1
|
Le Page AK, Johnson EC, Greenberg JH. Is mild dehydration a risk for progression of childhood chronic kidney disease? Pediatr Nephrol 2024; 39:3177-3191. [PMID: 38632124 DOI: 10.1007/s00467-024-06332-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 04/19/2024]
Abstract
Children with chronic kidney disease (CKD) can have an inherent vulnerability to dehydration. Younger children are unable to freely access water, and CKD aetiology and stage can associate with reduced kidney concentrating capacity, which can also impact risk. This article aims to review the risk factors and consequences of mild dehydration and underhydration in CKD, with a particular focus on evidence for risk of CKD progression. We discuss that assessment of dehydration in the CKD population is more challenging than in the healthy population, thus complicating the definition of adequate hydration and clinical research in this field. We review pathophysiologic studies that suggest mild dehydration and underhydration may cause hyperfiltration injury and impact renal function, with arginine vasopressin as a key mediator. Randomised controlled trials in adults have not shown an impact of improved hydration in CKD outcomes, but more vulnerable populations with baseline low fluid intake or poor kidney concentrating capacity need to be studied. There is little published data on the frequency of dehydration, and risk of complications, acute or chronic, in children with CKD. Despite conflicting evidence and the need for more research, we propose that paediatric CKD management should routinely include an assessment of individual dehydration risk along with a treatment plan, and we provide a framework that could be used in outpatient settings.
Collapse
Affiliation(s)
- Amelia K Le Page
- Department of Nephrology, Monash Children's Hospital, Clayton, VIC, Australia.
- Department of Pediatrics, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia.
| | - Evan C Johnson
- Division of Kinesiology & Health, College of Health Sciences, University of Wyoming, Laramie, WY, USA
| | - Jason H Greenberg
- Section of Nephrology, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
- Department of Internal Medicine, Clinical and Translational Research Accelerator, Yale University, New Haven, CT, USA
| |
Collapse
|
2
|
Ghanem A, Borghol AH, Munairdjy Debeh FG, Paul S, AlKhatib B, Harris PC, Garimella PS, Hanna C, Kline TL, Dahl NK, Chebib FT. Biomarkers of Kidney Disease Progression in ADPKD. Kidney Int Rep 2024; 9:2860-2882. [PMID: 39435347 PMCID: PMC11492289 DOI: 10.1016/j.ekir.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/10/2024] [Accepted: 07/08/2024] [Indexed: 10/23/2024] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic kidney disorder and the fourth leading cause of kidney failure (KF) in adults. Characterized by a reduction in glomerular filtration rate (GFR) and increased kidney size, ADPKD exhibits significant variability in progression, highlighting the urgent need for reliable and predictive biomarkers to optimize management and treatment approaches. This review explores the roles of diverse biomarkers-including clinical, genetic, molecular, and imaging biomarkers-in evaluating disease progression and customizing treatments for ADPKD. Clinical biomarkers such as biological sex, the predicting renal outcome in polycystic kidney disease (PROPKD) score, and body mass index are shown to correlate with disease severity and progression. Genetic profiling, particularly distinguishing between truncating and non-truncating pathogenic variants in the PKD1 gene, refines risk assessment and prognostic precision. Advancements in imaging significantly enhance our ability to assess disease severity. Height-adjusted total kidney volume (htTKV) and the Mayo imaging classification (MIC) are foundational, whereas newer imaging biomarkers, including texture analysis, total cyst number (TCN), cyst-parenchyma surface area (CPSA), total cyst volume (TCV), and cystic index, focus on detailed cyst characteristics to offer deeper insights. Molecular biomarkers (including serum and urinary markers) shed light on potential therapeutic targets that could predict disease trajectory. Despite these advancements, there is a pressing need for the development of response biomarkers in both the adult and pediatric populations, which can evaluate the biological efficacy of treatments. The holistic evaluation of these biomarkers not only deepens our understanding of kidney disease progression in ADPKD, but it also paves the way for personalized treatment strategies aiming to significantly improve patient outcomes.
