1
|
Al-Mubarak H, Bane O, Gillingham N, Kyriakakos C, Abboud G, Cuevas J, Gonzalez J, Meilika K, Horowitz A, Huang HHV, Daza J, Fauveau V, Badani K, Viswanath SE, Taouli B, Lewis S. Characterization of renal masses with MRI-based radiomics: assessment of inter-package and inter-observer reproducibility in a prospective pilot study. Abdom Radiol (NY) 2024; 49:3464-3475. [PMID: 38467854 DOI: 10.1007/s00261-024-04212-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 03/13/2024]
Abstract
OBJECTIVES To evaluate radiomics features' reproducibility using inter-package/inter-observer measurement analysis in renal masses (RMs) based on MRI and to employ machine learning (ML) models for RM characterization. METHODS 32 Patients (23M/9F; age 61.8 ± 10.6 years) with RMs (25 renal cell carcinomas (RCC)/7 benign masses; mean size, 3.43 ± 1.73 cm) undergoing resection were prospectively recruited. All patients underwent 1.5 T MRI with T2-weighted (T2-WI), diffusion-weighted (DWI)/apparent diffusion coefficient (ADC), and pre-/post-contrast-enhanced T1-weighted imaging (T1-WI). RMs were manually segmented using volume of interest (VOI) on T2-WI, DWI/ADC, and T1-WI pre-/post-contrast imaging (1-min, 3-min post-injection) by two independent observers using two radiomics software packages for inter-package and inter-observer assessments of shape/histogram/texture features common to both packages (104 features; n = 26 patients). Intra-class correlation coefficients (ICCs) were calculated to assess inter-observer and inter-package reproducibility of radiomics measurements [good (ICC ≥ 0.8)/moderate (ICC = 0.5-0.8)/poor (ICC < 0.5)]. ML models were employed using reproducible features (between observers and packages, ICC > 0.8) to distinguish RCC from benign RM. RESULTS Inter-package comparisons demonstrated that radiomics features from T1-WI-post-contrast had the highest proportion of good/moderate ICCs (54.8-58.6% for T1-WI-1 min), while most features extracted from T2-WI, T1-WI-pre-contrast, and ADC exhibited poor ICCs. Inter-observer comparisons found that radiomics measurements from T1-WI pre/post-contrast and T2-WI had the greatest proportion of features with good/moderate ICCs (95.3-99.1% T1-WI-post-contrast 1-min), while ADC measurements yielded mostly poor ICCs. ML models generated an AUC of 0.71 [95% confidence interval = 0.67-0.75] for diagnosis of RCC vs. benign RM. CONCLUSION Radiomics features extracted from T1-WI-post-contrast demonstrated greater inter-package and inter-observer reproducibility compared to ADC, with fair accuracy for distinguishing RCC from benign RM. CLINICAL RELEVANCE Knowledge of reproducibility of MRI radiomics features obtained on renal masses will aid in future study design and may enhance the diagnostic utility of radiomics models for renal mass characterization.
Collapse
Affiliation(s)
- Haitham Al-Mubarak
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Octavia Bane
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, New York, NY, USA
| | - Nicolas Gillingham
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, Mount Sinai West, New York, NY, 10019, USA
| | - Christopher Kyriakakos
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, New York, NY, USA
| | - Ghadi Abboud
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, New York, NY, USA
| | - Jordan Cuevas
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, New York, NY, USA
| | - Janette Gonzalez
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, New York, NY, USA
| | - Kirolos Meilika
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amir Horowitz
- Precision Immunology Institute/Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hsin-Hui Vivien Huang
- Department of Population Sciences and Health Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jorge Daza
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute/Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Valentin Fauveau
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ketan Badani
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Satish E Viswanath
- Department of Biomedical Engineering, School of Medicine, Case School of Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Radiology, Case School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Bachir Taouli
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, New York, NY, USA
| | - Sara Lewis
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, New York, NY, USA.
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1234, New York, NY, 10029, USA.
| |
Collapse
|
2
|
Teng X, Wang Y, Nicol AJ, Ching JCF, Wong EKY, Lam KTC, Zhang J, Lee SWY, Cai J. Enhancing the Clinical Utility of Radiomics: Addressing the Challenges of Repeatability and Reproducibility in CT and MRI. Diagnostics (Basel) 2024; 14:1835. [PMID: 39202322 PMCID: PMC11353986 DOI: 10.3390/diagnostics14161835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/03/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Radiomics, which integrates the comprehensive characterization of imaging phenotypes with machine learning algorithms, is increasingly recognized for its potential in the diagnosis and prognosis of oncological conditions. However, the repeatability and reproducibility of radiomic features are critical challenges that hinder their widespread clinical adoption. This review aims to address the paucity of discussion regarding the factors that influence the reproducibility and repeatability of radiomic features and their subsequent impact on the application of radiomic models. We provide a synthesis of the literature on the repeatability and reproducibility of CT/MR-based radiomic features, examining sources of variation, the number of reproducible features, and the availability of individual feature repeatability indices. We differentiate sources of variation into random effects, which are challenging to control but can be quantified through simulation methods such as perturbation, and biases, which arise from scanner variability and inter-reader differences and can significantly affect the generalizability of radiomic model performance in diverse settings. Four suggestions for repeatability and reproducibility studies are suggested: (1) detailed reporting of variation sources, (2) transparent disclosure of calculation parameters, (3) careful selection of suitable reliability indices, and (4) comprehensive reporting of reliability metrics. This review underscores the importance of random effects in feature selection and harmonizing biases between development and clinical application settings to facilitate the successful translation of radiomic models from research to clinical practice.
Collapse
Affiliation(s)
- Xinzhi Teng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong SAR, China; (X.T.); (Y.W.); (A.J.N.); (J.C.F.C.); (E.K.Y.W.); (K.T.C.L.); (J.Z.)
| | - Yongqiang Wang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong SAR, China; (X.T.); (Y.W.); (A.J.N.); (J.C.F.C.); (E.K.Y.W.); (K.T.C.L.); (J.Z.)
| | - Alexander James Nicol
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong SAR, China; (X.T.); (Y.W.); (A.J.N.); (J.C.F.C.); (E.K.Y.W.); (K.T.C.L.); (J.Z.)
| | - Jerry Chi Fung Ching
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong SAR, China; (X.T.); (Y.W.); (A.J.N.); (J.C.F.C.); (E.K.Y.W.); (K.T.C.L.); (J.Z.)
| | - Edwin Ka Yiu Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong SAR, China; (X.T.); (Y.W.); (A.J.N.); (J.C.F.C.); (E.K.Y.W.); (K.T.C.L.); (J.Z.)
| | - Kenneth Tsz Chun Lam
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong SAR, China; (X.T.); (Y.W.); (A.J.N.); (J.C.F.C.); (E.K.Y.W.); (K.T.C.L.); (J.Z.)
| | - Jiang Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong SAR, China; (X.T.); (Y.W.); (A.J.N.); (J.C.F.C.); (E.K.Y.W.); (K.T.C.L.); (J.Z.)
| | - Shara Wee-Yee Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong SAR, China; (X.T.); (Y.W.); (A.J.N.); (J.C.F.C.); (E.K.Y.W.); (K.T.C.L.); (J.Z.)
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong SAR, China; (X.T.); (Y.W.); (A.J.N.); (J.C.F.C.); (E.K.Y.W.); (K.T.C.L.); (J.Z.)
- Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
3
|
Li K, Ji J, Li S, Yang M, Che Y, Xu Z, Zhang Y, Wang M, Fang Z, Luo L, Wu C, Lai X, Dong J, Zhang X, Zhao N, Liu Y, Wang W. Analysis of the Correlation and Prognostic Significance of Tertiary Lymphoid Structures in Breast Cancer: A Radiomics-Clinical Integration Approach. J Magn Reson Imaging 2024; 59:1206-1217. [PMID: 37526043 DOI: 10.1002/jmri.28900] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Tertiary lymphoid structures (TLSs) are potential prognostic indicators. Radiomics may help reduce unnecessary invasive operations. PURPOSE To analyze the association between TLSs and prognosis, and to establish a nomogram model to evaluate the expression of TLSs in breast cancer (BC) patients. STUDY TYPE Retrospective. POPULATION Two hundred forty-two patients with localized primary BC (confirmed by surgery) were divided into BC + TLS group (N = 122) and BC - TLS group (N = 120). FIELD STRENGTH/SEQUENCE 3.0T; Caipirinha-Dixon-TWIST-volume interpolated breath-hold sequence for dynamic contrast-enhanced (DCE) MRI and inversion-recovery turbo spin echo sequence for T2-weighted imaging (T2WI). ASSESSMENT Three models for differentiating BC + TLS and BC - TLS were developed: 1) a clinical model, 2) a radiomics signature model, and 3) a combined clinical and radiomics (nomogram) model. The overall survival (OS), distant metastasis-free survival (DMFS), and disease-free survival (DFS) were compared to evaluate the prognostic value of TLSs. STATISTICAL TESTS LASSO algorithm and ANOVA were used to select highly correlated features. Clinical relevant variables were identified by multivariable logistic regression. Model performance was evaluated by the area under the receiver operating characteristic (ROC) curve (AUC), and through decision curve analysis (DCA). The Kaplan-Meier method was used to calculate the survival rate. RESULTS The radiomics signature model (training: AUC 0.766; test: AUC 0.749) and the nomogram model (training: AUC 0.820; test: AUC 0.749) showed better validation performance than the clinical model. DCA showed that the nomogram model had a higher net benefit than the other models. The median follow-up time was 52 months. While there was no significant difference in 3-year OS (P = 0.22) between BC + TLS and BC - TLS patients, there were significant differences in 3-year DFS and 3-year DMFS between the two groups. DATA CONCLUSION The nomogram model performs well in distinguishing the presence or absence of TLS. BC + TLS patients had higher long-term disease control rates and better prognoses than those without TLS. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Kezhen Li
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Radiation Oncology, Key Laboratory of Sichuan Province, Chengdu, China
| | - Juan Ji
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Simin Li
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Radiation Oncology, Key Laboratory of Sichuan Province, Chengdu, China
| | - Man Yang
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology, Key Laboratory of Sichuan Province, Chengdu, China
- Sichuan Cancer Hospital and Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yurou Che
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology, Key Laboratory of Sichuan Province, Chengdu, China
- Sichuan Cancer Hospital and Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhu Xu
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Radiation Oncology, Key Laboratory of Sichuan Province, Chengdu, China
| | - Yiyao Zhang
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology, Key Laboratory of Sichuan Province, Chengdu, China
- Sichuan Cancer Hospital and Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mei Wang
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology, Key Laboratory of Sichuan Province, Chengdu, China
- Sichuan Cancer Hospital and Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zengyi Fang
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology, Key Laboratory of Sichuan Province, Chengdu, China
- Sichuan Cancer Hospital and Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liping Luo
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology, Key Laboratory of Sichuan Province, Chengdu, China
- Sichuan Cancer Hospital and Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chuan Wu
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Cancer Hospital and Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xin Lai
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Cancer Hospital and Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Juan Dong
- Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Department of Chest, Meishan Cancer Hospital, Meishan, China
| | - Xinlan Zhang
- Department of Breast Surgery, Chengdu Women's and Children's Hospital, Chengdu, China
| | - Na Zhao
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Liu
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Weidong Wang
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Radiation Oncology, Key Laboratory of Sichuan Province, Chengdu, China
- Sichuan Cancer Hospital and Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Nguyen TM, Bertolus C, Giraud P, Burgun A, Saintigny P, Bibault JE, Foy JP. A Radiomics Approach to Identify Immunologically Active Tumor in Patients with Head and Neck Squamous Cell Carcinomas. Cancers (Basel) 2023; 15:5369. [PMID: 38001629 PMCID: PMC10670096 DOI: 10.3390/cancers15225369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND We recently developed a gene-expression-based HOT score to identify the hot/cold phenotype of head and neck squamous cell carcinomas (HNSCCs), which is associated with the response to immunotherapy. Our goal was to determine whether radiomic profiling from computed tomography (CT) scans can distinguish hot and cold HNSCC. METHOD We included 113 patients from The Cancer Genome Atlas (TCGA) and 20 patients from the Groupe Hospitalier Pitié-Salpêtrière (GHPS) with HNSCC, all with available pre-treatment CT scans. The hot/cold phenotype was computed for all patients using the HOT score. The IBEX software (version 4.11.9, accessed on 30 march 2020) was used to extract radiomic features from the delineated tumor region in both datasets, and the intraclass correlation coefficient (ICC) was computed to select robust features. Machine learning classifier models were trained and tested in the TCGA dataset and validated using the area under the receiver operator characteristic curve (AUC) in the GHPS cohort. RESULTS A total of 144 radiomic features with an ICC >0.9 was selected. An XGBoost model including these selected features showed the best performance prediction of the hot/cold phenotype with AUC = 0.86 in the GHPS validation dataset. CONCLUSIONS AND RELEVANCE We identified a relevant radiomic model to capture the overall hot/cold phenotype of HNSCC. This non-invasive approach could help with the identification of patients with HNSCC who may benefit from immunotherapy.
