1
|
Min JH, Yu JI, Kim SH, Kim YK, Kim K, Park HC, Park JO, Hong JY, Lee KT, Lee KH, Lee JK, Park JK, Choi JH, Heo JS, Han IW, Kim H, Shin SH, Yoon SJ, Woo SY. Skeletal Muscle Index Changes on Locoregional Treatment Application After FOLFIRINOX and Survival in Pancreatic Cancer. J Cachexia Sarcopenia Muscle 2025; 16:e16343. [PMID: 39578950 DOI: 10.1002/jcsm.13643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Patients with borderline resectable (BR) or locally advanced pancreatic cancer (LAPC) require complex management strategies. This study evaluated the prognostic significance of the perichemotherapy skeletal muscle index (SMI) and carbohydrate antigen 19-9 (CA 19-9) in patients with BRPC or LAPC treated with FOLFIRINOX. METHODS We retrospectively evaluated 227 patients with BR or LAPC who received at least four cycles of chemotherapy between 2015 and 2020. We analysed chemotherapy response, changes in SMI (ΔSMI, %) on computed tomography (CT) and CA19-9 to determine their impact on progression-free survival (PFS) and overall survival (OS). After the early application of loco-regional treatments (LRT) within 3 months after completing four cycles of chemotherapy, the outcomes were compared between ΔSMI and CA19-9 subgroups. RESULTS Among 227 patients (median age, 60 years; 124 [54.6%] male) with 97 BR and 130 LAPC, 50.7% showed partial response (PR) to chemotherapy, 44.5% showed stable disease and 4.8% showed progressive disease (PD). Post-chemotherapy CA19-9 levels were normalized in 41.0% of patients. The high and low ΔSMI groups (based on the gender-specific cut-off of -8.6% for males and -2.9% for females) comprised 114 (50.2%) and 113 (49.8%) patients, respectively. The high ΔSMI group had poorer survival rates than the low ΔSMI group in both PFS (HR = 1.32, p = 0.05) and OS (HR = 1.74, p = 0.001). Multivariable analysis showed that ΔSMI (high vs. low; PFS, HR = 1.39, p = 0.03; OS, HR = 1.82, p < 0.001) and post-chemotherapy response (PD vs. PR/SD; PFS, HR = 18.69, p < 0.001; OS, HR = 6.19, p < 0.001) were independently associated with both PFS and OS. Additionally, the post-chemotherapy CA19-9 (≥ 37 vs. < 37; HR = 1.48, p = 0.01) was an independent predictor for PFS. Early application of LRT after chemotherapy significantly improved PFS and OS in both ΔSMI groups (all p < 0.05). However, it was not beneficial in the group with high ΔSMI and post-chemotherapy CA19-9 ≥ 37 (PFS, p = 0.39 and OS, p = 0.33). CONCLUSIONS Progressive sarcopenic deterioration after four cycles of chemotherapy was associated with poor survival outcomes in patients with BR or LAPC after FOLFIRINOX. We also investigated the optimal clinical setting for the early application LRTs using the ΔSMI and post-chemotherapy CA 19-9.
Collapse
Affiliation(s)
- Ji Hye Min
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jeong Il Yu
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Seong Hyun Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Young Kon Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kangpyo Kim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hee Chul Park
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Joon Oh Park
- Divisions of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jung Yong Hong
- Divisions of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyu Taek Lee
- Divisions of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kwang Hyuck Lee
- Divisions of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jong Kyun Lee
- Divisions of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Joo Kyung Park
- Divisions of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jin Ho Choi
- Divisions of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jin Seok Heo
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - In Woong Han
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hongbeom Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sang Hyun Shin
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - So Jung Yoon
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sook-Young Woo
- Biomedical Statistics Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea
| |
Collapse
|
2
|
Corallo C, Al-Adhami AS, Jamieson N, Valle J, Radhakrishna G, Moir J, Albazaz R. An update on pancreatic cancer imaging, staging, and use of the PACT-UK radiology template pre- and post-neoadjuvant treatment. Br J Radiol 2025; 98:13-26. [PMID: 39460945 DOI: 10.1093/bjr/tqae217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 10/01/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma continues to have a poor prognosis, although recent advances in neoadjuvant treatments (NATs) have provided some hope. Imaging assessment of suspected tumours can be challenging and requires a specific approach, with pancreas protocol CT being the primary imaging modality for staging with other modalities used as problem-solving tools to facilitate appropriate management. Imaging assessment post NAT can be particularly difficult due to a current lack of robust radiological criteria to predict response and differentiate treatment induced fibrosis/inflammation from residual tumour. This review aims to provide an update of pancreatic ductal adenocarcinoma with particular focus on three points: tumour staging pre- and post-NAT including vascular assessment, structured reporting with introduction of the PAncreatic Cancer reporting Template-UK (PACT-UK) radiology template, and the potential future role of artificial intelligence in the diagnosis and staging of pancreatic cancer.
