1
|
Cundari G, Marchitelli L, Pambianchi G, Catapano F, Conia L, Stancanelli G, Catalano C, Galea N. Imaging biomarkers in cardiac CT: moving beyond simple coronary anatomical assessment. LA RADIOLOGIA MEDICA 2024; 129:380-400. [PMID: 38319493 PMCID: PMC10942914 DOI: 10.1007/s11547-024-01771-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024]
Abstract
Cardiac computed tomography angiography (CCTA) is considered the standard non-invasive tool to rule-out obstructive coronary artery disease (CAD). Moreover, several imaging biomarkers have been developed on cardiac-CT imaging to assess global CAD severity and atherosclerotic burden, including coronary calcium scoring, the segment involvement score, segment stenosis score and the Leaman-score. Myocardial perfusion imaging enables the diagnosis of myocardial ischemia and microvascular damage, and the CT-based fractional flow reserve quantification allows to evaluate non-invasively hemodynamic impact of the coronary stenosis. The texture and density of the epicardial and perivascular adipose tissue, the hypodense plaque burden, the radiomic phenotyping of coronary plaques or the fat radiomic profile are novel CT imaging features emerging as biomarkers of inflammation and plaque instability, which may implement the risk stratification strategies. The ability to perform myocardial tissue characterization by extracellular volume fraction and radiomic features appears promising in predicting arrhythmogenic risk and cardiovascular events. New imaging biomarkers are expanding the potential of cardiac CT for phenotyping the individual profile of CAD involvement and opening new frontiers for the practice of more personalized medicine.
Collapse
Affiliation(s)
- Giulia Cundari
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Livia Marchitelli
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Giacomo Pambianchi
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Federica Catapano
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 4, Pieve Emanuele, 20090, Milano, Italy
- Humanitas Research Hospital IRCCS, Via Alessandro Manzoni, 56, Rozzano, 20089, Milano, Italy
| | - Luca Conia
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Giuseppe Stancanelli
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Carlo Catalano
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Nicola Galea
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
2
|
Sliwicka O, Sechopoulos I, Baggiano A, Pontone G, Nijveldt R, Habets J. Dynamic myocardial CT perfusion imaging-state of the art. Eur Radiol 2023; 33:5509-5525. [PMID: 36997751 PMCID: PMC10326111 DOI: 10.1007/s00330-023-09550-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/02/2023] [Accepted: 02/22/2023] [Indexed: 04/01/2023]
Abstract
In patients with suspected coronary artery disease (CAD), dynamic myocardial computed tomography perfusion (CTP) imaging combined with coronary CT angiography (CTA) has become a comprehensive diagnostic examination technique resulting in both anatomical and quantitative functional information on myocardial blood flow, and the presence and grading of stenosis. Recently, CTP imaging has been proven to have good diagnostic accuracy for detecting myocardial ischemia, comparable to stress magnetic resonance imaging and positron emission tomography perfusion, while being superior to single photon emission computed tomography. Dynamic CTP accompanied by coronary CTA can serve as a gatekeeper for invasive workup, as it reduces unnecessary diagnostic invasive coronary angiography. Dynamic CTP also has good prognostic value for the prediction of major adverse cardiovascular events. In this article, we will provide an overview of dynamic CTP, including the basics of coronary blood flow physiology, applications and technical aspects including protocols, image acquisition and reconstruction, future perspectives, and scientific challenges. KEY POINTS: • Stress dynamic myocardial CT perfusion combined with coronary CTA is a comprehensive diagnostic examination technique resulting in both anatomical and quantitative functional information. • Dynamic CTP imaging has good diagnostic accuracy for detecting myocardial ischemia comparable to stress MRI and PET perfusion. • Dynamic CTP accompanied by coronary CTA may serve as a gatekeeper for invasive workup and can guide treatment in obstructive coronary artery disease.
Collapse
Affiliation(s)
- Olga Sliwicka
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands.