Collapse
Affiliation(s)
- Tan Mai Nguyen
- Sorbonne Université, Department of Maxillo-Facial Surgery, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France; (T.M.N.); (C.B.)
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France;
- INSERM, UMR S1138, Cordeliers Research Center, Université Paris Cité, 75005 Paris, France; (P.G.); (A.B.); (J.-E.B.)
| | - Chloé Bertolus
- Sorbonne Université, Department of Maxillo-Facial Surgery, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France; (T.M.N.); (C.B.)
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France;
| | - Paul Giraud
- INSERM, UMR S1138, Cordeliers Research Center, Université Paris Cité, 75005 Paris, France; (P.G.); (A.B.); (J.-E.B.)
- Sorbonne Université, Department of Radiation Oncology, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France
| | - Anita Burgun
- INSERM, UMR S1138, Cordeliers Research Center, Université Paris Cité, 75005 Paris, France; (P.G.); (A.B.); (J.-E.B.)
| | - Pierre Saintigny
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France;
- Department of Medical Oncology, Centre Léon Bérard, 69008 Lyon, France
| | - Jean-Emmanuel Bibault
- INSERM, UMR S1138, Cordeliers Research Center, Université Paris Cité, 75005 Paris, France; (P.G.); (A.B.); (J.-E.B.)
- Department of Radiation Oncology, Hôpital Européen Georges-Pompidou, Université Paris Cité, 75015 Paris, France
| | - Jean-Philippe Foy
- Sorbonne Université, Department of Maxillo-Facial Surgery, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France; (T.M.N.); (C.B.)
- Sorbonne Université, INSERM UMRS 938, Centre de Recherche de Saint Antoine, Team Cancer Biology and Therapeutics, 75011 Paris, France
| |
Collapse
|
5
|
Ludwig DR, Thacker Y, Luo C, Narra A, Mintz AJ, Siegel CL. CT-derived textural analysis parameters discriminate high-attenuation renal cysts from solid renal neoplasms. Clin Radiol 2023; 78:e782-e790. [PMID: 37586966 DOI: 10.1016/j.crad.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/15/2023] [Accepted: 07/05/2023] [Indexed: 08/18/2023]
Abstract
AIM To assess the utility of textural features on computed tomography (CT) to differentiate high-attenuation cysts from solid renal neoplasms among indeterminate renal lesions detected incidentally on CT. MATERIALS AND METHODS Patients were included if they had an indeterminate renal lesion on CT that was subsequently characterised on ultrasound or magnetic resonance imaging (MRI). Up to three lesions per patient were included if they had a size ≥10 mm and density of 20-70 HU on unenhanced CT or any single phase of contrast-enhanced CT. Cases were categorised as benign or most likely benign cysts (Bosniak II and IIF) versus indeterminate (Bosniak III), mixed solid and cystic (Bosniak IV), or solid renal lesions. A random forest model was generated using 95 textural parameters and four clinical parameters for each lesion. RESULTS Two hundred and thirty-four patients were included who had a total of 278 lesions. Of these, 193 (69%) were benign or most likely benign cysts and 85 (31%) were indeterminate, mixed cystic and solid, or solid renal lesions. The random forest model had an area under the curve of 0.71 (95% confidence interval [CI]: 0.65, 0.78), with a sensitivity and specificity of 81.2% and 38.9%, respectively. CONCLUSION A multivariate model including textural and clinical parameters had moderate overall performance for discriminating benign or likely benign cysts from indeterminate, mixed solid and cystic, or solid renal lesions. This study serves as a proof of concept and may reduce the need for further follow-up by characterising a significant portion of indeterminate lesions on CT as benign.
Collapse
Affiliation(s)
- D R Ludwig
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Y Thacker
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - C Luo
- Division of Public Health Sciences, Washington University School of Medicine, Saint Louis, MO, USA
| | - A Narra
- St George's University School of Medicine, Grenada, West Indies
| | - A J Mintz
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - C L Siegel
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
6
|
Lee K, Goh J, Jang J, Hwang J, Kwak J, Kim J, Eom K. Feasibility study of computed tomography texture analysis for evaluation of canine primary adrenal gland tumors. Front Vet Sci 2023; 10:1126165. [PMID: 37711438 PMCID: PMC10499047 DOI: 10.3389/fvets.2023.1126165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 08/01/2023] [Indexed: 09/16/2023] Open
Abstract
Objective This study aimed to investigate the feasibility of computed tomography (CT) texture analysis for distinguishing canine adrenal gland tumors and its usefulness in clinical decision-making. Materials and methods The medical records of 25 dogs with primary adrenal masses who underwent contrast CT and a histopathological examination were retrospectively reviewed, of which 12 had adenomas (AAs), 7 had adenocarcinomas (ACCs), and 6 had pheochromocytomas (PHEOs). Conventional CT evaluation of each adrenal gland tumor included the mean, maximum, and minimum attenuation values in Hounsfield units (HU), heterogeneity of the tumor parenchyma, and contrast enhancement (type, pattern, and degree), respectively, in each phase. In CT texture analysis, precontrast and delayed-phase images of 18 adrenal gland tumors, which could be applied for ComBat harmonization were used, and 93 radiomic features (18 first-order and 75 second-order statistics) were extracted. Then, ComBat harmonization was applied to compensate for the batch effect created by the different CT protocols. The area under the receiver operating characteristic curve (AUC) for each significant feature was used to evaluate the diagnostic performance of CT texture analysis. Results Among the conventional features, PHEO showed significantly higher mean and maximum precontrast HU values than ACC (p < 0.05). Eight second-order features on the precontrast images showed significant differences between the adrenal gland tumors (p < 0.05). However, none of them were significantly different between AA and PHEO, or between precontrast images and delayed-phase images. This result indicates that ACC exhibited more heterogeneous and complex textures and more variable intensities with lower gray-level values than AA and PHEO. The correlation, maximal correlation coefficient, and gray level non-uniformity normalized were significantly different between AA and ACC, and between ACC and PHEO. These features showed high AUCs in discriminating ACC and PHEO, which were comparable or higher than the precontrast mean and maximum HU (AUC = 0.865 and 0.860, respectively). Conclusion Canine primary adrenal gland tumor differentiation can be achieved with CT texture analysis on precontrast images and may have a potential role in clinical decision-making. Further prospective studies with larger populations and cross-validation are warranted.
Collapse
Affiliation(s)
- Kyungsoo Lee
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Jinhyong Goh
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Jaeyoung Jang
- Jang Jae Young Veterinary Surgery Center, Seong-nam, Gyunggi-do, Republic of Korea
| | | | - Jungmin Kwak
- Saram and Animal Medical Center, Yongin-si, Gyunggi-do, Republic of Korea
| | - Jaehwan Kim
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Kidong Eom
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Kocak B, Yardimci AH, Nazli MA, Yuzkan S, Mutlu S, Guzelbey T, Sam Ozdemir M, Akin M, Yucel S, Bulut E, Bayrak ON, Okumus AA. REliability of consensus-based segMentatIoN in raDiomic feature reproducibility (REMIND): A word of caution. Eur J Radiol 2023; 165:110893. [PMID: 37285646 DOI: 10.1016/j.ejrad.2023.110893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/01/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To evaluate the reliability of consensus-based segmentation in terms of reproducibility of radiomic features. METHODS In this retrospective study, three tumor data sets were investigated: breast cancer (n = 30), renal cell carcinoma (n = 30), and pituitary macroadenoma (n = 30). MRI was utilized for breast and pituitary data sets, while CT was used for renal data set. 12 readers participated in the segmentation process. Consensus segmentation was created by making corrections on a previous region or volume of interest. Four experiments were designed to evaluate the reproducibility of radiomic features. Reliability was assessed with intraclass correlation coefficient (ICC) with two cut-off values: 0.75 and 0.9. RESULTS Considering the lower bound of the 95% confidence interval and the ICC threshold of 0.90, at least 61% of the radiomic features were not reproducible in the inter-consensus analysis. In the susceptibility experiment, at least half (54%) became non-reproducible when the first reader is replaced with a different reader. In the intra-consensus analysis, at least about one-third (32%) were non-reproducible when the same second reader segmented the image over the same first reader two weeks later. Compared to inter-reader analysis based on independent single readers, the inter-consensus analysis did not statistically significantly improve the rates of reproducible features in all data sets and analyses. CONCLUSIONS Despite the positive connotation of the word "consensus", it is essential to REMIND that consensus-based segmentation has significant reproducibility issues. Therefore, the usage of consensus-based segmentation alone should be avoided unless a reliability analysis is performed, even if it is not practical in clinical settings.
Collapse
Affiliation(s)
- Burak Kocak
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey.
| | - Aytul Hande Yardimci
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Mehmet Ali Nazli
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Sabahattin Yuzkan
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Samet Mutlu
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Tevfik Guzelbey
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Merve Sam Ozdemir
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Meliha Akin
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Serap Yucel
- Department of Radiology, Baskent University, Istanbul Hospital, Istanbul, Turkey
| | - Elif Bulut
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Osman Nuri Bayrak
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Ahmet Arda Okumus
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| |
Collapse
|
8
|
Huang C, Chopra S, Bolan CW, Chandarana H, Harfouch N, Hecht EM, Lo GC, Megibow AJ. Pancreatic Cystic Lesions: Next Generation of Radiologic Assessment. Gastrointest Endosc Clin N Am 2023; 33:533-546. [PMID: 37245934 DOI: 10.1016/j.giec.2023.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Pancreatic cystic lesions are frequently identified on cross-sectional imaging. As many of these are presumed branch-duct intraductal papillary mucinous neoplasms, these lesions generate much anxiety for the patients and clinicians, often necessitating long-term follow-up imaging and even unnecessary surgical resections. However, the incidence of pancreatic cancer is overall low for patients with incidental pancreatic cystic lesions. Radiomics and deep learning are advanced tools of imaging analysis that have attracted much attention in addressing this unmet need, however, current publications on this topic show limited success and large-scale research is needed.
Collapse
Affiliation(s)
- Chenchan Huang
- Department of Radiology, NYU Grossman School of Medicine, 660 1st Avenue, 3F, New York, NY 10016, USA.
| | - Sumit Chopra
- Department of Radiology, NYU Grossman School of Medicine, 650 First Avenue, 4th Floor, New York, NY 10016, USA
| | - Candice W Bolan
- Department of Radiology, Mayo Clinic in Florida, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| | - Hersh Chandarana
- Department of Radiology, NYU Grossman School of Medicine, 660 1st Avenue, 3F, New York, NY 10016, USA
| | - Nassier Harfouch
- Department of Radiology, NYU Grossman School of Medicine, 660 1st Avenue, 3F, New York, NY 10016, USA
| | - Elizabeth M Hecht
- Department of Radiology, New York Presbyterian - Weill Cornell Medicine, 520 East 70th Street, Starr 8a, New York, NY 10021, USA
| | - Grace C Lo
- Department of Radiology, New York Presbyterian - Weill Cornell Medicine, 520 East 70th Street, Starr 7a, New York, NY 10021, USA
| | - Alec J Megibow
- Department of Radiology, NYU Grossman School of Medicine, 660 1st Avenue, 3F, New York, NY 10016, USA
| |
Collapse
|
9
|
Adelsmayr G, Janisch M, Müller H, Holzinger A, Talakic E, Janek E, Streit S, Fuchsjäger M, Schöllnast H. Three dimensional computed tomography texture analysis of pulmonary lesions: Does radiomics allow differentiation between carcinoma, neuroendocrine tumor and organizing pneumonia? Eur J Radiol 2023; 165:110931. [PMID: 37399666 DOI: 10.1016/j.ejrad.2023.110931] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/22/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023]
Abstract
PURPOSE To investigate whether CT texture analysis allows differentiation between adenocarcinomas, squamous cell carcinomas, carcinoids, small cell lung cancers and organizing pneumonia and between carcinomas and neuroendocrine tumors. METHOD This retrospective study included patients 133 patients (30 patients with organizing pneumonia, 30 patients with adenocarcinoma, 30 patients with squamous cell carcinoma, 23 patients with small cell lung cancer, 20 patients with carcinoid), who underwent CT-guided biopsy of the lung and had a corresponding histopathologic diagnosis. Pulmonary lesions were segmented in consensus by two radiologists with and without a threshold of -50HU in three dimensions. Groupwise comparisons were performed to assess for differences between all five above-listed entities and between carcinomas and neuroendocrine tumors. RESULTS Pairwise comparisons of the five entities revealed 53 statistically significant texture features when using no HU-threshold and 6 statistically significant features with a threshold of -50HU. The largest AUC (0.818 [95%CI 0.706-0.930]) was found for the feature wavelet-HHH_glszm_SmallAreaEmphasis for discrimination of carcinoid from the other entities when using no HU-threshold. In differentiating neuroendocrine tumors from carcinomas, 173 parameters proved statistically significant when using no HU threshold versus 52 parameters when using a -50HU-threshold. The largest AUC (0.810 [95%CI 0.728-0,893]) was found for the parameter original_glcm_Correlation for discrimination of neuroendocrine tumors from carcinomas when using no HU-threshold. CONCLUSIONS CT texture analysis revealed features that differed significantly between malignant pulmonary lesions and organizing pneumonia and between carcinomas and neuroendocrine tumors of the lung. Applying a HU-threshold for segmentation substantially influenced the results of texture analysis.
