Vascular cognitive impairment (VCI) is a major health challenge and represents the second most common cause of dementia. We review the updated imaging classification and imaging findings of different subtypes of VCI. We will focus on the magnetic resonance imaging (MRI) markers of each subtype and highlight the role of advanced MR imaging sequences in the evaluation of these patients. Small vessel dementia appears as white matter hyperintensity, lacunae, microinfarcts, and microbleeds. Large vessel dementia includes strategic infarction and multi-infarction dementias. Hypoperfusion dementia can be seen as watershed infarcts and cortical laminar necrosis. Hemorrhagic dementia results from cerebral amyloid angiopathy and cortical superficial siderosis. Hereditary forms of VCI, caused by gene mutations such as CADASIL, should be suspected when dementia presents in young patients. Mixed dementia is seen in patients with Alzheimer's disease and the coexistence of cerebrovascular disease.
Collapse
Affiliation(s)
- Ahmed Abdel Khalek Abdel Razek
- Department of Diagnostic Radiology, Mansoura Faculty of Medicine, Mansoura, Egypt; Department of Radiology, Alexandria Faculty of Medicine, Alexandria, Egypt.
| | - Nermeen A Elsebaie
- Department of Diagnostic Radiology, Mansoura Faculty of Medicine, Mansoura, Egypt; Department of Radiology, Alexandria Faculty of Medicine, Alexandria, Egypt.
| |
Collapse
|
17
|
Abstract
Cerebrovascular disease is a significant cause of cognitive impairment leading to a reduction or loss of functioning, including social and occupational. The connection cause-effect between cerebrovascular disease and cerebral infarction was originally theorized by the studies from Newcastle-Upon-Tyne, England, in the 1960s, where vascular dementia (VaD) was defined as a disease originated from several infarctions that overcome a determined threshold. It differs from Alzheimer's disease (AD), although there are various overlaps in risk factors, symptomatology, the similarity of vascular lesions, and treatment benefits. Nevertheless, AD is one-half of all cases of dementia. Cognitive impairment and dementia (VCID) has recently been proposed to include different entities such as VaD, Vascular cognitive impairment, subcortical (ischemic) VaD, and vascular cognitive disorders. VaD is the most common cause of dementia after AD. Neuroimaging is an essential part of the workup of patients with cognitive decline and in those with suspected VCID it should be used to assess the extent, location, and type of vascular lesions. Computed tomography (CT) or structural magnetic resonance imaging (MRI) are usually used for the diagnosis of vascular diseases of the brain. However, images obtained from new hybrid devices could help the neurologist in the differential diagnosis between various neuropathological entities related to VCID. Single-photon emission computed tomography (SPECT) combined with CT or MRI and positron emission tomography (PET) combined with CT or MRI represent the future of neuroimaging tools as morphological and functional data can be provided simultaneously. New prospects have been developed such as hybrid PET/SPECT/CT, a high-performance prototype able to produce high-quality images but for now suitable only for small animals. Nowadays, PET/CT and PET/MRI are good performance and high-quality instruments, even if the magnetic field of MRI represents a limitation that affects the PET electronics and positron detection ability. SPECT/MRI delineates as a potential and tempting device. It could give us both functional and anatomical details, with the advantage of lack of extra ionizing radiation and high soft-tissue contrast, important features, and considerable auxiliary for differential diagnosis in the variegate word of vascular cognitive impairment. The aim of this review is to summarize the newest viewpoints in hybrid imaging in the diagnosis of VaD and to highlight pros and cons of each methodic.
Collapse
Affiliation(s)
| | - Miriam Conte
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| | - Giuseppe De Vincentis
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
18
|
Sawyer DM, Sawyer TW, Eshghi N, Hsu C, Hamilton RJ, Garland LL, Kuo PH. Pilot Study: Texture Analysis of PET Imaging Demonstrates Changes in 18F-FDG Uptake of the Brain After Prophylactic Cranial Irradiation. J Nucl Med Technol 2020; 49:34-38. [PMID: 33020232 DOI: 10.2967/jnmt.120.248393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/07/2020] [Indexed: 11/16/2022] Open
Abstract
Prophylactic cranial irradiation (PCI) is used to decrease the probability of developing brain metastases in patients with small cell lung cancer and has been linked to deleterious cognitive effects. Although no well-established imaging markers for these effects exist, previous studies have shown that structural and metabolic changes in the brain can be detected with MRI and PET. This study used an image processing technique called texture analysis to explore whether global changes in brain glucose metabolism could be characterized in PET images. Methods: 18F-FDG PET images of the brain from patients with small cell lung cancer, obtained before and after the administration of PCI, were processed using texture analysis. Texture features were compared between the pre- and post-PCI images. Results: Multiple texture features demonstrated statistically significant differences before and after PCI when texture analysis was applied to the brain parenchyma as a whole. Regional differences were also seen but were not statistically significant. Conclusion: Global changes in brain glucose metabolism occur after PCI and are detectable using advanced image processing techniques. These changes may reflect radiation-induced damage and thus may provide a novel method for studying radiation-induced cognitive impairment.
Collapse
Affiliation(s)
- David M Sawyer
- Department of Medical Imaging, University of Arizona, Tucson, Arizona
| | - Travis W Sawyer
- College of Optical Sciences, University of Arizona, Tucson, Arizona
| | | | - Charles Hsu
- Department of Radiation Oncology, University of Arizona, Tucson, Arizona
| | - Russell J Hamilton
- Department of Radiation Oncology, University of Arizona, Tucson, Arizona
| | - Linda L Garland
- Department of Medicine, University of Arizona; University of Arizona Cancer Center, Tucson, Arizona; and
| | - Phillip H Kuo
- Department of Medical Imaging, University of Arizona, Tucson, Arizona.,Department of Medicine, University of Arizona; University of Arizona Cancer Center, Tucson, Arizona; and.,Department of Biomedical Engineering, University of Arizona, Tucson, Arizona
| |
Collapse
|