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Ioannis Sechopoulos
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Andrea Baggiano
- Department of Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Gianluca Pontone
- Department of Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Robin Nijveldt
- Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jesse Habets
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
- Department of Radiology and Nuclear Medicine, Haaglanden Medical Center, The Hague, The Netherlands
| |
Collapse
|
3
|
Dai X, Lu Z, Yu Y, Yu L, Xu H, Zhang J. The use of lesion-specific calcium morphology to guide the appropriate use of dynamic CT myocardial perfusion imaging and CT fractional flow reserve. Quant Imaging Med Surg 2022; 12:1257-1269. [PMID: 35111621 DOI: 10.21037/qims-21-491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/18/2021] [Indexed: 12/28/2022]
Abstract
Background We aimed to optimize the diagnostic strategy for dynamic computed tomography myocardial perfusion imaging (CT-MPI) and CT fractional flow reserve (CT-FFR) in the evaluation of coronary artery disease (CAD). Methods Patients who had undergone coronary CT angiography (CCTA) + dynamic CT-MPI and invasive coronary angiography (ICA)/FFR within a 4-week period were retrospectively included. Lesion-specific characteristics were recorded, and multivariate logistic regression was performed to determine the predictors of mismatched CT findings with ICA results. An optimized diagnostic strategy was proposed based on the diagnostic performance of dynamic CT-MPI and CT-FFR compared with ICA/FFR. A net reclassification index (NRI) was calculated to determine the incremental discriminatory power of optimized CT-FFR + dynamic CT-MPI strategy compared to CT-FFR alone. Results The study included 180 patients with 229 diseased vessels. For CT-FFR, a calcified lesion with a calcium arc >180° was the only independent predictor for misdiagnosis of ischemic coronary stenosis (odds ratio =2.367; P=0.002). For noncalcified lesions and calcified lesions with a calcium arc ≤180°, the sensitivity and negative predictive value (NPV) of CT-FFR were similar to those of CT-MPI (all P values >0.05), whereas the specificity and positive predictive value (PPV) of CT-FFR were significantly lower (all P values <0.05). For calcified lesions with a calcium arc >180°, the specificity, NPV, and PPV of CT-FFR were inferior to those of CT-MPI (21.2% vs. 100%, 58.3% vs. 86.8%, and 62.9% vs. 100%, respectively; all P values <0.05). As guided by lesion-specific calcium morphology, an optimized CT-FFR + dynamic CT-MPI strategy (NRI =0.2; P=0.004) would have resulted in a 27.0% and 33.9% reduction of radiation dose and contrast medium consumption, respectively, and 25.3% of patients would have avoided unnecessary invasive tests. Conclusions The diagnostic performance of CT-FFR was significantly inferior in lesions with a calcium arc >180°. Lesion-specific calcium morphology is the preferred parameter to guide the appropriate use of CT-based functional assessment.
Collapse
Affiliation(s)
- Xu Dai
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhigang Lu
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yarong Yu
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lihua Yu
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Xu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayin Zhang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Ling R, Yu L, Lu Z, Li Y, Zhang J. A Novel Computed Tomography-Based Imaging Approach for Etiology Evaluation in Patients With Acute Coronary Syndrome and Non-obstructive Coronary Angiography. Front Cardiovasc Med 2021; 8:735118. [PMID: 34504882 PMCID: PMC8421729 DOI: 10.3389/fcvm.2021.735118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: This study sought to investigate the diagnostic value of dynamic CT myocardial perfusion imaging (CT-MPI) combined with coronary CT angiography (CCTA) in acute coronary syndrome (ACS) patients without obstructive coronary angiography. Methods: Consecutive ACS patients with normal or non-obstructive coronary angiography findings who had cardiac magnetic resonance (CMR) contraindications or inability to cooperate with CMR examinations were prospectively enrolled and referred for dynamic CT-MPI + CCTA + late iodine enhancement (LIE). ACS etiology was determined according to combined assessment of coronary vasculature by CCTA, quantified myocardial blood flow (MBF) and presence of LIE. Results: Twenty two patients were included in the final analysis. CCTA revealed two cases of side branch occlusion and one case of intramural hematoma which were overlooked by invasive angiography. High risk plaques were observed in 6 (27.3%) patients whereas myocardial ischemia was presented in 19 (86.4%) patients with varied extent and severity. LIE was positive in 13 (59.1%) patients and microvascular obstruction was presented in three cases with side branch occlusion or spontaneous intramural hematoma. The specific etiology was identified in 20 (90.9%) patients, of which the most common cause was cardiomyopathies (41%), followed by microvascular dysfunction (14%) and plaque disruption (14%). Conclusion: Dynamic CT-MPI + CCTA was able to reveal the potential etiologies in majority of patients with ACS and non-obstructive coronary angiography. It may be a useful alternative to CMR for accurate etiology evaluation.