Collapse
Affiliation(s)
- Gabriel Adelsmayr
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036 Graz, Austria
| | - Michael Janisch
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036 Graz, Austria
| | - Heimo Müller
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Andreas Holzinger
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Auenbruggerplatz 2/9/V, 8036 Graz, Austria
| | - Emina Talakic
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036 Graz, Austria
| | - Elmar Janek
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036 Graz, Austria
| | - Simon Streit
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Michael Fuchsjäger
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036 Graz, Austria.
| | - Helmut Schöllnast
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036 Graz, Austria; Institute of Radiology, LKH Graz II, Göstinger Strasse 22, 8020 Graz, Austria
| |
Collapse
|
10
|
Sun P, Mo Z, Hu F, Song X, Mo T, Yu B, Zhang Y, Chen Z. 2.5D MFFAU-Net: a convolutional neural network for kidney segmentation. BMC Med Inform Decis Mak 2023; 23:92. [PMID: 37165349 PMCID: PMC10173575 DOI: 10.1186/s12911-023-02189-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 05/04/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Kidney tumors have become increasingly prevalent among adults and are now considered one of the most common types of tumors. Accurate segmentation of kidney tumors can help physicians assess tumor complexity and aggressiveness before surgery. However, segmenting kidney tumors manually can be difficult because of their heterogeneity. METHODS This paper proposes a 2.5D MFFAU-Net (multi-level Feature Fusion Attention U-Net) to segment kidneys, tumors and cysts. First, we propose a 2.5D model for learning to combine and represent a given slice in 2D slices, thereby introducing 3D information to balance memory consumption and model complexity. Then, we propose a ResConv architecture in MFFAU-Net and use the high-level and low-level feature in the model. Finally, we use multi-level information to analyze the spatial features between slices to segment kidneys and tumors. RESULTS The 2.5D MFFAU-Net was evaluated on KiTS19 and KiTS21 kidney datasets and demonstrated an average dice score of 0.924 and 0.875, respectively, and an average Surface dice (SD) score of 0.794 in KiTS21. CONCLUSION The 2.5D MFFAU-Net model can effectively segment kidney tumors, and the results are comparable to those obtained with high-performance 3D CNN models, and have the potential to serve as a point of reference in clinical practice.
Collapse
Affiliation(s)
- Peng Sun
- School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Fangrong Hu
- School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, China
| | - Xin Song
- School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, China
| | - Taiping Mo
- School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, China
| | - Bonan Yu
- School of Architecture and Transportation Engineering, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, China.
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhencheng Chen
- School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, China.
| |
Collapse
|
11
|
Sudjai N, Siriwanarangsun P, Lektrakul N, Saiviroonporn P, Maungsomboon S, Phimolsarnti R, Asavamongkolkul A, Chandhanayingyong C. Tumor-to-bone distance and radiomic features on MRI distinguish intramuscular lipomas from well-differentiated liposarcomas. J Orthop Surg Res 2023; 18:255. [PMID: 36978182 PMCID: PMC10044811 DOI: 10.1186/s13018-023-03718-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Background To develop a machine learning model based on tumor-to-bone distance and radiomic features derived from preoperative MRI images to distinguish intramuscular (IM) lipomas and atypical lipomatous tumors/well-differentiated liposarcomas (ALTs/WDLSs) and compared with radiologists. Methods The study included patients with IM lipomas and ALTs/WDLSs diagnosed between 2010 and 2022, and with MRI scans (sequence/field strength: T1-weighted (T1W) imaging at 1.5 or 3.0 Tesla MRI). Manual segmentation of tumors based on the three-dimensional T1W images was performed by two observers to appraise the intra- and interobserver variability. After radiomic features and tumor-to-bone distance were extracted, it was used to train a machine learning model to distinguish IM lipomas and ALTs/WDLSs. Both feature selection and classification steps were performed using Least Absolute Shrinkage and Selection Operator logistic regression. The performance of the classification model was assessed using a tenfold cross-validation strategy and subsequently evaluated using the receiver operating characteristic curve (ROC) analysis. The classification agreement of two experienced musculoskeletal (MSK) radiologists was assessed using the kappa statistics. The diagnosis accuracy of each radiologist was evaluated using the final pathological results as the gold standard. Additionally, we compared the performance of the model and two radiologists in terms of the area under the receiver operator characteristic curves (AUCs) using the Delong’s test. Results There were 68 tumors (38 IM lipomas and 30 ALTs/WDLSs). The AUC of the machine learning model was 0.88 [95% CI 0.72–1] (sensitivity, 91.6%; specificity, 85.7%; and accuracy, 89.0%). For Radiologist 1, the AUC was 0.94 [95% CI 0.87–1] (sensitivity, 97.4%; specificity, 90.9%; and accuracy, 95.0%), and as to Radiologist 2, the AUC was 0.91 [95% CI 0.83–0.99] (sensitivity, 100%; specificity, 81.8%; and accuracy, 93.3%). The classification agreement of the radiologists was 0.89 of kappa value (95% CI 0.76–1). Although the AUC of the model was lower than of two experienced MSK radiologists, there was no statistically significant difference between the model and two radiologists (all P > 0.05). Conclusions The novel machine learning model based on tumor-to-bone distance and radiomic features is a noninvasive procedure that has the potential for distinguishing IM lipomas from ALTs/WDLSs. The predictive features that suggested malignancy were size, shape, depth, texture, histogram, and tumor-to-bone distance. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-023-03718-4.
Collapse
Affiliation(s)
- Narumol Sudjai
- grid.10223.320000 0004 1937 0490Department of Orthopaedic Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700 Thailand
| | - Palanan Siriwanarangsun
- grid.10223.320000 0004 1937 0490Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700 Thailand
| | - Nittaya Lektrakul
- grid.10223.320000 0004 1937 0490Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700 Thailand
| | - Pairash Saiviroonporn
- grid.10223.320000 0004 1937 0490Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700 Thailand
| | - Sorranart Maungsomboon
- grid.10223.320000 0004 1937 0490Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700 Thailand
| | - Rapin Phimolsarnti
- grid.10223.320000 0004 1937 0490Department of Orthopaedic Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700 Thailand
| | - Apichat Asavamongkolkul
- grid.10223.320000 0004 1937 0490Department of Orthopaedic Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700 Thailand
| | - Chandhanarat Chandhanayingyong
- grid.10223.320000 0004 1937 0490Department of Orthopaedic Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700 Thailand
| |
Collapse
|
12
|
Adelsmayr G, Janisch M, Kaufmann-Bühler AK, Holter M, Talakic E, Janek E, Holzinger A, Fuchsjäger M, Schöllnast H. CT texture analysis reliability in pulmonary lesions: the influence of 3D vs. 2D lesion segmentation and volume definition by a Hounsfield-unit threshold. Eur Radiol 2023; 33:3064-3071. [PMID: 36947188 PMCID: PMC10121537 DOI: 10.1007/s00330-023-09500-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/14/2022] [Accepted: 01/25/2023] [Indexed: 03/23/2023]
Abstract
OBJECTIVE Reproducibility problems are a known limitation of radiomics. The segmentation of the target lesion plays a critical role in texture analysis variability. This study's aim was to compare the interobserver reliability of manual 2D vs. 3D lung lesion segmentation with and without pre-definition of the volume using a threshold of - 50 HU. METHODS Seventy-five patients with histopathologically proven lung lesions (15 patients each with adenocarcinoma, squamous cell carcinoma, small cell lung cancer, carcinoid, and organizing pneumonia) who underwent an unenhanced CT scan of the chest were included. Three radiologists independently segmented each lesion manually in 3D and 2D with and without pre-segmentation volume definition by a HU threshold, and shape parameters and original, Laplacian of Gaussian-filtered, and wavelet-based texture features were derived. To assess interobserver reliability and identify the most robust texture features, intraclass correlation coefficients (ICCs) for different segmentation settings were calculated. RESULTS Shape parameters had high reliability (64-79% had excellent and good ICCs). Texture features had weak reliability levels, with the highest ICCs (38% excellent or good) found for original features in 3D segmentation without the use of a HU threshold. A small proportion (4.3-11.5%) of texture features had excellent or good ICC values at all segmentation settings. CONCLUSION Interobserver reliability of texture features from CT scans of a heterogeneous collection of manually segmented lung lesions was low with a small proportion of features demonstrating high reliability independent of the segmentation settings. These results indicate a limited applicability of texture analysis and the need to define robust texture features in patients with lung lesions. KEY POINTS • Our study showed a low reproducibility of texture features when 3 radiologists independently segmented lung lesions in CT images, which highlights a serious limitation of texture analysis. • Interobserver reliability of texture features was low regardless of whether the lesion was segmented in 2D and 3D with or without a HU threshold. • In contrast to texture features, shape parameters showed a high interobserver reliability when lesions were segmented in 2D vs. 3D with and without a HU threshold of - 50.
Collapse
Affiliation(s)
- Gabriel Adelsmayr
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036, Graz, Austria
| | - Michael Janisch
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036, Graz, Austria
| | - Ann-Katrin Kaufmann-Bühler
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036, Graz, Austria
| | - Magdalena Holter
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Auenbruggerplatz 2/9/V, 8036, Graz, Austria
| | - Emina Talakic
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036, Graz, Austria
| | - Elmar Janek
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036, Graz, Austria
| | - Andreas Holzinger
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Auenbruggerplatz 2/9/V, 8036, Graz, Austria
| | - Michael Fuchsjäger
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036, Graz, Austria.
| | - Helmut Schöllnast
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036, Graz, Austria
- Institute of Radiology, LKH Graz II, Göstinger Strasse 22, 8020, Graz, Austria
| |
Collapse
|
13
|
Robustness of Radiomic Features: Two-Dimensional versus Three-Dimensional MRI-Based Feature Reproducibility in Lipomatous Soft-Tissue Tumors. Diagnostics (Basel) 2023; 13:diagnostics13020258. [PMID: 36673068 PMCID: PMC9858448 DOI: 10.3390/diagnostics13020258] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/10/2022] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
This retrospective study aimed to compare the intra- and inter-observer manual-segmentation variability in the feature reproducibility between two-dimensional (2D) and three-dimensional (3D) magnetic-resonance imaging (MRI)-based radiomic features. The study included patients with lipomatous soft-tissue tumors that were diagnosed with histopathology and underwent MRI scans. Tumor segmentation based on the 2D and 3D MRI images was performed by two observers to assess the intra- and inter-observer variability. In both the 2D and the 3D segmentations, the radiomic features were extracted from the normalized images. Regarding the stability of the features, the intraclass correlation coefficient (ICC) was used to evaluate the intra- and inter-observer segmentation variability. Features with ICC > 0.75 were considered reproducible. The degree of feature robustness was classified as low, moderate, or high. Additionally, we compared the efficacy of 2D and 3D contour-focused segmentation in terms of the effects of the stable feature rate, sensitivity, specificity, and diagnostic accuracy of machine learning on the reproducible features. In total, 93 and 107 features were extracted from the 2D and 3D images, respectively. Only 35 features from the 2D images and 63 features from the 3D images were reproducible. The stable feature rate for the 3D segmentation was more significant than for the 2D segmentation (58.9% vs. 37.6%, p = 0.002). The majority of the features for the 3D segmentation had moderate-to-high robustness, while 40.9% of the features for the 2D segmentation had low robustness. The diagnostic accuracy of the machine-learning model for the 2D segmentation was close to that for the 3D segmentation (88% vs. 90%). In both the 2D and the 3D segmentation, the specificity values were equal to 100%. However, the sensitivity for the 2D segmentation was lower than for the 3D segmentation (75% vs. 83%). For the 2D + 3D radiomic features, the model achieved a diagnostic accuracy of 87% (sensitivity, 100%, and specificity, 80%). Both 2D and 3D MRI-based radiomic features of lipomatous soft-tissue tumors are reproducible. With a higher stable feature rate, 3D contour-focused segmentation should be selected for the feature-extraction process.