Collapse
Affiliation(s)
- Carmelo Corallo
- Department of Radiology, St James's University Hospital, Leeds LS9 7TF, United Kingdom
| | - Abdullah S Al-Adhami
- Department of Radiology, Glasgow Royal Infirmary, Glasgow G31 2ER, United Kingdom
| | - Nigel Jamieson
- HPB Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, United Kingdom
| | - Juan Valle
- Division of Cancer Sciences, University of Manchester, Manchester M20 4GJ, United Kingdom
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4 BX, United Kingdom
| | | | - John Moir
- HPB Unit, Freeman Hospital, Newcastle Upon Tyne NE7 7DN, United Kingdom
| | - Raneem Albazaz
- Department of Radiology, St James's University Hospital, Leeds LS9 7TF, United Kingdom
- University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
3
|
Zins M. Editorial Comment: CT Surveillance for Local Recurrence After Pancreatic Cancer Resection-Focus on Perivascular Soft Tissue in the Surgical Bed. AJR Am J Roentgenol 2024; 223:e2431999. [PMID: 39259013 DOI: 10.2214/ajr.24.31999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Affiliation(s)
- Marc Zins
- Paris Saint Joseph Hospital, Paris, France
| |
Collapse
|
4
|
Chen Y, Ma C, Yang P, Mao K, Gao Y, Chen L, Wang Z, Bian Y, Shao C, Lu J. Values of apparent diffusion coefficient in pancreatic cancer patients receiving neoadjuvant therapy. BMC Cancer 2024; 24:1160. [PMID: 39294623 PMCID: PMC11412028 DOI: 10.1186/s12885-024-12934-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/11/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND To investigate the values of apparent diffusion coefficient (ADC) for the treatment response evaluation in pancreatic cancer (PC) patients receiving neoadjuvant therapy (NAT). METHODS This study included 103 NAT patients with histologically proven PC. ADC maps were generated using monoexponential diffusion-weighted imaging (b values: 50, 800 s/mm2). Tumors' minimum, maximum, and mean ADCs were measured and compared pre- and post-NAT. Variations in ADC values measured between pre- and post-NAT completion for NAT methods (chemotherapy, chemoradiotherapy), tumor locations (head/neck, body/tail), tumor regression grade (TRG) levels (0-2, 3), N stages (N0, N1/N2) and tumor resection margin status (R0, R1), were further analyzed. RESULTS The minimum, maximum, and mean ADC values all increased dramatically after NAT, rising from 23.4 to 25.4% (all p < 0.001): mean (average: 1.626 × 10- 3 mm2/s vs. 1.315 × 10- 3 mm2/s), minimum (median: 1.274 × 10- 3 mm2/s vs. 1.034 × 10- 3 mm2/s), and maximum (average: 1.981 × 10- 3 mm2/s vs. 1.580 × 10- 3 mm2/s). The ADCs between the subgroups of all the criteria under investigation did not differ significantly for the minimum, maximum, or mean values pre- or post-NAT (P = 0.08 to 1.00). In the patients with borderline resectable PC (n = 47), the rate of tumor size changes after NAT was correlated with the pre-NAT mean ADC values (Spearman's coefficient: 0.288, P = 0.049). CONCLUSIONS The ADC values of PC increased significantly following NAT; however, the percentage increases failed to provide any predictive value for the resection margin status or TRG levels.
Collapse
Affiliation(s)
- Yufei Chen
- College of Electronic and Information Engineering, Tongji University, Shanghai, China
| | - Chao Ma
- College of Electronic and Information Engineering, Tongji University, Shanghai, China.
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Changhai Road 168, Shanghai, 200434, China.
| | - Panpan Yang
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Kuanzheng Mao
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yisha Gao
- Department of Pathology, Changhai Hospital of Shanghai, Naval Medical University, Shanghai, China
| | - Luguang Chen
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Zhen Wang
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Yun Bian
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Chengwei Shao
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Jianping Lu
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| |
Collapse
|
5
|
Theijse RT, Stoop TF, Leenart PD, Lutchman KRD, Erdmann JI, Daams F, Zonderhuis BM, Festen S, Swijnenburg RJ, van Gulik TM, Schoorlemmer A, Sterk ALA, van Dieren S, Fariña A, Voermans RP, Wilmink JW, Kazemier G, Busch OR, Besselink MG. Surgery for Locally Advanced Pancreatic Cancer Following Induction Chemotherapy: A Single-Center Experience. Ann Surg Oncol 2024; 31:6180-6192. [PMID: 38954094 PMCID: PMC11300483 DOI: 10.1245/s10434-024-15591-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND The use of surgery in patients with locally advanced pancreatic cancer (LAPC) following induction chemotherapy is increasing. However, most series do not report on the total cohort of patients undergoing surgical exploration; therefore, this single-center study investigates outcomes among all consecutive patients with LAPC who underwent surgical exploration. METHODS We conducted a retrospective, single-center analysis including all consecutive patients with LAPC (Dutch Pancreatic Cancer Group criteria) who underwent surgical exploration with curative intent (January 2014-June 2023) after induction therapy. Primary outcomes were resection rate and overall survival (OS) from the time of diagnosis. RESULTS Overall, 127 patients underwent surgical exploration for LAPC, whereby 100 patients (78.7%) underwent resection and 27 patients (21.3%) underwent a non-therapeutic laparotomy due to the extent of vascular involvement (n = 11, 8.7%) or occult metastases (n = 16, 12.6%). The overall in-hospital/30-day mortality rate was 0.8% and major morbidity was 31.3% (in patients after resection: 1.0% and 33.3%, respectively). The overall 90-day mortality rate was 5.5%, which included 3.1% mortality due to disease progression. Resection was associated with longer median OS {29 months (95% confidence interval [CI] 26-43) vs. 17 months (95% CI 11-26); p < 0.001} compared with patients undergoing non-therapeutic laparotomy, with corresponding 5-year OS rates of 28.4% and 7.7%. In Cox proportional hazard regression analysis, only pancreatic body/tail tumors independently predicted OS (hazard ratio 1.788 [95% CI 1.042-3.068]). CONCLUSION This single-center series found a resection rate of 78.7% in patients with LAPC selected for surgical exploration, with a low risk of mortality and morbidity in all explored patients and a 5-year OS rate after resection of 28.4%.