Collapse
Affiliation(s)
- Runjianya Ling
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lihua Yu
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhigang Lu
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuehua Li
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiayin Zhang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Vattay B, Boussoussou M, Borzsák S, Vecsey-Nagy M, Simon J, Kolossváry M, Merkely B, Szilveszter B. Myocardial perfusion imaging using computed tomography: Current status, clinical value and prognostic implications. IMAGING 2021. [DOI: 10.1556/1647.2020.00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AbstractCombined anatomical and functional evaluation of coronary artery disease (CAD) using computed tomography (CT) has recently emerged as an accurate, robust, and non-invasive tool for the evaluation of ischemic heart disease. Cardiac CT has become a one-stop-shop imaging modality that allows the simultaneous depiction, characterization, and quantification of coronary atherosclerosis and the assessment of myocardial ischemia. Advancements in scanner technology (improvements in spatial and temporal resolution, dual-energy imaging, wide detector panels) and the implementation of iterative reconstruction algorithms enables the detection of myocardial ischemia in both qualitative and quantitative fashion using low-dose scanning protocols. The addition of CT perfusion (CTP) to standard coronary CT angiography is a reliable tool to improve diagnostic accuracy. CTP using static first-pass imaging enables qualitative assessment of the myocardial tissue, whereas dynamic perfusion imaging can also provide quantitative information on myocardial blood flow. Myocardial tissue assessment by CTP holds the potential to refine risk in stable chest pain or microvascular dysfunction. CTP can aid the detection of residual ischemia after coronary intervention. Comprehensive evaluation of CAD using CTP might therefore improve the selection of patients for aggressive secondary prevention therapy or coronary revascularization with high diagnostic certainty. In addition, prognostic information provided by perfusion CT imaging could improve patient outcomes by quantifying the ischemic burden of the left ventricle. The current review focuses on the clinical value of myocardial perfusion imaging by CT, current status of CTP imaging and the use of myocardial CTP in various patient populations for the diagnosis of ischemic heart disease.
Collapse
Affiliation(s)
- Borbála Vattay
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Melinda Boussoussou
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Sarolta Borzsák
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Milán Vecsey-Nagy
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Judit Simon
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Márton Kolossváry
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Béla Merkely
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Bálint Szilveszter
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| |
Collapse
|
6
|
Prevalence and disease features of myocardial ischemia with non-obstructive coronary arteries: Insights from a dynamic CT myocardial perfusion imaging study. Int J Cardiol 2021; 334:142-147. [PMID: 33932431 DOI: 10.1016/j.ijcard.2021.04.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Ischemia with non-obstructive coronary arteries (INOCA) is not uncommon in clinical practice. However, the incidence and imaging characteristics of INOCA on dynamic CT myocardial perfusion imaging (CT-MPI) remains unclear. We aimed to investigate the prevalence and disease features of INOCA as evaluated by dynamic CT-MPI + coronary CT angiography (CCTA). METHODS Patients with suspected chronic coronary syndrome and intermediate-to-high pre-test probability of obstructive CAD (according to updated Diamond and Forrester Chest Pain Prediction Rule) were referred for dynamic CT-MPI + CCTA and retrospectively included. Various parameters, including myocardial blood flow (MBF) and high-risk plaque (HRP) features, were measured. INOCA was diagnosed if patients were revealed to have myocardial ischemia and absence of obstructive stenosis. RESULTS 314 patients were finally included. 20 patients (6.4%) were observed to have myocardial ischemia without obstructive stenosis. In addition, 138 patients (43.9%) had normal or near normal findings, 101 patients (32.2%) had obstructive stenosis without myocardial ischemia and 55 patients (17.5%) had obstructive stenosis with myocardial ischemia. Compared with patients with normal/near normal findings, patients with INOCA showed a higher prevalence of positive remodeling (40.0% vs. 17.4%, p = 0.04). In patients with obstructive stenosis, the mean age, calcium score and incidence of spotty calcification, positive remodeling as well as HRPs were significantly higher than those in patients with INOCA (p < 0.05 for all). CONCLUSIONS The overall prevalence of INOCA was low in patients with suspected chronic coronary syndrome. HRPs were less frequently presented in patients with INOCA, compared with patients having obstructive coronary stenosis.