Collapse
|
14
|
Gitto S, Corino VDA, Annovazzi A, Milazzo Machado E, Bologna M, Marzorati L, Albano D, Messina C, Serpi F, Anelli V, Ferraresi V, Zoccali C, Aliprandi A, Parafioriti A, Luzzati A, Biagini R, Mainardi L, Sconfienza LM. 3D vs. 2D MRI radiomics in skeletal Ewing sarcoma: Feature reproducibility and preliminary machine learning analysis on neoadjuvant chemotherapy response prediction. Front Oncol 2022; 12:1016123. [PMID: 36531029 PMCID: PMC9755864 DOI: 10.3389/fonc.2022.1016123] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/17/2022] [Indexed: 07/29/2023] Open
Abstract
OBJECTIVE The extent of response to neoadjuvant chemotherapy predicts survival in Ewing sarcoma. This study focuses on MRI radiomics of skeletal Ewing sarcoma and aims to investigate feature reproducibility and machine learning prediction of response to neoadjuvant chemotherapy. MATERIALS AND METHODS This retrospective study included thirty patients with biopsy-proven skeletal Ewing sarcoma, who were treated with neoadjuvant chemotherapy before surgery at two tertiary sarcoma centres. 7 patients were poor responders and 23 were good responders based on pathological assessment of the surgical specimen. On pre-treatment T1-weighted and T2-weighted MRI, 2D and 3D tumour segmentations were manually performed. Features were extracted from original and wavelet-transformed images. Feature reproducibility was assessed through small geometrical transformations of the regions of interest mimicking multiple manual delineations, and intraclass correlation coefficient >0.75 defined feature reproducibility. Feature selection also consisted of collinearity and significance analysis. After class balancing in the training cohort, three machine learning classifiers were trained and tested on unseen data using hold-out cross-validation. RESULTS 1303 (77%) 3D and 620 (65%) 2D radiomic features were reproducible. 4 3D and 4 2D features passed feature selection. Logistic regression built upon 3D features achieved the best performance with 85% accuracy (AUC=0.9) in predicting response to neoadjuvant chemotherapy. CONCLUSION Compared to 2D approach, 3D MRI radiomics of Ewing sarcoma had superior reproducibility and higher accuracy in predicting response to neoadjuvant chemotherapy, particularly when using logistic regression classifier.
Collapse
Affiliation(s)
- Salvatore Gitto
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Valentina D. A. Corino
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico Di Milano, Milan, Italy
- Cardiotech Lab, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Alessio Annovazzi
- Nuclear Medicine Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Marco Bologna
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico Di Milano, Milan, Italy
| | - Lorenzo Marzorati
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico Di Milano, Milan, Italy
| | | | - Carmelo Messina
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Francesca Serpi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Vincenzo Anelli
- Radiology and Diagnostic Imaging Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Virginia Ferraresi
- Sarcomas and Rare Tumours Departmental Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Carmine Zoccali
- Department of Anatomical, Histological, Forensic and Musculoskeletal System Sciences, Sapienza University of Rome, Rome, Italy
- Oncological Orthopaedics Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | | | | | - Roberto Biagini
- Oncological Orthopaedics Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Luca Mainardi
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico Di Milano, Milan, Italy
| | - Luca Maria Sconfienza
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
15
|
Mehta P, Sinha S, Kashid S, Chakraborty D, Mhatre R, Murthy V. Exploring Texture Analysis to Optimize Bladder Preservation in Muscle Invasive Bladder Cancer. Clin Genitourin Cancer 2022; 21:e138-e144. [PMID: 36628695 DOI: 10.1016/j.clgc.2022.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
Abstract
PURPOSE To explore if texture analysis of Muscle Invasive Bladder Cancer (MIBC) can aid in better patient selection for bladder preservation. METHODS Pretreatment noncontrast CT images of 41 patients of MIBC treated with bladder preservation were included. The visible tumor was contoured on all slices by a single observer. The primary endpoint was to identify texture parameters associated with disease recurrence posttreatment. The secondary endpoints included intra and interobserver variability, single and multislice analysis, and differentiating the texture features of normal bladder and tumor. For interobserver variability of bladder tumor texture features, 3 observers contoured the visible tumor on all slices independently. Observer 1 contoured again at an interval of 1 month for intraobserver variability. RESULTS The median follow-up was 30 months with 12 patients having a recurrence. In the primary endpoint analysis, the mean of the pixels at Spatial Scaling Filter (SSF) 2 for the no recurrence group and recurrence group was 6.44 v 13.73 respectively (P = .031) and the same at SSF-3 was 11.95 and 22.32 respectively (P = .034). The texture features that could significantly differentiate tumor and normal bladder were mean, standard deviation and kurtosis of the pixels at SSF-2 and entropy and kurtosis of the pixels at SSF-3. Overall, there was an excellent intra and interobserver concordance in texture features. Only multislice analysis and not single-slice could differentiate recurrence and no recurrence posttreatment. CONCLUSIONS Texture analysis can be explored as a modality for patient selection for bladder preservation along with the established clinical parameters to improve outcomes.
Collapse
Affiliation(s)
- Prachi Mehta
- Department of Radiation Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Shwetabh Sinha
- Department of Radiation Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Sheetal Kashid
- Department of Radiation Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Debanjan Chakraborty
- Department of Radiation Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Ritesh Mhatre
- Department of Medical Physics, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Vedang Murthy
- Department of Radiation Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
16
|
Alnazer I, Falou O, Bourdon P, Urruty T, Guillevin R, Khalil M, Shahin A, Fernandez-Maloigne C. Usefulness of computed tomography textural analysis in renal cell carcinoma nuclear grading. J Med Imaging (Bellingham) 2022; 9:054501. [PMID: 36120414 PMCID: PMC9467905 DOI: 10.1117/1.jmi.9.5.054501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/24/2022] [Indexed: 09/15/2023] Open
Abstract
Purpose: To evaluate the usefulness of computed tomography (CT) texture descriptors integrated with machine-learning (ML) models in the identification of clear cell renal cell carcinoma (ccRCC) and for the first time papillary renal cell carcinoma (pRCC) tumor nuclear grades [World Health Organization (WHO)/International Society of Urologic Pathologists (ISUP) 1, 2, 3, and 4]. Approach: A total of 143 ccRCC and 21 pRCC patients were analyzed in this study. Texture features were extracted from late arterial phase CT images. A complete separation of training/validation and testing subsets from the beginning to the end of the pipeline was adopted. Feature dimension was reduced by collinearity analysis and Gini impurity-based feature selection. The synthetic minority over-sampling technique was employed for imbalanced datasets. The ML classifiers were logistic regression, SVM, RF, multi-layer perceptron, and K -NN. The differentiation between low grades/ high grades, grade 1/grade 2, grade 3/grade 4, and between all grades was assessed for ccRCC and pRCC datasets. The classification performance was assessed and compared by certain metrics. Results: Textures-based classifiers were able to efficiently identify ccRCC and pRCC grades. An accuracy and area under the characteristic operating curve (AUC) up to 91%/0.9, 91%/0.9, 90%/0.9, and 88%/1 were reached when discriminating ccRCC low grades/ high grades, grade 1/grade 2, grade 3/grade 4, and all grades, respectively. An accuracy and AUC up to 96%/1, 81%/0.8, 86%/0.9, and 88%/0.9 were found when differentiating pRCC low grades/ high grades, grade 1/grade 2, grade 3/grade 4, and all grades, respectively. Conclusion: CT texture-based ML models can be used to assist radiologist in predicting the WHO/ISUP grade of ccRCC and pRCC pre-operatively.
Collapse
Affiliation(s)
- Israa Alnazer
- Université de Poitiers, XLIM-ICONES, UMR CNRS 7252, Poitiers, France
- Laboratoire commun CNRS/SIEMENS I3M, Poitiers, France
- Lebanese University, AZM Center for Research in Biotechnology and Its Applications, EDST, Tripoli, Lebanon
| | - Omar Falou
- Lebanese University, AZM Center for Research in Biotechnology and Its Applications, EDST, Tripoli, Lebanon
- American University of Culture and Education, Koura, Lebanon
- Lebanese University, Faculty of Science, Tripoli, Lebanon
- Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Pascal Bourdon
- Université de Poitiers, XLIM-ICONES, UMR CNRS 7252, Poitiers, France
- Laboratoire commun CNRS/SIEMENS I3M, Poitiers, France
| | - Thierry Urruty
- Université de Poitiers, XLIM-ICONES, UMR CNRS 7252, Poitiers, France
- Laboratoire commun CNRS/SIEMENS I3M, Poitiers, France
| | - Rémy Guillevin
- Laboratoire commun CNRS/SIEMENS I3M, Poitiers, France
- Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Mohamad Khalil
- Lebanese University, AZM Center for Research in Biotechnology and Its Applications, EDST, Tripoli, Lebanon
| | - Ahmad Shahin
- Lebanese University, AZM Center for Research in Biotechnology and Its Applications, EDST, Tripoli, Lebanon
| | - Christine Fernandez-Maloigne
- Université de Poitiers, XLIM-ICONES, UMR CNRS 7252, Poitiers, France
- Laboratoire commun CNRS/SIEMENS I3M, Poitiers, France
| |
Collapse
|
17
|
Lafata KJ, Wang Y, Konkel B, Yin FF, Bashir MR. Radiomics: a primer on high-throughput image phenotyping. Abdom Radiol (NY) 2022; 47:2986-3002. [PMID: 34435228 DOI: 10.1007/s00261-021-03254-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 01/18/2023]
Abstract
Radiomics is a high-throughput approach to image phenotyping. It uses computer algorithms to extract and analyze a large number of quantitative features from radiological images. These radiomic features collectively describe unique patterns that can serve as digital fingerprints of disease. They may also capture imaging characteristics that are difficult or impossible to characterize by the human eye. The rapid development of this field is motivated by systems biology, facilitated by data analytics, and powered by artificial intelligence. Here, as part of Abdominal Radiology's special issue on Quantitative Imaging, we provide an introduction to the field of radiomics. The technique is formally introduced as an advanced application of data analytics, with illustrating examples in abdominal radiology. Artificial intelligence is then presented as the main driving force of radiomics, and common techniques are defined and briefly compared. The complete step-by-step process of radiomic phenotyping is then broken down into five key phases. Potential pitfalls of each phase are highlighted, and recommendations are provided to reduce sources of variation, non-reproducibility, and error associated with radiomics.
Collapse
Affiliation(s)
- Kyle J Lafata
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA. .,Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, USA. .,Department of Electrical & Computer Engineering, Duke University Pratt School of Engineering, Durham, NC, USA.
| | - Yuqi Wang
- Department of Electrical & Computer Engineering, Duke University Pratt School of Engineering, Durham, NC, USA
| | - Brandon Konkel
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Fang-Fang Yin
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, USA
| | - Mustafa R Bashir
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA.,Department of Medicine, Gastroenterology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
18
|
Li J, Zhang T, Ma J, Zhang N, Zhang Z, Ye Z. Machine-learning-based contrast-enhanced computed tomography radiomic analysis for categorization of ovarian tumors. Front Oncol 2022; 12:934735. [PMID: 36016613 PMCID: PMC9395674 DOI: 10.3389/fonc.2022.934735] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivesThis study aims to evaluate the diagnostic performance of machine-learning-based contrast-enhanced CT radiomic analysis for categorizing benign and malignant ovarian tumors.MethodsA total of 1,329 patients with ovarian tumors were randomly divided into a training cohort (N=930) and a validation cohort (N=399). All tumors were resected, and pathological findings were confirmed. Radiomic features were extracted from the portal venous phase images of contrast-enhanced CT. The clinical predictors included age, CA-125, HE-4, ascites, and margin of tumor. Both radiomics model (including selected radiomic features) and mixed model (incorporating selected radiomic features and clinical predictors) were constructed respectively. Six classifiers [k-nearest neighbor (KNN), support vector machines (SVM), random forest (RF), logistic regression (LR), multi-layer perceptron (MLP), and eXtreme Gradient Boosting (XGBoost)] were used for each model. The mean relative standard deviation (RSD) and area under the receiver operating characteristic curve (AUC) were applied to evaluate and select the best classifiers. Then, the performances of the two models with selected classifiers were assessed in the validation cohort.ResultsThe MLP classifier with the least RSD (1.21 and 0.53, respectively) was selected as the best classifier in both radiomics and mixed models. The two models with MLP classifier performed well in the validation cohort, with the AUCs of 0.91 and 0.96 and with accuracies (ACCs) of 0.83 and 0.87, respectively. The Delong test showed that the AUC of mixed model was statistically different from that of radiomics model (p<0.001).ConclusionsMachine-learning-based CT radiomic analysis could categorize ovarian tumors with good performance preoperatively. The mixed model with MLP classifier may be a potential tool in clinical applications.