Collapse
Affiliation(s)
- Rutger T Theijse
- Department of Surgery, Amsterdam UMC, Location University of Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Thomas F Stoop
- Department of Surgery, Amsterdam UMC, Location University of Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Philip D Leenart
- Department of Surgery, Amsterdam UMC, Location University of Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Kishan R D Lutchman
- Department of Surgery, Amsterdam UMC, Location University of Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Joris I Erdmann
- Department of Surgery, Amsterdam UMC, Location University of Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Freek Daams
- Cancer Center Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC, Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Babs M Zonderhuis
- Cancer Center Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC, Location Vrije Universiteit, Amsterdam, The Netherlands
| | | | - Rutger-Jan Swijnenburg
- Department of Surgery, Amsterdam UMC, Location University of Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC, Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Thomas M van Gulik
- Department of Surgery, Amsterdam UMC, Location University of Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Annuska Schoorlemmer
- Department of Surgery, Amsterdam UMC, Location University of Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - André L A Sterk
- Department of Surgery, Amsterdam UMC, Location University of Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Susan van Dieren
- Department of Surgery, Amsterdam UMC, Location University of Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Arantza Fariña
- Cancer Center Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
| | - Rogier P Voermans
- Cancer Center Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Johanna W Wilmink
- Cancer Center Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
| | - Geert Kazemier
- Cancer Center Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC, Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Olivier R Busch
- Department of Surgery, Amsterdam UMC, Location University of Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Marc G Besselink
- Department of Surgery, Amsterdam UMC, Location University of Amsterdam, 1081 HV, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Noda Y, Kobayashi K, Kawaguchi M, Ando T, Takai Y, Suto T, Iritani Y, Ishihara T, Fukada M, Murase K, Kawai N, Kaga T, Miyoshi T, Hyodo F, Kato H, Miyazaki T, Matsuhashi N, Yoshida K, Matsuo M. Assessment of Arterial Involvement in Pancreatic Cancer: Utility of Reconstructed CT Images Perpendicular to Artery. Cancers (Basel) 2024; 16:2271. [PMID: 38927975 PMCID: PMC11201929 DOI: 10.3390/cancers16122271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
The purpose of this study was to investigate the utility of reconstructed CT images perpendicular to the artery for assessing arterial involvement from pancreatic cancer and compare the interobserver variability between it and the current diagnostic imaging method. This retrospective study included patients with pancreatic cancer in the pancreatic body or tail who underwent preoperative pancreatic protocol CT and distal pancreatectomy. Five radiologists used axial and coronal CT images (current method) and perpendicular reconstructed CT images (proposed method) to determine if the degree of solid soft-tissue contact with the splenic artery was ≤180° or >180°. The generalized estimating equations were used to compare the diagnostic performance of solid soft-tissue contact >180° between the current and proposed methods. Fleiss' ĸ statistics were used to assess interobserver variability. The sensitivity and negative predictive value for diagnosing solid soft-tissue contact >180° were higher (p < 0.001 for each) and the specificity (p = 0.003) and positive predictive value (p = 0.003) were lower in the proposed method than the current method. Interobserver variability was improved in the proposed method compared with the current method (ĸ = 0.87 vs. 0.67). Reconstructed CT images perpendicular to the artery showed higher sensitivity and negative predictive value for diagnosing solid soft-tissue contact >180° than the current method and demonstrated improved interobserver variability.
Collapse
Affiliation(s)
- Yoshifumi Noda
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (M.K.); (T.A.); (Y.T.); (T.S.); (Y.I.); (N.K.); (T.K.); (H.K.); (M.M.)
- Department of Frontier Science for Imaging, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Kazuhiro Kobayashi
- Department of Pathology, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194, Japan; (K.K.); (T.M.)
| | - Masaya Kawaguchi
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (M.K.); (T.A.); (Y.T.); (T.S.); (Y.I.); (N.K.); (T.K.); (H.K.); (M.M.)
| | - Tomohiro Ando
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (M.K.); (T.A.); (Y.T.); (T.S.); (Y.I.); (N.K.); (T.K.); (H.K.); (M.M.)
| | - Yukiko Takai
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (M.K.); (T.A.); (Y.T.); (T.S.); (Y.I.); (N.K.); (T.K.); (H.K.); (M.M.)
| | - Taketo Suto
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (M.K.); (T.A.); (Y.T.); (T.S.); (Y.I.); (N.K.); (T.K.); (H.K.); (M.M.)
| | - Yukako Iritani
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (M.K.); (T.A.); (Y.T.); (T.S.); (Y.I.); (N.K.); (T.K.); (H.K.); (M.M.)
| | - Takuma Ishihara
- Innovative and Clinical Research Promotion Center, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194, Japan;
| | - Masahiro Fukada
- Department of Gastroenterological Surgery and Pediatric Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (M.F.); (K.M.); (N.M.); (K.Y.)
| | - Katsutoshi Murase
- Department of Gastroenterological Surgery and Pediatric Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (M.F.); (K.M.); (N.M.); (K.Y.)
| | - Nobuyuki Kawai
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (M.K.); (T.A.); (Y.T.); (T.S.); (Y.I.); (N.K.); (T.K.); (H.K.); (M.M.)
| | - Tetsuro Kaga
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (M.K.); (T.A.); (Y.T.); (T.S.); (Y.I.); (N.K.); (T.K.); (H.K.); (M.M.)
| | - Toshiharu Miyoshi
- Department of Radiology Services, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194, Japan;
| | - Fuminori Hyodo
- Department of Pharmacology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan;
- Center for One Medicine Innovative Translational Research (COMIT), Institute for Advanced Study, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Hiroki Kato
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (M.K.); (T.A.); (Y.T.); (T.S.); (Y.I.); (N.K.); (T.K.); (H.K.); (M.M.)