Collapse
|
7
|
de Knegt MC, Rossi A, Petersen SE, Wragg A, Khurram R, Westwood M, Saberwal B, Mathur A, Nieman K, Bamberg F, Jensen MT, Pugliese F. Stress myocardial perfusion with qualitative magnetic resonance and quantitative dynamic computed tomography: comparison of diagnostic performance and incremental value over coronary computed tomography angiography. Eur Heart J Cardiovasc Imaging 2020:jeaa270. [PMID: 33029616 DOI: 10.1093/ehjci/jeaa270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022] Open
Abstract
AIMS Assessment of haemodynamically significant coronary artery disease (CAD) using cardiovascular magnetic resonance (CMR) imaging perfusion or dynamic stress myocardial perfusion imaging by computed tomography (CT perfusion) may aid patient selection for invasive coronary angiography (ICA). We evaluated the diagnostic performance and incremental value of qualitative CMR perfusion and quantitative CT perfusion complementary to cardiac computed tomography angiography (CCTA) for the diagnosis of haemodynamically significant CAD using fractional flow reserve (FFR) and quantitative coronary angiography (QCA) as reference standard. METHODS AND RESULTS CCTA, qualitative visual CMR perfusion, visual CT perfusion, and quantitative relative myocardial blood flow (CT-MBF) were performed in patients with stable angina pectoris. FFR was measured in coronary vessels with stenosis visually estimated between 30% and 90% diameter reduction on ICA. Haemodynamically significant CAD was defined as FFR <0.80, or QCA ≥80% in those cases where FFR could not be performed. A total of 218 vessels from 93 patients were assessed. An optimal cut-off of 0.72 for relative CT-MBF was determined. The diagnostic performances (area under the receiver-operating characteristics curves, 95% CI) of visual CMR perfusion (0.84, 0.77-0.90) and relative CT-MBF (0.86, 0.81-0.92) were comparable and outperformed visual CT perfusion (0.64, 0.57-0.71). In combination with CCTA ≥50%, CCTA + visual CMR perfusion (0.91, 0.86-0.96), CCTA + relative CT-MBF (0.92, 0.88-0.96), and CCTA + visual CT perfusion (0.82, 0.75-0.90) improved discrimination compared with CCTA alone (all P < 0.05). CONCLUSION Visual CMR perfusion and relative CT-MBF outperformed visual CT perfusion and provided incremental discrimination compared with CCTA alone for the diagnosis of haemodynamically significant CAD.
Collapse
Affiliation(s)
- Martina C de Knegt
- Centre for Advanced Cardiovascular Imaging, William Harvey Research Institute, Barts NIHR Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Alexia Rossi
- Centre for Advanced Cardiovascular Imaging, William Harvey Research Institute, Barts NIHR Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
| | - Steffen E Petersen
- Centre for Advanced Cardiovascular Imaging, William Harvey Research Institute, Barts NIHR Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
| | - Andrew Wragg
- Centre for Advanced Cardiovascular Imaging, William Harvey Research Institute, Barts NIHR Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
| | - Ruhaid Khurram
- Centre for Advanced Cardiovascular Imaging, William Harvey Research Institute, Barts NIHR Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Mark Westwood
- Centre for Advanced Cardiovascular Imaging, William Harvey Research Institute, Barts NIHR Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
| | - Bunny Saberwal
- Centre for Advanced Cardiovascular Imaging, William Harvey Research Institute, Barts NIHR Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
| | - Anthony Mathur
- Centre for Advanced Cardiovascular Imaging, William Harvey Research Institute, Barts NIHR Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
| | - Koen Nieman
- Department of Radiology and Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, Medical Center, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Magnus T Jensen
- Centre for Advanced Cardiovascular Imaging, William Harvey Research Institute, Barts NIHR Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital Herlev-Gentofte, Kildegaardsvej 28, 2900 Hellerup, Denmark
| | - Francesca Pugliese
- Centre for Advanced Cardiovascular Imaging, William Harvey Research Institute, Barts NIHR Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
| |
Collapse
|
8
|
Yu L, Tao X, Dai X, Liu T, Zhang J. Dynamic CT Myocardial Perfusion Imaging in Patients without Obstructive Coronary Artery Disease: Quantification of Myocardial Blood Flow according to Varied Heart Rate Increments after Stress. Korean J Radiol 2020; 22:97-105. [PMID: 32783416 PMCID: PMC7772379 DOI: 10.3348/kjr.2020.0249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/05/2020] [Accepted: 05/09/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE The present study aimed to investigate the association between myocardial blood flow (MBF) quantified by dynamic CT myocardial perfusion imaging (CT-MPI) and the increments in heart rate (HR) after stress in patients without obstructive coronary artery disease. MATERIALS AND METHODS We retrospectively included 204 subjects who underwent both dynamic CT-MPI and coronary CT angiography (CCTA). Patients with more than minimal coronary stenosis (diameter ≥ 25%), history of myocardial infarction/revascularization, cardiomyopathy, and microvascular dysfunction were excluded. Global MBF at stress was measured using hybrid deconvolution and maximum slope model. Furthermore, the HR increments after stress were recorded. RESULTS The median radiation dose of dynamic CT-MPI plus CCTA was 5.5 (4.5-6.8) mSv. The median global MBF of all subjects was 156.4 (139.8-180.4) mL/100 mL/min. In subjects with HR increment between 10 to 19 beats per minute (bpm), the global MBF was significantly lower than that of subjects with increment between 20 to 29 bpm (153.3 mL/100 mL/min vs. 171.3 mL/100 mL/min, p = 0.027). This difference became insignificant when the HR increment further increased to ≥ 30 bpm. CONCLUSION The global MBF value was associated with the extent of increase in HR after stress. Significantly higher global MBF was seen in subjects with HR increment of ≥ 20 bpm.
Collapse
Affiliation(s)
- Lihua Yu
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaofeng Tao
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Dai
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ting Liu
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiayin Zhang
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|