Collapse
Affiliation(s)
- Jiaojiao Li
- Department of Radiology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Radiology, First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Tianzhu Zhang
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Juanwei Ma
- Department of Radiology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ningnannan Zhang
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhang Zhang
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Zhaoxiang Ye, ; Zhang Zhang,
| | - Zhaoxiang Ye
- Department of Radiology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- *Correspondence: Zhaoxiang Ye, ; Zhang Zhang,
| |
Collapse
|
19
|
Performance of CT radiomics in predicting the overall survival of patients with stage III clear cell renal carcinoma after radical nephrectomy. Radiol Med 2022; 127:837-847. [DOI: 10.1007/s11547-022-01526-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/04/2022] [Indexed: 10/17/2022]
|
20
|
Naseri H, Skamene S, Tolba M, Faye MD, Ramia P, Khriguian J, Patrick H, Andrade Hernandez AX, David M, Kildea J. Radiomics-based machine learning models to distinguish between metastatic and healthy bone using lesion-center-based geometric regions of interest. Sci Rep 2022; 12:9866. [PMID: 35701461 PMCID: PMC9198102 DOI: 10.1038/s41598-022-13379-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/24/2022] [Indexed: 12/17/2022] Open
Abstract
Radiomics-based machine learning classifiers have shown potential for detecting bone metastases (BM) and for evaluating BM response to radiotherapy (RT). However, current radiomics models require large datasets of images with expert-segmented 3D regions of interest (ROIs). Full ROI segmentation is time consuming and oncologists often outline just RT treatment fields in clinical practice. This presents a challenge for real-world radiomics research. As such, a method that simplifies BM identification but does not compromise the power of radiomics is needed. The objective of this study was to investigate the feasibility of radiomics models for BM detection using lesion-center-based geometric ROIs. The planning-CT images of 170 patients with non-metastatic lung cancer and 189 patients with spinal BM were used. The point locations of 631 BM and 674 healthy bone (HB) regions were identified by experts. ROIs with various geometric shapes were centered and automatically delineated on the identified locations, and 107 radiomics features were extracted. Various feature selection methods and machine learning classifiers were evaluated. Our point-based radiomics pipeline was successful in differentiating BM from HB. Lesion-center-based segmentation approach greatly simplifies the process of preparing images for use in radiomics studies and avoids the bottleneck of full ROI segmentation.
Collapse
Affiliation(s)
- Hossein Naseri
- Medical Physics Unit, McGill University, Montreal, QC, Canada.
| | - Sonia Skamene
- Department of Radiation Oncology, McGill University Health Center (MUHC), Montreal, QC, Canada
| | - Marwan Tolba
- Department of Radiation Oncology, McGill University Health Center (MUHC), Montreal, QC, Canada
| | - Mame Daro Faye
- Department of Radiation Oncology, McGill University Health Center (MUHC), Montreal, QC, Canada
| | - Paul Ramia
- Department of Radiation Oncology, McGill University Health Center (MUHC), Montreal, QC, Canada
| | - Julia Khriguian
- Department of Radiation Oncology, McGill University Health Center (MUHC), Montreal, QC, Canada
| | - Haley Patrick
- Medical Physics Unit, McGill University, Montreal, QC, Canada
| | | | - Marc David
- Department of Radiation Oncology, McGill University Health Center (MUHC), Montreal, QC, Canada
| | - John Kildea
- Medical Physics Unit, McGill University, Montreal, QC, Canada
| |
Collapse
|
21
|
Doillon M, Durot C, Pluchart C, Marcus C, Djelouah M, Carsin-Vu A. Response to Induction Therapy in Pediatric Hodgkin's Lymphoma: Performance of First-Order Texture Parameters of CT Images. J Belg Soc Radiol 2022; 106:46. [PMID: 35647484 PMCID: PMC9104423 DOI: 10.5334/jbsr.2752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/22/2022] [Indexed: 11/20/2022] Open
Abstract
Objectives The aim of this study was to examine whether texture analysis features on pretreatment contrast-enhanced CT images could predict adequate response (AR) or inadequate response (IR) after two cycles of chemotherapy in pediatric Hodgkin's lymphoma (PHL). Materials and methods This retrospective single-center study included 32 children and adolescents with HL. Texture analysis was independently performed by two radiologists using pretreatment CT scans. The mean gray level, standard deviation, entropy, kurtosis, and skewness were derived from pixel distribution histograms before and after spatial filtration ranging from two (fine texture) to six (coarse texture). Interobserver reliability was studied using interobserver correlation coefficients (ICCs) to select texture parameters. Relationships between early response assessment (ERA) to induction therapy and associated factors were studied using Student's t-tests and a lasso penalized logistic regression analysis. Results Of the 32 patients, IR was observed in 13 and AR in 19. Inter-reader agreement was good to excellent (ICC > 0.75) for all parameters except skewness and kurtosis without filtration and at spatial scale filtration (SSF) = 2. These parameters were excluded from the analysis. The t-test identified only entropy at SSF = 2 (p value = 0.039) as a potential predictor of ERA. No parameters were significantly associated with ERA, according to a lasso penalized logistic regression. Conclusion No textural parameters were identified as predictors of ERA after two cycles of chemotherapy in PHL.
Collapse
Affiliation(s)
- Margaux Doillon
- Department of Radiology, American Memorial Hospital, 47 rue Cognacq-jay, FR
| | - Carole Durot
- Department of Radiology, American Memorial Hospital, 47 rue Cognacq-jay, FR
| | - Claire Pluchart
- Department of Oncopediatrics, American Memorial Hospital, 47 rue Cognacq-jay, FR
| | - Claude Marcus
- Department of Radiology, American Memorial Hospital, 47 rue Cognac q-jay, FR
| | - Manel Djelouah
- Department of Radiology, American Memorial Hospital, 47 rue Cognacq-jay, FR
| | - Aline Carsin-Vu
- Department of Radiology, American Memorial Hospital, 47 rue Cognacq-jay, FR
| |
Collapse
|
22
|
Utility of a novel integrated deep convolutional neural network for the segmentation of hip joint from computed tomography images in the preoperative planning of total hip arthroplasty. J Orthop Surg Res 2022; 17:164. [PMID: 35292056 PMCID: PMC8922800 DOI: 10.1186/s13018-022-02932-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/10/2022] [Indexed: 11/22/2022] Open
Abstract
Purpose Preoperative three-dimensional planning is important for total hip arthroplasty. To simulate the placement of joint implants on computed tomography (CT), pelvis and femur must be segmented. Accurate and rapid segmentation of the hip joint is challenging. This study aimed to develop a novel deep learning network, named Changmugu Net (CMG Net), which could achieve accurate segmentation of the femur and pelvis.
Methods The overall deep neural network architecture of CMG Net employed three interrelated modules. CMG Net included the 2D U-net to separate the bony and soft tissues. The modular hierarchy method was used for the main femur segmentation to achieve better performance. A layer classifier was adopted to localise femur layers among a series of CT scan images. The first module was a modified 2D U-net, which separated bony and soft tissues; it provided intermediate supervision for the main femur segmentation. The second module was the main femur segmentation, which was used to distinguish the femur from the acetabulum. The third module was the layer classifier, which served as a post-processor for the second module. Results There was a much greater overlap in accuracy results with the “gold standard” segmentation than with competing networks. The dice overlap coefficient was 93.55% ± 5.57%; the mean surface distance was 1.34 ± 0.24 mm, and the Hausdorff distance was 4.19 ± 1.04 mm in the normal and diseased hips, which indicated greater accuracy than the other four competing networks. Moreover, the mean segmentation time of CMG Net was 25.87 ± 2.73 s, which was shorter than the times of the other four networks. Conclusions The prominent segmentation accuracy and run-time of CMG Net suggest that it is a reliable method for clinicians to observe anatomical structures of the hip joints, even in severely diseased cases.
Collapse
|
23
|
Robust Bayesian fusion of continuous segmentation maps. Med Image Anal 2022; 78:102398. [PMID: 35349837 DOI: 10.1016/j.media.2022.102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 01/06/2022] [Accepted: 02/18/2022] [Indexed: 11/20/2022]
Abstract
The fusion of probability maps is required when trying to analyse a collection of image labels or probability maps produced by several segmentation algorithms or human raters. The challenge is to weight the combination of maps correctly, in order to reflect the agreement among raters, the presence of outliers and the spatial uncertainty in the consensus. In this paper, we address several shortcomings of prior work in continuous label fusion. We introduce a novel approach to jointly estimate a reliable consensus map and to assess the presence of outliers and the confidence in each rater. Our robust approach is based on heavy-tailed distributions allowing local estimates of raters performances. In particular, we investigate the Laplace, the Student's t and the generalized double Pareto distributions, and compare them with respect to the classical Gaussian likelihood used in prior works. We unify these distributions into a common tractable inference scheme based on variational calculus and scale mixture representations. Moreover, the introduction of bias and spatial priors leads to proper rater bias estimates and control over the smoothness of the consensus map. Finally, we propose an approach that clusters raters based on variational boosting, and thus may produce several alternative consensus maps. Our approach was successfully tested on MR prostate delineations and on lung nodule segmentations from the LIDC-IDRI dataset.
Collapse
|
24
|
Robustness of CT radiomics features: consistency within and between single-energy CT and dual-energy CT. Eur Radiol 2022; 32:5480-5490. [PMID: 35192011 PMCID: PMC9279234 DOI: 10.1007/s00330-022-08628-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/08/2021] [Accepted: 01/31/2022] [Indexed: 11/23/2022]
Abstract
Objectives To evaluate inter- and intra- scan mode and scanner repeatability and reproducibility of radiomics features within and between single-energy CT (SECT) and dual-energy CT (DECT). Methods A standardized phantom with sixteen rods of clinical-relevant densities was scanned on seven DECT-capable scanners and three SECT-only scanners. The acquisition parameters were selected to present typical abdomen-pelvic examinations with the same voxel size. Images of SECT at 120 kVp and corresponding 120 kVp-like virtual monochromatic images (VMIs) in DECT which were generated according to scanners were analyzed. Regions of interest were drawn with rigid registrations to avoid variations due to segmentation. Radiomics features were extracted via Pyradiomics platform. Test-retest repeatability was evaluated by Bland-Altman analysis for repeated scans. Intra-scanner reproducibility for different scan modes was tested by intraclass correlation coefficient (ICC) and concordance correlation coefficient (CCC). Inter-scanner reproducibility among different scanners for same scan mode was assessed by coefficient of variation (CV) and quartile coefficient of dispersion (QCD). Results The test-retest analysis presented that 92.91% and 87.02% of the 94 assessed features were repeatable for SECT 120kVp and DECT 120 kVp-like VMIs, respectively. The intra-scanner analysis for SECT 120kVp vs DECT 120 kVp-like VMIs demonstrated that 10.76% and 10.28% of features were with ICC > 0.90 and CCC > 0.90, respectively. The inter-scanner analysis showed that 17.09% and 27.73% of features for SECT 120kVp were with CV < 10% and QCD < 10%, and 15.16% and 32.78% for DECT 120 kVp-like VMIs, respectively. Conclusions The majority of radiomics features were non-reproducible within and between SECT and DECT. Key Points • Although the test-retest analysis showed high repeatability for radiomics features, the overall reproducibility of radiomics features within and between SECT and DECT was low. • Only about one-tenth of radiomics features extracted from SECT images and corresponding DECT images did match each other, even their average photon energy levels were considered alike, indicating that the scan mode potentially altered the radiomics features. • Less than one-fifth of radiomics features were reproducible among multiple SECT and DECT scanners, regardless of their fixed acquisition and reconstruction parameters, suggesting the necessity of scanning protocol adjustment and post-scan harmonization process. Supplementary Information The online version contains supplementary material available at 10.1007/s00330-022-08628-3.