| | - Tatsuhiko Miyazaki
- Department of Pathology, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194, Japan; (K.K.); (T.M.)
| | - Nobuhisa Matsuhashi
- Department of Gastroenterological Surgery and Pediatric Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (M.F.); (K.M.); (N.M.); (K.Y.)
| | - Kazuhiro Yoshida
- Department of Gastroenterological Surgery and Pediatric Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (M.F.); (K.M.); (N.M.); (K.Y.)
| | - Masayuki Matsuo
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (M.K.); (T.A.); (Y.T.); (T.S.); (Y.I.); (N.K.); (T.K.); (H.K.); (M.M.)
| |
Collapse
|
7
|
Bilreiro C, Andrade L, Santiago I, Marques RM, Matos C. Imaging of pancreatic ductal adenocarcinoma - An update for all stages of patient management. Eur J Radiol Open 2024; 12:100553. [PMID: 38357385 PMCID: PMC10864763 DOI: 10.1016/j.ejro.2024.100553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/16/2024] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a common and lethal cancer. From diagnosis to disease staging, response to neoadjuvant therapy assessment and patient surveillance after resection, imaging plays a central role, guiding the multidisciplinary team in decision-planning. Review aims and findings This review discusses the most up-to-date imaging recommendations, typical and atypical findings, and issues related to each step of patient management. Example cases for each relevant condition are presented, and a structured report for disease staging is suggested. Conclusion Despite current issues in PDAC imaging at different stages of patient management, the radiologist is essential in the multidisciplinary team, as the conveyor of relevant imaging findings crucial for patient care.
Collapse
Affiliation(s)
- Carlos Bilreiro
- Radiology Department, Champalimaud Foundation, Lisbon, Portugal
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
- Nova Medical School, Lisbon, Portugal
| | - Luísa Andrade
- Radiology Department, Champalimaud Foundation, Lisbon, Portugal
| | - Inês Santiago
- Radiology Department, Champalimaud Foundation, Lisbon, Portugal
| | - Rui Mateus Marques
- Nova Medical School, Lisbon, Portugal
- Radiology Department, Hospital de S. José, Lisbon, Portugal
| | - Celso Matos
- Radiology Department, Champalimaud Foundation, Lisbon, Portugal
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| |
Collapse
|
8
|
Bilreiro C, Andrade L, Marques RM, Matos C. Diffusion-weighted imaging for determining response to neoadjuvant therapy in pancreatic cancer: a systematic review and meta-analysis. Eur Radiol 2024; 34:3238-3248. [PMID: 37907761 PMCID: PMC11126427 DOI: 10.1007/s00330-023-10381-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/15/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023]
Abstract
OBJECTIVES To determine the role of diffusion-weighted imaging (DWI) for predicting response to neoadjuvant therapy (NAT) in pancreatic cancer. MATERIALS AND METHODS MEDLINE, EMBASE, and Cochrane Library databases were searched for studies evaluating the performance of apparent diffusion coefficient (ADC) to assess response to NAT. Data extracted included ADC pre- and post-NAT, for predicting response as defined by imaging, histopathology, or clinical reference standards. ADC values were compared with standardized mean differences. Risk of bias was assessed using the Quality Assessment of Diagnostic Studies (QUADAS-2). RESULTS Of 337 studies, 7 were included in the analysis (161 patients). ADC values reported for the pre- and post-NAT assessments overlapped between responders and non-responders. One study reported inability of ADC increase after NAT for distinguishing responders and non-responders. A correlation with histopathological response was reported for pre- and post-NAT ADC in 4 studies. DWI's diagnostic performance was reported to be high in three studies, with a 91.6-100% sensitivity and 62.5-94.7% specificity. Finally, heterogeneity and high risk of bias were identified across studies, affecting the domains of patient selection, index test, reference standard, and flow and timing. CONCLUSION DWI might be useful for determining response to NAT in pancreatic cancer. However, there are still too few studies on this matter, which are also heterogeneous and at high risk for bias. Further studies with standardized procedures for data acquisition and accurate reference standards are needed. CLINICAL RELEVANCE STATEMENT Diffusion-weighted MRI might be useful for assessing response to neoadjuvant therapy in pancreatic cancer. However, further studies with robust data are needed to provide specific recommendations for clinical practice. KEY POINTS •The role of DWI with ADC measurements for assessing response to neoadjuvant therapy in pancreatic cancer is still unclear. •Pre- and post-neoadjuvant therapy ADC values overlap between responders and non-responders. •DWI has a reported high diagnostic performance for determining response when using histopathological or clinical reference standards; however, studies are still few and at high risk for bias.
Collapse
Affiliation(s)
- Carlos Bilreiro
- Radiology Department, Champalimaud Foundation, Lisbon, Portugal.
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal.
- Nova Medical School, Lisbon, Portugal.