Collapse
|
25
|
Xue C, Yuan J, Lo GG, Chang ATY, Poon DMC, Wong OL, Zhou Y, Chu WCW. Radiomics feature reliability assessed by intraclass correlation coefficient: a systematic review. Quant Imaging Med Surg 2021; 11:4431-4460. [PMID: 34603997 DOI: 10.21037/qims-21-86] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022]
Abstract
Radiomics research is rapidly growing in recent years, but more concerns on radiomics reliability are also raised. This review attempts to update and overview the current status of radiomics reliability research in the ever expanding medical literature from the perspective of a single reliability metric of intraclass correlation coefficient (ICC). To conduct this systematic review, Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. After literature search and selection, a total of 481 radiomics studies using CT, PET, or MRI, covering a wide range of subject and disease types, were included for review. In these highly heterogeneous studies, feature reliability to image segmentation was much more investigated than reliability to other factors, such as image acquisition, reconstruction, post-processing, and feature quantification. The reported ICCs also suggested high radiomics feature reliability to image segmentation. Image acquisition was found to introduce much more feature variability than image segmentation, in particular for MRI, based on the reported ICC values. Image post-processing and feature quantification yielded different levels of radiomics reliability and might be used to mitigate image acquisition-induced variability. Some common flaws and pitfalls in ICC use were identified, and suggestions on better ICC use were given. Due to the extremely high study heterogeneities and possible risks of bias, the degree of radiomics feature reliability that has been achieved could not yet be safely synthesized or derived in this review. More future researches on radiomics reliability are warranted.
Collapse
Affiliation(s)
- Cindy Xue
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China.,Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jing Yuan
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Gladys G Lo
- Department of Diagnostic & Interventional Radiology, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Amy T Y Chang
- Comprehensive Oncology Centre, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Darren M C Poon
- Comprehensive Oncology Centre, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Oi Lei Wong
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Yihang Zhou
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Winnie C W Chu
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
26
|
Eck B, Chirra PV, Muchhala A, Hall S, Bera K, Tiwari P, Madabhushi A, Seiberlich N, Viswanath SE. Prospective Evaluation of Repeatability and Robustness of Radiomic Descriptors in Healthy Brain Tissue Regions In Vivo Across Systematic Variations in T2-Weighted Magnetic Resonance Imaging Acquisition Parameters. J Magn Reson Imaging 2021; 54:1009-1021. [PMID: 33860966 PMCID: PMC8376104 DOI: 10.1002/jmri.27635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Radiomic descriptors from magnetic resonance imaging (MRI) are promising for disease diagnosis and characterization but may be sensitive to differences in imaging parameters. OBJECTIVE To evaluate the repeatability and robustness of radiomic descriptors within healthy brain tissue regions on prospectively acquired MRI scans; in a test-retest setting, under controlled systematic variations of MRI acquisition parameters, and after postprocessing. STUDY TYPE Prospective. SUBJECTS Fifteen healthy participants. FIELD STRENGTH/SEQUENCE A 3.0 T, axial T2 -weighted 2D turbo spin-echo pulse sequence, 181 scans acquired (2 test/retest reference scans and 12 with systematic variations in contrast weighting, resolution, and acceleration per participant; removing scans with artifacts). ASSESSMENT One hundred and forty-six radiomic descriptors were extracted from a contiguous 2D region of white matter in each scan, before and after postprocessing. STATISTICAL TESTS Repeatability was assessed in a test/retest setting and between manual and automated annotations for the reference scan. Robustness was evaluated between the reference scan and each group of variant scans (contrast weighting, resolution, and acceleration). Both repeatability and robustness were quantified as the proportion of radiomic descriptors that fell into distinct ranges of the concordance correlation coefficient (CCC): excellent (CCC > 0.85), good (0.7 ≤ CCC ≤ 0.85), moderate (0.5 ≤ CCC < 0.7), and poor (CCC < 0.5); for unprocessed and postprocessed scans separately. RESULTS Good to excellent repeatability was observed for 52% of radiomic descriptors between test/retest scans and 48% of descriptors between automated vs. manual annotations, respectively. Contrast weighting (TR/TE) changes were associated with the largest proportion of highly robust radiomic descriptors (21%, after processing). Image resolution changes resulted in the largest proportion of poorly robust radiomic descriptors (97%, before postprocessing). Postprocessing of images with only resolution/acceleration differences resulted in 73% of radiomic descriptors showing poor robustness. DATA CONCLUSIONS Many radiomic descriptors appear to be nonrobust across variations in MR contrast weighting, resolution, and acceleration, as well in test-retest settings, depending on feature formulation and postprocessing. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Brendan Eck
- Dept of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA,Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Prathyush V. Chirra
- Dept of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Avani Muchhala
- Dept of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Sophia Hall
- Dept of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Kaustav Bera
- Dept of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Pallavi Tiwari
- Dept of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Anant Madabhushi
- Dept of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA,Louis Stokes VA Medical Center, Cleveland, OH, USA
| | - Nicole Seiberlich
- Dept of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA,Michigan Institute for Imaging Technology and Translation, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Satish E. Viswanath
- Dept of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
27
|
Gitto S, Cuocolo R, Emili I, Tofanelli L, Chianca V, Albano D, Messina C, Imbriaco M, Sconfienza LM. Effects of Interobserver Variability on 2D and 3D CT- and MRI-Based Texture Feature Reproducibility of Cartilaginous Bone Tumors. J Digit Imaging 2021; 34:820-832. [PMID: 34405298 PMCID: PMC8455795 DOI: 10.1007/s10278-021-00498-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 05/27/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
This study aims to investigate the influence of interobserver manual segmentation variability on the reproducibility of 2D and 3D unenhanced computed tomography (CT)- and magnetic resonance imaging (MRI)-based texture analysis. Thirty patients with cartilaginous bone tumors (10 enchondromas, 10 atypical cartilaginous tumors, 10 chondrosarcomas) were retrospectively included. Three radiologists independently performed manual contour-focused segmentation on unenhanced CT and T1-weighted and T2-weighted MRI by drawing both a 2D region of interest (ROI) on the slice showing the largest tumor area and a 3D ROI including the whole tumor volume. Additionally, a marginal erosion was applied to both 2D and 3D segmentations to evaluate the influence of segmentation margins. A total of 783 and 1132 features were extracted from original and filtered 2D and 3D images, respectively. Intraclass correlation coefficient ≥ 0.75 defined feature stability. In 2D vs. 3D contour-focused segmentation, the rates of stable features were 74.71% vs. 86.57% (p < 0.001), 77.14% vs. 80.04% (p = 0.142), and 95.66% vs. 94.97% (p = 0.554) for CT and T1-weighted and T2-weighted images, respectively. Margin shrinkage did not improve 2D (p = 0.343) and performed worse than 3D (p < 0.001) contour-focused segmentation in terms of feature stability. In 2D vs. 3D contour-focused segmentation, matching stable features derived from CT and MRI were 65.8% vs. 68.7% (p = 0.191), and those derived from T1-weighted and T2-weighted images were 76.0% vs. 78.2% (p = 0.285). 2D and 3D radiomic features of cartilaginous bone tumors extracted from unenhanced CT and MRI are reproducible, although some degree of interobserver segmentation variability highlights the need for reliability analysis in future studies.
Collapse
Affiliation(s)
- Salvatore Gitto
- Dipartimento Di Scienze Biomediche Per La Salute, Università Degli Studi Di Milano, Via Luigi Mangiagalli 31, 20133, Milan, Italy.
| | - Renato Cuocolo
- Dipartimento Di Medicina Clinica E Chirurgia, Università Degli Studi Di Napoli "Federico II", Naples, Italy.,Laboratory of Augmented Reality for Health Monitoring (ARHeMLab), Dipartimento Di Ingegneria Elettrica E Delle Tecnologie Dell'Informazione, Università Degli Studi Di Napoli "Federico II", Naples, Italy
| | - Ilaria Emili
- Unità di Radiodiagnostica, Presidio CTO, ASST Pini-CTO, Milan, Italy
| | - Laura Tofanelli
- Dipartimento di Radiologia Diagnostica ed Interventistica, Università degli Studi di Milano, Ospedale San Paolo, Milan, Italy
| | - Vito Chianca
- Ospedale Evangelico Betania, Naples, Italy.,Clinica Di Radiologia, Istituto Imaging Della Svizzera Italiana - Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Domenico Albano
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.,Sezione Di Scienze Radiologiche, Dipartimento Di Biomedicina, Neuroscienze E Diagnostica Avanzata, Università Degli Studi Di Palermo, Palermo, Italy
| | | | - Massimo Imbriaco
- Dipartimento Di Scienze Biomediche Avanzate, Università Degli Studi Di Napoli "Federico II", Naples, Italy
| | - Luca Maria Sconfienza
- Dipartimento Di Scienze Biomediche Per La Salute, Università Degli Studi Di Milano, Via Luigi Mangiagalli 31, 20133, Milan, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
28
|
Stanzione A, Ricciardi C, Cuocolo R, Romeo V, Petrone J, Sarnataro M, Mainenti PP, Improta G, De Rosa F, Insabato L, Brunetti A, Maurea S. MRI Radiomics for the Prediction of Fuhrman Grade in Clear Cell Renal Cell Carcinoma: a Machine Learning Exploratory Study. J Digit Imaging 2021; 33:879-887. [PMID: 32314070 DOI: 10.1007/s10278-020-00336-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Fuhrman nuclear grade is a recognized prognostic factor for patients with clear cell renal cell carcinoma (CCRCC) and its pre-treatment evaluation significantly affects decision-making in terms of management. In this study, we aimed to assess the feasibility of a combined approach of radiomics and machine learning based on MR images for a non-invasive prediction of Fuhrman grade, specifically differentiation of high- from low-grade tumor and grade assessment. Images acquired on a 3-Tesla scanner (T2-weighted and post-contrast) from 32 patients (20 with low-grade and 12 with high-grade tumor) were annotated to generate volumes of interest enclosing CCRCC lesions. After image resampling, normalization, and filtering, 2438 features were extracted. A two-step feature reduction process was used to between 1 and 7 features depending on the algorithm employed. A J48 decision tree alone and in combination with ensemble learning methods were used. In the differentiation between high- and low-grade tumors, all the ensemble methods achieved an accuracy greater than 90%. On the other end, the best results in terms of accuracy (84.4%) in the assessment of tumor grade were achieved by the random forest. These evidences support the hypothesis that a combined radiomic and machine learning approach based on MR images could represent a feasible tool for the prediction of Fuhrman grade in patients affected by CCRCC.
Collapse
Affiliation(s)
- Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini, 5, 80123, Naples, Italy
| | - Carlo Ricciardi
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini, 5, 80123, Naples, Italy
| | - Renato Cuocolo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini, 5, 80123, Naples, Italy.
| | - Valeria Romeo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini, 5, 80123, Naples, Italy
| | - Jessica Petrone
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini, 5, 80123, Naples, Italy
| | - Michela Sarnataro
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini, 5, 80123, Naples, Italy
| | - Pier Paolo Mainenti
- Institute of Biostructures and Bioimaging of the National Research Council (CNR), Naples, Italy
| | - Giovanni Improta
- Department of Public Health, University of Naples "Federico II", Naples, Italy
| | - Filippo De Rosa
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini, 5, 80123, Naples, Italy
| | - Luigi Insabato
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini, 5, 80123, Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini, 5, 80123, Naples, Italy
| | - Simone Maurea
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini, 5, 80123, Naples, Italy
| |
Collapse
|
29
|
Chen H, He Y, Zhao C, Zheng L, Pan N, Qiu J, Zhang Z, Niu X, Yuan Z. Reproducibility of radiomics features derived from intravoxel incoherent motion diffusion-weighted MRI of cervical cancer. Acta Radiol 2021; 62:679-686. [PMID: 32640886 DOI: 10.1177/0284185120934471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND The reproducibility of intravoxel incoherent motion (IVIM)-based radiomics studies in humans has not been reported. PURPOSE To determine the inter- and intra-observer variability on the reproducibility of IVIM-based radiomics features in cervical cancer (CC). MATERIAL AND METHODS The IVIM images of 25 patients with CC were retrospectively collected. Based on the high-resolution T2-weighted images, the regions of interest (ROIs) were independently delineated twice in diffusion-weighted images at a b value of 1000 s/mm2 (interval time was one month) by two radiologists. This was done at the largest transversal cross-sections of the tumors. The ROI was subsequently used in apparent diffusion coefficient (ADC), true diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f) maps derived from IVIM images. In total, 105 radiomics features were then finally extracted from the IVIM-derived maps. The inter- and intra-observer reproducibility of IVIM-derived features was then evaluated using the intraclass correlation coefficient. RESULTS Inter- and intra-observer variability affected the reproducibility of radiomics features. D* map had 100% and 95% reproducible features, ADC map had 89% and 93%, D map had 97% and 86%, while f map had 54% and 62% reproducible features with good to excellent reliability in the intra-observer analysis. Similarly, D* map had 90% and 94%, ADC map had 85% and 70%, D map had 81% and 78%, while f map had 41% and 93% reproducible features with good to excellent reliability in the inter-observer analysis. CONCLUSION Inter- and intra-observer variability can affect radiomics analysis. Cognizant to this, multicenter studies should pay more attention to intra- and inter-observer variability.