| | - Luísa Andrade
- Radiology Department, Champalimaud Foundation, Lisbon, Portugal
| | - Rui Mateus Marques
- Nova Medical School, Lisbon, Portugal
- Radiology Department, Hospital de S. José, Lisbon, Portugal
| | - Celso Matos
- Radiology Department, Champalimaud Foundation, Lisbon, Portugal
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| |
Collapse
|
9
|
Miyahara S, Takahashi H, Akita H, Sasaki K, Mukai Y, Iwagami Y, Hasegawa S, Yamada D, Tomimaru Y, Noda T, Wada H, Kobayashi S, Doki Y, Eguchi H. Prognostic Significance of Biologic Factors in Patients with a Modest Radiologic Response to Neoadjuvant Treatment for Resectable and Borderline Resectable Pancreatic Cancers: Impact of the Combination Index of Sialyl-Lewis Antigen-Related Tumor Markers. Ann Surg Oncol 2024; 31:2932-2942. [PMID: 38368291 DOI: 10.1245/s10434-024-14945-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/04/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Appropriate re-evaluation after neoadjuvant treatment (NAT) is important for optimal treatment selection. Nonetheless, determining the operative eligibility of patients with a modest radiologic response remains controversial. This study aimed to assess the prognostic significance of biologic factors for patients showing a modest radiologic response to NAT and investigate the tumor markers (TMs), CA19-9 alone, DUPAN-II alone, and their combination, to create an index that combines these sialyl-Lewis antigen-related TMs associated with treatment outcomes. METHODS This study enrolled patients deemed to have a "stable disease" by RECIST classification with slight progression (tumor size increase rate, ≤20%) as their radiologic response after NAT. A sialyl-Lewis-related index (sLe index), calculated by adding one fourth of the serum DUPAN-II value to the CA19-9 value, was created. The prognostic significances of CA19-9, DUPAN-II, and the sLe index were assessed in relation to postoperative outcomes. RESULTS An sLe index lower than the cutoff value (45.25) was significantly associated with favorable disease-free survival. Moreover, the post-NAT sLe index had a higher area under the curve value for recurrence within 24 months than the post-NAT levels of CA19-9 or DUPAN-II alone. Multivariable analysis showed that a post-NAT sLe index higher than 45.25 was the single independent predictive factor for recurrence within 24 months. CONCLUSIONS Additional evaluation of biologic factors can potentially enhance patient selection, particularly for patients showing a limited radiologic response to NAT. The authors' index is a simple indicator for the biologic evaluation of multiple combined sialyl-Lewis antigen-related TMs and may offer a better predictive significance.
Collapse
Affiliation(s)
- Satoru Miyahara
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, Osaka City, Osaka, Japan
| | - Hidenori Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, Osaka City, Osaka, Japan.
| | - Hirofumi Akita
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, Osaka City, Osaka, Japan
| | - Kazuki Sasaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yosuke Mukai
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, Osaka City, Osaka, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shinichiro Hasegawa
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, Osaka City, Osaka, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hiroshi Wada
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, Osaka City, Osaka, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
10
|
Xia DQ, Zhou Y, Yang S, Li FF, Tian LY, Li YH, Xu HY, Xiao CZ, Wang W. Combining prognostic value of serum carbohydrate antigen 19-9 and tumor size reduction ratio in pancreatic ductal adenocarcinoma. World J Gastrointest Oncol 2024; 16:798-809. [PMID: 38577439 PMCID: PMC10989379 DOI: 10.4251/wjgo.v16.i3.798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/15/2023] [Accepted: 01/27/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a common cancer with increasing morbidity and mortality due to changes of social environment. AIM To evaluate the significance of serum carbohydrate antigen 19-9 (CA19-9) and tumor size changes pre- and post-neoadjuvant therapy (NAT). METHODS This retrospective study was conducted at the Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital. This study specifically assessed CA19-9 levels and tumor size before and after NAT. RESULTS A total of 156 patients who completed NAT and subsequently underwent tumor resection were included in this study. The average age was 65.4 ± 10.6 years and 72 (46.2%) patients were female. Before survival analysis, we defined the post-NAT serum CA19-9 level/pre-NAT serum CA19-9 level as the CA19-9 ratio (CR). The patients were divided into three groups: CR < 0.5, CR > 0.5 and < 1 and CR > 1. With regard to tumor size measured by both computed tomography and magnetic resonance imaging, we defined the post-NAT tumor size/pre-NAT tumor size as the tumor size ratio (TR). The patients were then divided into three groups: TR < 0.5, TR > 0.5 and < 1 and TR > 1. Based on these groups divided according to CR and TR, we performed both overall survival (OS) and disease-free survival (DFS) analyses. Log-rank tests showed that both OS and DFS were significantly different among the groups according to CR and TR (P < 0.05). CR and TR after NAT were associated with increased odds of achieving a complete or near-complete pathologic response. Moreover, CR (hazard ratio: 1.721, 95%CI: 1.373-3.762; P = 0.006), and TR (hazard ratio: 1.435, 95%CI: 1.275-4.363; P = 0.014) were identified as independent factors associated with OS. CONCLUSION This study demonstrated that post-NAT serum CA19-9 level/pre-NAT serum CA19-9 level and post-NAT tumor size/pre-NAT tumor size were independent factors associated with OS in patients with PDAC who received NAT and subsequent surgical resection.
Collapse
Affiliation(s)
- Dong-Qin Xia
- Oncology Treatment Center of Traditional Chinese Medicine, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yong Zhou
- Department of Oncology, Chongqing Weisiteng Biotech Translational Research Institute, Chongqing 430039, China
- Chongqing Key Laboratory on Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 430065, China
| | - Shuang Yang
- Oncology Treatment Center of Traditional Chinese Medicine, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Fang-Fei Li
- Oncology Treatment Center of Traditional Chinese Medicine, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Li-Ya Tian
- Oncology Treatment Center of Traditional Chinese Medicine, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yan-Hua Li
- Oncology Treatment Center of Traditional Chinese Medicine, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Hai-Yan Xu
- Oncology Treatment Center of Traditional Chinese Medicine, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Cai-Zhi Xiao
- Oncology Treatment Center of Traditional Chinese Medicine, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Wei Wang
- Oncology Treatment Center of Traditional Chinese Medicine, Chongqing University Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
11
|
Stoop TF, Theijse RT, Seelen LWF, Groot Koerkamp B, van Eijck CHJ, Wolfgang CL, van Tienhoven G, van Santvoort HC, Molenaar IQ, Wilmink JW, Del Chiaro M, Katz MHG, Hackert T, Besselink MG. Preoperative chemotherapy, radiotherapy and surgical decision-making in patients with borderline resectable and locally advanced pancreatic cancer. Nat Rev Gastroenterol Hepatol 2024; 21:101-124. [PMID: 38036745 DOI: 10.1038/s41575-023-00856-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 12/02/2023]
Abstract
Surgical resection combined with systemic chemotherapy is the cornerstone of treatment for patients with localized pancreatic cancer. Upfront surgery is considered suboptimal in cases with extensive vascular involvement, which can be classified as either borderline resectable pancreatic cancer or locally advanced pancreatic cancer. In these patients, FOLFIRINOX or gemcitabine plus nab-paclitaxel chemotherapy is currently used as preoperative chemotherapy and is eventually combined with radiotherapy. Thus, more patients might reach 5-year overall survival. Patient selection for chemotherapy, radiotherapy and subsequent surgery is based on anatomical, biological and conditional parameters. Current guidelines and clinical practices vary considerably regarding preoperative chemotherapy and radiotherapy, response evaluation, and indications for surgery. In this Review, we provide an overview of the clinical evidence regarding disease staging, preoperative therapy, response evaluation and surgery in patients with borderline resectable pancreatic cancer or locally advanced pancreatic cancer. In addition, a clinical work-up is proposed based on the available evidence and guidelines. We identify knowledge gaps and outline a proposed research agenda.
Collapse
Affiliation(s)
- Thomas F Stoop
- Amsterdam UMC, location University of Amsterdam, Department of Surgery, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam, Netherlands
- Division of Surgical Oncology, Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Rutger T Theijse
- Amsterdam UMC, location University of Amsterdam, Department of Surgery, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Leonard W F Seelen
- Department of Surgery, Regional Academic Cancer Center Utrecht, University Medical Center Utrecht and St. Antonius Hospital Nieuwegein, Utrecht, Netherlands
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | - Casper H J van Eijck
- Department of Surgery, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | - Christopher L Wolfgang
- Division of Surgical Oncology, Department of Surgery, New York University Medical Center, New York City, NY, USA
| | - Geertjan van Tienhoven
- Cancer Center Amsterdam, Amsterdam, Netherlands
- Amsterdam UMC, location University of Amsterdam, Department of Radiation Oncology, Amsterdam, Netherlands
| | - Hjalmar C van Santvoort
- Department of Surgery, Regional Academic Cancer Center Utrecht, University Medical Center Utrecht and St. Antonius Hospital Nieuwegein, Utrecht, Netherlands
| | - I Quintus Molenaar
- Department of Surgery, Regional Academic Cancer Center Utrecht, University Medical Center Utrecht and St. Antonius Hospital Nieuwegein, Utrecht, Netherlands
| | - Johanna W Wilmink
- Cancer Center Amsterdam, Amsterdam, Netherlands
- Amsterdam UMC, location University of Amsterdam, Department of Medical Oncology, Amsterdam, Netherlands
| | - Marco Del Chiaro
- Division of Surgical Oncology, Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew H G Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Marc G Besselink
- Amsterdam UMC, location University of Amsterdam, Department of Surgery, Amsterdam, Netherlands.
- Cancer Center Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
12
|
Khasawneh H, Ferreira Dalla Pria HR, Miranda J, Nevin R, Chhabra S, Hamdan D, Chakraborty J, Biachi de Castria T, Horvat N. CT Imaging Assessment of Pancreatic Adenocarcinoma Resectability after Neoadjuvant Therapy: Current Status and Perspective on the Use of Radiomics. J Clin Med 2023; 12:6821. [PMID: 37959287 PMCID: PMC10649102 DOI: 10.3390/jcm12216821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Pancreatic adenocarcinoma (PDAC) is the most common pancreatic cancer and is associated with poor prognosis, a high mortality rate, and a substantial number of healthy life years lost. Surgical resection is the primary treatment option for patients with resectable disease; however, only 10-20% of all patients with PDAC are eligible for resection at the time of diagnosis. In this context, neoadjuvant therapy has the potential to increase the number of patients who are eligible for resection, thereby improving the overall survival rate. For patients who undergo neoadjuvant therapy, computed tomography (CT) remains the primary imaging tool for assessing treatment response. Nevertheless, the interpretation of imaging findings in this context remains challenging, given the similarity between viable tumor and treatment-related changes following neoadjuvant therapy. In this review, following an overview of the various treatment options for PDAC according to its resectability status, we will describe the key challenges regarding CT-based evaluation of PDAC treatment response following neoadjuvant therapy, as well as summarize the literature on CT-based evaluation of PDAC treatment response, including the use of radiomics. Finally, we will outline key recommendations for the management of PDAC after neoadjuvant therapy, taking into consideration CT-based findings.
Collapse
Affiliation(s)
- Hala Khasawneh
- Department of Radiology, University of Texas Southwestern, 5323 Harry Hines Blvd, Dallas, TX 75390, USA;
| | | | - Joao Miranda
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (J.M.); (R.N.); (S.C.)
- Department of Radiology, University of Sao Paulo, R. Dr. Ovidio Pires de Campos, 75-Cerqueira Cesar, Sao Paulo 05403-010, SP, Brazil
| | - Rachel Nevin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (J.M.); (R.N.); (S.C.)
| | - Shalini Chhabra
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (J.M.); (R.N.); (S.C.)
| | - Dina Hamdan
- Department of Radiology, The Mount Sinai Hospital, 1468 Madison Ave, New York, NY 10029, USA;
| | - Jayasree Chakraborty
- Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA;
| | - Tiago Biachi de Castria
- Department of Gastrointestinal Oncology, Moffit Cancer Center, 12902 USF Magnolia Drive, Tampa, FL 33612, USA;
- Morsani College of Medicine, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
| | - Natally Horvat
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (J.M.); (R.N.); (S.C.)