Collapse
Affiliation(s)
- Hao Chen
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yaoyao He
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Cecheng Zhao
- College of informatics, Huazhong Agricultural University, Wuhan, PR China
| | - Lili Zheng
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Ning Pan
- College of Biomedical Engineering, South Central University for Nationalities, Wuhan, PR China
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Wuhan, PR China
| | - Jianfeng Qiu
- Medical Engineering and Technology Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, PR China
| | - Zhaoxi Zhang
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xiaohui Niu
- College of informatics, Huazhong Agricultural University, Wuhan, PR China
| | - Zilong Yuan
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|
30
|
Assessment of Renal Cell Carcinoma by Texture Analysis in Clinical Practice: A Six-Site, Six-Platform Analysis of Reliability. AJR Am J Roentgenol 2021; 217:1132-1140. [PMID: 33852355 DOI: 10.2214/ajr.21.25456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: Multiple commercial and open-source software applications are available for texture analysis. Nonstandard techniques can cause undesirable variability that impedes result reproducibility and limits clinical utility. Objective: The purpose of this study is to measure agreement of texture metrics extracted by 6 software packages. Methods: This retrospective study included 40 renal cell carcinomas with contrast-enhanced CT from The Cancer Genome Atlas and Imaging Archive. Images were analyzed by 7 readers at 6 sites. Each reader used 1 of 6 software packages to extract commonly studied texture features. Inter and intra-reader agreement for segmentation was assessed with intra-class correlation coefficients. First-order (available in 6 packages) and second-order (available in 3 packages) texture features were compared between software pairs using Pearson correlation. Results: Inter- and intra-reader agreement was excellent (ICC 0.93-1). First-order feature correlations were strong (r>0.8, p<0.001) between 75% (21/28) of software pairs for mean and standard deviation, 48% (10/21) for entropy, 29% (8/28) for skewness, and 25% (7/28) for kurtosis. Of 15 second-order features, only co-occurrence matrix correlation, grey-level non-uniformity, and run-length non-uniformity showed strong correlation between software packages (0.90-1, p<0.001). Conclusion: Variability in first and second order texture features was common across software configurations and produced inconsistent results. Standardized algorithms and reporting methods are needed before texture data can be reliably used for clinical applications. Clinical Impact: It is important to be aware of variability related to texture software processing and configuration when reporting and comparing outputs.
Collapse
|
31
|
Han C, Ma S, Liu X, Liu Y, Li C, Zhang Y, Zhang X, Wang X. Radiomics Models Based on Apparent Diffusion Coefficient Maps for the Prediction of High‐Grade Prostate Cancer at Radical Prostatectomy: Comparison With Preoperative Biopsy. J Magn Reson Imaging 2021; 54:1892-1901. [PMID: 33682286 DOI: 10.1002/jmri.27565] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/18/2022] Open
Affiliation(s)
- Chao Han
- Department of Radiology Peking University First Hospital Beijing China
| | - Shuai Ma
- Department of Radiology Peking University First Hospital Beijing China
| | - Xiang Liu
- Department of Radiology Peking University First Hospital Beijing China
| | - Yi Liu
- Department of Radiology Peking University First Hospital Beijing China
| | - Changxin Li
- Beijing Smart Tree Medical Technology Co. Ltd. Beijing China
| | - Yaofeng Zhang
- Beijing Smart Tree Medical Technology Co. Ltd. Beijing China
| | - Xiaodong Zhang
- Department of Radiology Peking University First Hospital Beijing China
| | - Xiaoying Wang
- Department of Radiology Peking University First Hospital Beijing China
| |
Collapse
|
32
|
Pancreas adenocarcinoma CT texture analysis: comparison of 3D and 2D tumor segmentation techniques. Abdom Radiol (NY) 2021; 46:1027-1033. [PMID: 32939634 DOI: 10.1007/s00261-020-02759-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/07/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE To determine equivalency of multi-slice 3D CTTA and single slice 2D CTTA of pancreas adenocarcinoma. METHODS This retrospective study was research ethics board approved. Untreated pancreas adenocarcinomas were segmented on CT in 128 consecutive patients. Tumor segmentation was compared using two techniques: 3D segmentation by contouring all visible tumor in a 3D volume, and 2D segmentation using only a single axial image. First-order CTTA features including mean, minimum, maximum Hounsfield units (HU), standard deviation, skewness, kurtosis, entropy, and second-order gray-level co-occurrence matrix (GLCM) features homogeneity, contrast, correlation, entropy and dissimilarity were extracted. Median values were compared using the Mann-Whitney U test with Holm-Bonferroni correction. Kendall's Rank Correlation Tau assessed for correlation, and agreement was calculated using intraclass correlation coefficients (ICC) using a two-way model with single rating and absolute agreement. Statistical significance defined as P < 0.05. RESULTS The median values of CTTA features differed significantly between 3 and 2D segmentations for all of the evaluated features except for mean attenuation, standard deviation and skewness (P = 0.2979 each). 3D and 2D segmentations had moderate correlation for mean attenuation (R = 0.69, P < 0.01), while all other features demonstrated poor to fair correlation. Agreement between 3 and 2D segmentations was good for mean attenuation (ICC: 0.87, P < 0.01), moderate for minimum (ICC: 0.65, P < 0.01) and standard deviation (ICC: 0.56, P < 0.01), and poor for all other features. CONCLUSION While pancreas adenocarcinoma CTTA features obtained using 3D and 2D segmentation have multiple associations with clinically relevant outcomes, these segmentation techniques are likely not interchangeable other than for mean HU.
Collapse
|
33
|
Mazin A, Hawkins SH, Stringfield O, Dhillon J, Manley BJ, Jeong DK, Raghunand N. Identification of sarcomatoid differentiation in renal cell carcinoma by machine learning on multiparametric MRI. Sci Rep 2021; 11:3785. [PMID: 33589715 PMCID: PMC7884398 DOI: 10.1038/s41598-021-83271-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
Sarcomatoid differentiation in RCC (sRCC) is associated with a poor prognosis, necessitating more aggressive management than RCC without sarcomatoid components (nsRCC). Since suspected renal cell carcinoma (RCC) tumors are not routinely biopsied for histologic evaluation, there is a clinical need for a non-invasive method to detect sarcomatoid differentiation pre-operatively. We utilized unsupervised self-organizing map (SOM) and supervised Learning Vector Quantizer (LVQ) machine learning to classify RCC tumors on T2-weighted, non-contrast T1-weighted fat-saturated, contrast-enhanced arterial-phase T1-weighted fat-saturated, and contrast-enhanced venous-phase T1-weighted fat-saturated MRI images. The SOM was trained on 8 nsRCC and 8 sRCC tumors, and used to compute Activation Maps for each training, validation (3 nsRCC and 3 sRCC), and test (5 nsRCC and 5 sRCC) tumor. The LVQ classifier was trained and optimized on Activation Maps from the 22 training and validation cohort tumors, and tested on Activation Maps of the 10 unseen test tumors. In this preliminary study, the SOM-LVQ model achieved a hold-out testing accuracy of 70% in the task of identifying sarcomatoid differentiation in RCC on standard multiparameter MRI (mpMRI) images. We have demonstrated a combined SOM-LVQ machine learning approach that is suitable for analysis of limited mpMRI datasets for the task of differential diagnosis.
Collapse
Affiliation(s)
- Asim Mazin
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Samuel H Hawkins
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL, 33612, USA
- Department of Computer Science & Information Systems, Bradley University, Peoria, IL, 61625, USA
| | - Olya Stringfield
- IRAT Shared Service, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Jasreman Dhillon
- Department of Anatomic Pathology, Moffitt Cancer Center, Tampa, FL, 33612, USA
- Department of Oncologic Sciences, University of South Florida, Tampa, FL, USA
| | - Brandon J Manley
- Department of Genitourinary Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
- Department of Oncologic Sciences, University of South Florida, Tampa, FL, USA
| | - Daniel K Jeong
- Department of Diagnostic & Interventional Radiology, Moffitt Cancer Center, Tampa, FL, 33612, USA
- Department of Oncologic Sciences, University of South Florida, Tampa, FL, USA
| | - Natarajan Raghunand
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL, 33612, USA.
- Department of Oncologic Sciences, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
34
|
Rizzetto F, Calderoni F, De Mattia C, Defeudis A, Giannini V, Mazzetti S, Vassallo L, Ghezzi S, Sartore-Bianchi A, Marsoni S, Siena S, Regge D, Torresin A, Vanzulli A. Impact of inter-reader contouring variability on textural radiomics of colorectal liver metastases. Eur Radiol Exp 2020; 4:62. [PMID: 33169295 PMCID: PMC7652946 DOI: 10.1186/s41747-020-00189-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Radiomics is expected to improve the management of metastatic colorectal cancer (CRC). We aimed at evaluating the impact of liver lesion contouring as a source of variability on radiomic features (RFs). METHODS After Ethics Committee approval, 70 liver metastases in 17 CRC patients were segmented on contrast-enhanced computed tomography scans by two residents and checked by experienced radiologists. RFs from grey level co-occurrence and run length matrices were extracted from three-dimensional (3D) regions of interest (ROIs) and the largest two-dimensional (2D) ROIs. Inter-reader variability was evaluated with Dice coefficient and Hausdorff distance, whilst its impact on RFs was assessed using mean relative change (MRC) and intraclass correlation coefficient (ICC). For the main lesion of each patient, one reader also segmented a circular ROI on the same image used for the 2D ROI. RESULTS The best inter-reader contouring agreement was observed for 2D ROIs according to both Dice coefficient (median 0.85, interquartile range 0.78-0.89) and Hausdorff distance (0.21 mm, 0.14-0.31 mm). Comparing RF values, MRC ranged 0-752% for 2D and 0-1567% for 3D. For 24/32 RFs (75%), MRC was lower for 2D than for 3D. An ICC > 0.90 was observed for more RFs for 2D (53%) than for 3D (34%). Only 2/32 RFs (6%) showed a variability between 2D and circular ROIs higher than inter-reader variability. CONCLUSIONS A 2D contouring approach may help mitigate overall inter-reader variability, albeit stable RFs can be extracted from both 3D and 2D segmentations of CRC liver metastases.
Collapse
Affiliation(s)
- Francesco Rizzetto
- Department of Radiology, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, 20162, Milan, Italy
| | - Francesca Calderoni
- Department of Medical Physics, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, 20162, Milan, Italy
| | - Cristina De Mattia
- Department of Medical Physics, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, 20162, Milan, Italy
| | - Arianna Defeudis
- Department of Surgical Sciences, University of Turin, via Verdi 8, 10124, Turin, Italy
- Radiology Unit, Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 km 3.95, 10060, Candiolo, Turin, Italy
| | - Valentina Giannini
- Department of Surgical Sciences, University of Turin, via Verdi 8, 10124, Turin, Italy
- Radiology Unit, Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 km 3.95, 10060, Candiolo, Turin, Italy
| | - Simone Mazzetti
- Department of Surgical Sciences, University of Turin, via Verdi 8, 10124, Turin, Italy
- Radiology Unit, Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 km 3.95, 10060, Candiolo, Turin, Italy
| | - Lorenzo Vassallo
- Radiology Unit, SS Annunziata Hospital ASLCN1 Cuneo, via Ospedali 14, 12038, Cuneo, Savigliano, Italy
| | - Silvia Ghezzi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, 20162, Milan, Italy
| | - Andrea Sartore-Bianchi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, 20162, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, via Festa del Perdono 7, 20122, Milan, Italy
| | - Silvia Marsoni
- Precision Oncology, IFOM - The FIRC Institute of Molecular Oncology, via Adamello 16, 20139, Milan, Italy
| | - Salvatore Siena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, 20162, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, via Festa del Perdono 7, 20122, Milan, Italy
| | - Daniele Regge
- Department of Surgical Sciences, University of Turin, via Verdi 8, 10124, Turin, Italy
- Radiology Unit, Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 km 3.95, 10060, Candiolo, Turin, Italy
| | - Alberto Torresin
- Department of Medical Physics, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, 20162, Milan, Italy
- Department of Physics, Università degli Studi di Milano, via Giovanni Celoria 16, 20133, Milan, Italy
| | - Angelo Vanzulli
- Department of Radiology, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, 20162, Milan, Italy.