- Department of Radiology, University of Sao Paulo, R. Dr. Ovidio Pires de Campos, 75-Cerqueira Cesar, Sao Paulo 05403-010, SP, Brazil
| |
Collapse
|
13
|
Skornitzke S, Vats N, Mayer P, Kauczor HU, Stiller W. Pancreatic CT perfusion: quantitative meta-analysis of disease discrimination, protocol development, and effect of CT parameters. Insights Imaging 2023; 14:132. [PMID: 37477754 PMCID: PMC10361925 DOI: 10.1186/s13244-023-01471-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND This study provides a quantitative meta-analysis of pancreatic CT perfusion studies, investigating choice of study parameters, ability for quantitative discrimination of pancreatic diseases, and influence of acquisition and reconstruction parameters on reported results. METHODS Based on a PubMed search with key terms 'pancreas' or 'pancreatic,' 'dynamic' or 'perfusion,' and 'computed tomography' or 'CT,' 491 articles published between 1982 and 2020 were screened for inclusion in the study. Inclusion criteria were: reported original data, human subjects, five or more datasets, measurements of pancreas or pancreatic pathologies, and reported quantitative perfusion parameters. Study parameters and reported quantitative measurements were extracted, and heterogeneity of study parameters and trends over time are analyzed. Pooled data were tested with weighted ANOVA and ANCOVA models for differences in perfusion results between normal pancreas, pancreatitis, PDAC (pancreatic ductal adenocarcinoma), and non-PDAC (e.g., neuroendocrine tumors, insulinomas) and based on study parameters. RESULTS Reported acquisition parameters were heterogeneous, except for contrast agent amount and injection rate. Tube potential and slice thickness decreased, whereas tube current time product and scan coverage increased over time. Blood flow and blood volume showed significant differences between pathologies (both p < 0.001), unlike permeability (p = 0.11). Study parameters showed a significant effect on reported quantitative measurements (p < 0.05). CONCLUSIONS Significant differences in perfusion measurements between pathologies could be shown for pooled data despite observed heterogeneity in study parameters. Statistical analysis indicates most influential parameters for future optimization and standardization of acquisition protocols. CRITICAL RELEVANCE STATEMENT Quantitative CT perfusion enables differentiation of pancreatic pathologies despite the heterogeneity of study parameters in current clinical practice.
Collapse
Affiliation(s)
- Stephan Skornitzke
- Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Neha Vats
- Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Philipp Mayer
- Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Wolfram Stiller
- Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.
| |
Collapse
|
14
|
Yang P, Mao K, Gao Y, Wang Z, Wang J, Chen Y, Ma C, Bian Y, Shao C, Lu J. Tumor size measurements of pancreatic cancer with neoadjuvant therapy based on RECIST guidelines: is MRI as effective as CT? Cancer Imaging 2023; 23:8. [PMID: 36653861 PMCID: PMC9850516 DOI: 10.1186/s40644-023-00528-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVES To compare tumor size measurements using CT and MRI in pancreatic cancer (PC) patients with neoadjuvant therapy (NAT). METHODS This study included 125 histologically confirmed PC patients who underwent NAT. The tumor sizes from CT and MRI before and after NAT were compared by using Bland-Altman analyses and intraclass correlation coefficients (ICCs). Variations in tumor size estimates between MRI and CT in relationship to different factors, including NAT methods (chemotherapy, chemoradiotherapy), tumor locations (head/neck, body/tail), tumor regression grade (TRG) levels (0-2, 3), N stages (N0, N1/N2) and tumor resection margin status (R0, R1), were further analysed. The McNemar test was used to compare the efficacy of NAT evaluations based on the CT and MRI measurements according to RECIST 1.1 criteria. RESULTS There was no significant difference between the median tumor sizes from CT and MRI before and after NAT (P = 0.44 and 0.39, respectively). There was excellent agreement in tumor size between MRI and CT, with mean size differences and limits of agreement (LOAs) of 1.5 [-9.6 to 12.7] mm and 0.9 [-12.6 to 14.5] mm before NAT (ICC, 0.93) and after NAT (ICC, 0.91), respectively. For all the investigated factors, there was good or excellent correlation (ICC, 0.76 to 0.95) for tumor sizes between CT and MRI. There was no significant difference in the efficacy evaluation of NAT between CT and MRI measurements (P = 1.0). CONCLUSION MRI and CT have similar performance in assessing PC tumor size before and after NAT.
Collapse
Affiliation(s)
- Panpan Yang
- grid.73113.370000 0004 0369 1660Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433 China
| | - Kuanzheng Mao
- grid.73113.370000 0004 0369 1660Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433 China ,grid.267139.80000 0000 9188 055XSchool of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yisha Gao
- grid.73113.370000 0004 0369 1660Department of Pathology, Changhai Hospital of Shanghai, Naval Medical University, Shanghai, China
| | - Zhen Wang
- grid.73113.370000 0004 0369 1660Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433 China
| | - Jun Wang
- grid.73113.370000 0004 0369 1660Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433 China
| | - Yufei Chen
- grid.24516.340000000123704535College of Electronic and Information Engineering, Tongji University, Shanghai, China
| | - Chao Ma
- grid.73113.370000 0004 0369 1660Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433 China ,grid.24516.340000000123704535College of Electronic and Information Engineering, Tongji University, Shanghai, China
| | - Yun Bian
- grid.73113.370000 0004 0369 1660Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433 China
| | - Chengwei Shao
- grid.73113.370000 0004 0369 1660Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433 China
| | - Jianping Lu
- grid.73113.370000 0004 0369 1660Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433 China
| |
Collapse
|
15
|
Stoop TF, van Veldhuisen E, van Rijssen LB, Klaassen R, Gurney-Champion OJ, de Hingh IH, Busch OR, van Laarhoven HWM, van Lienden KP, Stoker J, Wilmink JW, Nio CY, Nederveen AJ, Engelbrecht MRW, Besselink MG. Added value of 3T MRI and the MRI-halo sign in assessing resectability of locally advanced pancreatic cancer following induction chemotherapy (IMAGE-MRI): prospective pilot study. Langenbecks Arch Surg 2022; 407:3487-3499. [PMID: 36242618 DOI: 10.1007/s00423-022-02653-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/13/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Restaging of locally advanced pancreatic cancer (LAPC) after induction chemotherapy using contrast-enhanced computed tomography (CE-CT) imaging is imprecise in evaluating local tumor response. This study explored the value of 3 Tesla (3 T) contrast-enhanced (CE) and diffusion-weighted (DWI) magnetic resonance imaging (MRI) for local tumor restaging. METHODS This is a prospective pilot study including 20 consecutive patients with LAPC with RECIST non-progressive disease on CE-CT after induction chemotherapy. Restaging CE-CT, CE-MRI, and DWI-MRI were retrospectively evaluated by two abdominal radiologists in consensus, scoring tumor size and vascular involvement. A halo sign was defined as replacement of solid perivascular (arterial and venous) tumor tissue by a zone of fatty-like signal intensity. RESULTS Adequate MRI was obtained in 19 patients with LAPC after induction chemotherapy. Tumor diameter was non-significantly smaller on CE-MRI compared to CE-CT (26 mm vs. 30 mm; p = 0.073). An MRI-halo sign was seen on CE-MRI in 52.6% (n = 10/19), whereas a CT-halo sign was seen in 10.5% (n = 2/19) of patients (p = 0.016). An MRI-halo sign was not associated with resection rate (60.0% vs. 62.5%; p = 1.000). In the resection cohort, patients with an MRI-halo sign had a non-significant increased R0 resection rate as compared to patients without an MRI-halo sign (66.7% vs. 20.0%; p = 0.242). Positive and negative predictive values of the CE-MRI-halo sign for R0 resection were 66.7% and 66.7%, respectively. CONCLUSIONS 3 T CE-MRI and the MRI-halo sign might be helpful to assess the effect of induction chemotherapy in patients with LAPC, but its diagnostic accuracy has to be evaluated in larger series.
Collapse
Affiliation(s)
- Thomas F Stoop
- Amsterdam UMC, location University of Amsterdam, Department of Surgery, Amsterdam, The Netherlands. .,Cancer Center, Amsterdam, The Netherlands.
| | - Eran van Veldhuisen
- Amsterdam UMC, location University of Amsterdam, Department of Surgery, Amsterdam, The Netherlands.,Cancer Center, Amsterdam, The Netherlands
| | - L Bengt van Rijssen
- Amsterdam UMC, location University of Amsterdam, Department of Surgery, Amsterdam, The Netherlands.,Cancer Center, Amsterdam, The Netherlands
| | - Remy Klaassen
- Cancer Center, Amsterdam, The Netherlands.,Amsterdam UMC, location University of Amsterdam, Department of Medical Oncology, Amsterdam, The Netherlands
| | - Oliver J Gurney-Champion
- Cancer Center, Amsterdam, The Netherlands.,Amsterdam UMC, location University of Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, The Netherlands
| | - Ignace H de Hingh
- Department of Surgery, Catharina Hospital Eindhoven, Eindhoven, the Netherlands
| | - Olivier R Busch
- Amsterdam UMC, location University of Amsterdam, Department of Surgery, Amsterdam, The Netherlands.,Cancer Center, Amsterdam, The Netherlands
| | - Hanneke W M van Laarhoven
- Cancer Center, Amsterdam, The Netherlands.,Amsterdam UMC, location University of Amsterdam, Department of Medical Oncology, Amsterdam, The Netherlands
| | - Krijn P van Lienden
- Cancer Center, Amsterdam, The Netherlands.,Amsterdam UMC, location University of Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, The Netherlands.,Department of Radiology, St Antonius Hospital Nieuwegein, University Medical Center Utrecht Cancer Center, Regional Academic Cancer Center Utrecht, Nieuwegein, the Netherlands
| | - Jaap Stoker
- Cancer Center, Amsterdam, The Netherlands.,Amsterdam UMC, location University of Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, The Netherlands
| | - Johanna W Wilmink
- Cancer Center, Amsterdam, The Netherlands.,Amsterdam UMC, location University of Amsterdam, Department of Medical Oncology, Amsterdam, The Netherlands
| | - C Yung Nio
- Cancer Center, Amsterdam, The Netherlands.,Amsterdam UMC, location University of Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Cancer Center, Amsterdam, The Netherlands.,Amsterdam UMC, location University of Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, The Netherlands
| | - Marc R W Engelbrecht
- Cancer Center, Amsterdam, The Netherlands.,Amsterdam UMC, location University of Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, The Netherlands
| | - Marc G Besselink
- Amsterdam UMC, location University of Amsterdam, Department of Surgery, Amsterdam, The Netherlands.,Cancer Center, Amsterdam, The Netherlands
| | | |
Collapse
|
16
|
Martí-Cruchaga P, Cienfuegos JA, Rotellar F. Neoadjuvant treatment in localized and resectable cancer of the pancreas: a new therapeutic paradigm. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2022; 114:371-374. [DOI: 10.17235/reed.2022.8925/2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|