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, via Festa del Perdono 7, 20122, Milan, Italy.
| |
Collapse
|
35
|
Kocak B, Kus EA, Kilickesmez O. How to read and review papers on machine learning and artificial intelligence in radiology: a survival guide to key methodological concepts. Eur Radiol 2020; 31:1819-1830. [PMID: 33006018 DOI: 10.1007/s00330-020-07324-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/25/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022]
Abstract
In recent years, there has been a dramatic increase in research papers about machine learning (ML) and artificial intelligence in radiology. With so many papers around, it is of paramount importance to make a proper scientific quality assessment as to their validity, reliability, effectiveness, and clinical applicability. Due to methodological complexity, the papers on ML in radiology are often hard to evaluate, requiring a good understanding of key methodological issues. In this review, we aimed to guide the radiology community about key methodological aspects of ML to improve their academic reading and peer-review experience. Key aspects of ML pipeline were presented within four broad categories: study design, data handling, modelling, and reporting. Sixteen key methodological items and related common pitfalls were reviewed with a fresh perspective: database size, robustness of reference standard, information leakage, feature scaling, reliability of features, high dimensionality, perturbations in feature selection, class balance, bias-variance trade-off, hyperparameter tuning, performance metrics, generalisability, clinical utility, comparison with traditional tools, data sharing, and transparent reporting.Key Points• Machine learning is new and rather complex for the radiology community.• Validity, reliability, effectiveness, and clinical applicability of studies on machine learning can be evaluated with a proper understanding of key methodological concepts about study design, data handling, modelling, and reporting.• Understanding key methodological concepts will provide a better academic reading and peer-review experience for the radiology community.
Collapse
Affiliation(s)
- Burak Kocak
- Department of Radiology, Basaksehir Cam and Sakura City Hospital, Basaksehir, 34480, Istanbul, Turkey.
| | - Ece Ates Kus
- Department of Radiology, Istanbul Training and Research Hospital, Samatya, 34098, Istanbul, Turkey
| | - Ozgur Kilickesmez
- Department of Radiology, Basaksehir Cam and Sakura City Hospital, Basaksehir, 34480, Istanbul, Turkey
| |
Collapse
|
36
|
Cacciamani GE, Nassiri N, Varghese B, Maas M, King KG, Hwang D, Abreu A, Gill I, Duddalwar V. Radiomics and Bladder Cancer: Current Status. Bladder Cancer 2020. [DOI: 10.3233/blc-200293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE: To systematically review the current literature and discuss the applications and limitations of radiomics and machine-learning augmented radiomics in the management of bladder cancer. METHODS: Pubmed ®, Scopus ®, and Web of Science ® databases were searched systematically for all full-text English-language articles assessing the impact of Artificial Intelligence OR Radiomics OR Machine Learning AND Bladder Cancer AND (staging OR grading OR prognosis) published up to January 2020. RESULTS: Of the 686 articles that were identified, 13 studies met the criteria for quantitative analysis. Staging, Grading and Tumor Classification, Prognosis, and Therapy Response were discussed in 7, 3, 2 and 7 studies, respectively. Data on cost of implementation were not reported. CT and MRI were the most common imaging approaches. CONCLUSION: Radiomics shows potential in bladder cancer detection, staging, grading, and response to therapy, thereby supporting the physician in personalizing patient management. Extension and validation of this promising technology in large multisite prospective trials is warranted to pave the way for its clinical translation.
Collapse
Affiliation(s)
- Giovanni E. Cacciamani
- USC Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Nima Nassiri
- USC Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bino Varghese
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Marissa Maas
- USC Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kevin G. King
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Darryl Hwang
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andre Abreu
- USC Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Inderbir Gill
- USC Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Vinay Duddalwar
- USC Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Cancer Center, University of Southern California, Los Angeles, CA, USA
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
37
|
Zhou Y, Xu X, Song L, Wang C, Guo J, Yi Z, Li W. The application of artificial intelligence and radiomics in lung cancer. PRECISION CLINICAL MEDICINE 2020; 3:214-227. [PMID: 35694416 PMCID: PMC8982538 DOI: 10.1093/pcmedi/pbaa028] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 02/05/2023] Open
Abstract
Lung cancer is one of the most leading causes of death throughout the world, and there is an urgent requirement for the precision medical management of it. Artificial intelligence (AI) consisting of numerous advanced techniques has been widely applied in the field of medical care. Meanwhile, radiomics based on traditional machine learning also does a great job in mining information through medical images. With the integration of AI and radiomics, great progress has been made in the early diagnosis, specific characterization, and prognosis of lung cancer, which has aroused attention all over the world. In this study, we give a brief review of the current application of AI and radiomics for precision medical management in lung cancer.
Collapse
Affiliation(s)
- Yaojie Zhou
- Department of Respiratory and Critical Care Medicine, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiuyuan Xu
- Machine Intelligence Laboratory, College of Computer Science, Sichuan University, Chengdu 610065, China
| | - Lujia Song
- West China School of Public Health, Sichuan University, Chengdu 610041, China
| | - Chengdi Wang
- Department of Respiratory and Critical Care Medicine, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jixiang Guo
- Machine Intelligence Laboratory, College of Computer Science, Sichuan University, Chengdu 610065, China
| | - Zhang Yi
- Machine Intelligence Laboratory, College of Computer Science, Sichuan University, Chengdu 610065, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
38
|
Machine Learning in Radiomic Renal Mass Characterization: Fundamentals, Applications, Challenges, and Future Directions. AJR Am J Roentgenol 2020; 215:920-928. [PMID: 32783560 DOI: 10.2214/ajr.19.22608] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE. The purpose of this study is to provide an overview of the traditional machine learning (ML)-based and deep learning-based radiomic approaches, with focus placed on renal mass characterization. CONCLUSION. ML currently has a very low barrier to entry into general medical practice because of the availability of many open-source, free, and easy-to-use toolboxes. Therefore, it should not be surprising to see its related applications in renal mass characterization. A wider picture of the previous works might be beneficial to move this field forward.
Collapse
|
39
|
Abstract
Radiomics allows for high throughput extraction of quantitative data from images. This is an area of active research as groups try to capture and quantify imaging parameters and convert these into descriptive phenotypes of organs or tumors. Texture analysis is one radiomics tool that extracts information about heterogeneity within a given region of interest. This is used with or without associated machine learning classifiers or a deep learning approach is applied to similar types of data. These tools have shown utility in characterizing renal masses, renal cell carcinoma, and assessing response to targeted therapeutic agents in metastatic renal cell carcinoma.
Collapse
Affiliation(s)
- Meghan G Lubner
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, E3/311 Clinical Sciences Center, 600 Highland Avenue, Madison, WI 53792, USA.
| |
Collapse
|
40
|
Machine learning–based CT texture analysis to predict HPV status in oropharyngeal squamous cell carcinoma: comparison of 2D and 3D segmentation. Eur Radiol 2020; 30:6858-6866. [DOI: 10.1007/s00330-020-07011-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/29/2020] [Accepted: 06/04/2020] [Indexed: 01/11/2023]
|
41
|
Yang G, Gong A, Nie P, Yan L, Miao W, Zhao Y, Wu J, Cui J, Jia Y, Wang Z. Contrast-Enhanced CT Texture Analysis for Distinguishing Fat-Poor Renal Angiomyolipoma From Chromophobe Renal Cell Carcinoma. Mol Imaging 2020; 18:1536012119883161. [PMID: 31625454 PMCID: PMC6801892 DOI: 10.1177/1536012119883161] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Objective: To evaluate the value of 2-dimensional (2D) and 3-dimensional (3D) computed tomography
texture analysis (CTTA) models in distinguishing fat-poor angiomyolipoma (fpAML) from
chromophobe renal cell carcinoma (chRCC). Methods: We retrospectively enrolled 32 fpAMLs and 24 chRCCs. Texture features were extracted
from 2D and 3D regions of interest in triphasic CT images. The 2D and 3D CTTA models
were constructed with the least absolute shrinkage and selection operator algorithm and
texture scores were calculated. The diagnostic performance of the 2D and 3D CTTA models
was evaluated with respect to calibration, discrimination, and clinical usefulness. Results: Of the 177 and 183 texture features extracted from 2D and 3D regions of interest,
respectively, 5 2D features and 8 3D features were selected to build 2D and 3D CTTA
models. The 2D CTTA model (area under the curve [AUC], 0.811; 95% confidence interval
[CI], 0.695-0.927) and the 3D CTTA model (AUC, 0.915; 95% CI, 0.838-0.993) showed good
discrimination and calibration (P > .05). There was no significant
difference in AUC between the 2 models (P = .093). Decision curve
analysis showed the 3D model outperformed the 2D model in terms of clinical
usefulness. Conclusions: The CTTA models based on contrast-enhanced CT images had a high value in
differentiating fpAML from chRCC.
Collapse
Affiliation(s)
- Guangjie Yang
- PET-CT Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Aidi Gong
- PET-CT Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Pei Nie
- Radiology Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lei Yan
- PET-CT Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wenjie Miao
- PET-CT Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yujun Zhao
- PET-CT Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jie Wu
- Pathology Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jingjing Cui
- Huiying Medical Technology Co, Ltd, Beijing, China
| | - Yan Jia
- Huiying Medical Technology Co, Ltd, Beijing, China
| | - Zhenguang Wang
- PET-CT Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
42
|
Koçak B, Durmaz EŞ, Ateş E, Kılıçkesmez Ö. Radiomics with artificial intelligence: a practical guide for beginners. ACTA ACUST UNITED AC 2020; 25:485-495. [PMID: 31650960 DOI: 10.5152/dir.2019.19321] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Radiomics is a relatively new word for the field of radiology, meaning the extraction of a high number of quantitative features from medical images. Artificial intelligence (AI) is broadly a set of advanced computational algorithms that basically learn the patterns in the data provided to make predictions on unseen data sets. Radiomics can be coupled with AI because of its better capability of handling a massive amount of data compared with the traditional statistical methods. Together, the primary purpose of these fields is to extract and analyze as much and meaningful hidden quantitative data as possible to be used in decision support. Nowadays, both radiomics and AI have been getting attention for their remarkable success in various radiological tasks, which has been met with anxiety by most of the radiologists due to the fear of replacement by intelligent machines. Considering ever-developing advances in computational power and availability of large data sets, the marriage of humans and machines in future clinical practice seems inevitable. Therefore, regardless of their feelings, the radiologists should be familiar with these concepts. Our goal in this paper was three-fold: first, to familiarize radiologists with the radiomics and AI; second, to encourage the radiologists to get involved in these ever-developing fields; and, third, to provide a set of recommendations for good practice in design and assessment of future works.
Collapse
Affiliation(s)
- Burak Koçak
- Department of Radiology İstanbul Training and Research Hospital, İstanbul, Turkey
| | - Emine Şebnem Durmaz
- Department of Radiology, Büyükçekmece Mimar Sinan State Hospital, İstanbul, Turkey
| | - Ece Ateş
- Department of Radiology İstanbul Training and Research Hospital, İstanbul, Turkey
| | - Özgür Kılıçkesmez
- Department of Radiology İstanbul Training and Research Hospital, İstanbul, Turkey
| |
Collapse
|
43
|
Radiomics of Renal Masses: Systematic Review of Reproducibility and Validation Strategies. AJR Am J Roentgenol 2019; 214:129-136. [PMID: 31613661 DOI: 10.2214/ajr.19.21709] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE. The purpose of this study was to systematically review the radiomics literature on renal mass characterization in terms of reproducibility and validation strategies. MATERIALS AND METHODS. With use of PubMed and Google Scholar, a systematic literature search was performed to identify original research papers assessing the value of radiomics in characterization of renal masses. The data items were extracted on the basis of three main categories: baseline study characteristics, radiomic feature reproducibility strategies, and statistical model validation strategies. RESULTS. After screening and application of the eligibility criteria, a total of 41 papers were included in the study. Almost one-half of the papers (19 [46%]) presented at least one reproducibility analysis. Segmentation variability (18 [44%]) was the main theme of the analyses, outnumbering image acquisition or processing (3 [7%]). No single paper considered slice selection bias. The most commonly used statistical tool for analysis was intraclass correlation coefficient (14 of 19 [74%]), with no consensus on the threshold or cutoff values. Approximately one-half of the papers (22 [54%]) used at least one validation method, with a predominance of internal validation techniques (20 [49%]). The most frequently used internal validation technique was k-fold cross-validation (12 [29%]). Independent or external validation was used in only three papers (7%). CONCLUSION. Workflow characteristics described in the radiomics literature about renal mass characterization are heterogeneous. To bring radiomics from a mere research area to clinical use, the field needs many more papers that consider the reproducibility of radiomic features and include independent or external validation in their workflow.
Collapse
|