Collapse
Affiliation(s)
- Ahmad Ghanem
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, Florida, USA
| | - Abdul Hamid Borghol
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Stefan Paul
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, Florida, USA
| | - Bassel AlKhatib
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, Florida, USA
| | - Peter C. Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Pranav S. Garimella
- Division of Nephrology and Hypertension, University of California San Diego, San Diego, California, USA
| | - Christian Hanna
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
- Division of Pediatric Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Timothy L. Kline
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
- Division of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Neera K. Dahl
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Fouad T. Chebib
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
3
|
Jamadar A, Ward CJ, Remadevi V, Varghese MM, Pabla NS, Gumz ML, Rao R. Circadian clock disruption and growth of kidney cysts in autosomal dominant polycystic kidney disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606676. [PMID: 39211074 PMCID: PMC11361200 DOI: 10.1101/2024.08.05.606676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in the PKD1 and PKD2 genes, and often progresses to kidney failure. ADPKD progression is not uniform among patients, suggesting that factors secondary to the PKD1/2 gene mutation could regulate the rate of disease progression. Here we tested the effect of circadian clock disruption on ADPKD progression. Circadian rhythms are regulated by cell-autonomous circadian clocks composed of clock proteins. BMAL1 is a core constituent of the circadian clock. Methods To disrupt the circadian clock, we deleted Bmal1 gene in the renal collecting ducts of the Pkd1 RC/RC (RC/RC) mouse model of ADPKD (RC/RC; Bmal1 f/f ; Pkhd1 cre , called DKO mice), and in Pkd1 knockout mouse inner medullary collecting duct cells ( Pkd1Bmal1 KO mIMCD3 cells). Only male mice were used. Results Human nephrectomy ADPKD kidneys and Pkd1 KO mIMCD3 cells showed reduced Bmal1 gene expression compared to normal controls. When compared to RC/RC kidneys, DKO kidneys showed significantly altered clock gene expression, increased cyst growth, cell proliferation, apoptosis and fibrosis. DKO kidneys also showed increased lipogenesis and cholesterol synthesis-related gene expression, and increased tissue triglyceride levels compared to RC/RC kidneys. Similarly, in vitro, Pkd1Bmal1 KO cells showed altered clock genes, increased lipogenesis and cholesterol synthesis-related genes, and reduced fatty-acid oxidation-related gene expression compared to Pkd1KO cells. The Pkd1Bmal1 KO cells showed increased cell proliferation compared to Pkd1KO cells, which was rescued by pharmacological inhibition of lipogenesis. Conclusion Renal collecting duct specific Bmal1 gene deletion disrupts the circadian clock and triggers accelerated ADPKD progression by altering lipid metabolism-related gene expression. Key points Lack of BMAL1, a circadian clock protein in renal collecting ducts disrupted the clock and increased cyst growth and fibrosis in an ADPKD mouse model.BMAL1 gene deletion increased cell proliferation by increasing lipogenesis in kidney cells.Thus, circadian clock disruption could be a risk factor for accelerated disease progression in patients with ADPKD.
Collapse
|
4
|
Rosati E, Condello G, Tacente C, Mariani I, Tommolini V, Calvaruso L, Fulignati P, Grandaliano G, Pesce F. Potential Add-On Benefits of Dietary Intervention in the Treatment of Autosomal Dominant Polycystic Kidney Disease. Nutrients 2024; 16:2582. [PMID: 39203719 PMCID: PMC11357151 DOI: 10.3390/nu16162582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited cause of renal failure. The pathogenesis of the disease encompasses several pathways and metabolic alterations, including the hyperactivation of mTOR and suppression of AMPK signaling pathways, as well as mitochondrial dysfunction. This metabolic reprogramming makes epithelial cyst-lining cells highly dependent on glucose for energy and unable to oxidize fatty acids. Evidence suggests that high-carbohydrate diets may worsen the progression of ADPKD, providing the rationale for treating ADPKD patients with calorie restriction and, in particular, with ketogenic dietary interventions, already used for other purposes such as in overweight/obese patients or in the treatment of refractory epilepsy in children. Preclinical studies have demonstrated that calorie restriction may prevent and/or slow disease progression by inducing ketosis, particularly through increased beta-hydroxybutyrate (BHB) levels, which may modulate the metabolic signaling pathways altered in ADKPK. In these patients, although limited, ketogenic intervention studies have shown promising beneficial effects. However, larger and longer randomized controlled trials are needed to confirm their tolerability and safety in long-term maintenance and their additive role in the therapy of polycystic kidney disease.
Collapse
Affiliation(s)
- Erica Rosati
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.R.); (G.C.); (C.T.); (I.M.); (V.T.); (L.C.); (P.F.); (G.G.)
- Unità Operativa Complessa di Nefrologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giulia Condello
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.R.); (G.C.); (C.T.); (I.M.); (V.T.); (L.C.); (P.F.); (G.G.)
- Unità Operativa Complessa di Nefrologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Chiara Tacente
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.R.); (G.C.); (C.T.); (I.M.); (V.T.); (L.C.); (P.F.); (G.G.)
- Unità Operativa Complessa di Nefrologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Ilaria Mariani
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.R.); (G.C.); (C.T.); (I.M.); (V.T.); (L.C.); (P.F.); (G.G.)
- Unità Operativa Complessa di Nefrologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Valeria Tommolini
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.R.); (G.C.); (C.T.); (I.M.); (V.T.); (L.C.); (P.F.); (G.G.)
- Unità Operativa Complessa di Nefrologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Luca Calvaruso
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.R.); (G.C.); (C.T.); (I.M.); (V.T.); (L.C.); (P.F.); (G.G.)
- Unità Operativa Complessa di Nefrologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Pierluigi Fulignati
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.R.); (G.C.); (C.T.); (I.M.); (V.T.); (L.C.); (P.F.); (G.G.)
- Unità Operativa Complessa di Nefrologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giuseppe Grandaliano
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.R.); (G.C.); (C.T.); (I.M.); (V.T.); (L.C.); (P.F.); (G.G.)
- Unità Operativa Complessa di Nefrologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Pesce
- Division of Renal Medicine, Ospedale Isola Tiberina—Gemelli Isola, 00186 Rome, Italy
| |
Collapse
|
5
|
Akihisa T, Kataoka H, Makabe S, Manabe S, Yoshida R, Ushio Y, Sato M, Yajima A, Hanafusa N, Tsuchiya K, Nitta K, Hoshino J, Mochizuki T. Immediate drop of urine osmolality upon tolvaptan initiation predicts impact on renal prognosis in patients with ADPKD. Nephrol Dial Transplant 2024; 39:1008-1015. [PMID: 37935473 DOI: 10.1093/ndt/gfad232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Tolvaptan, a vasopressin V2 receptor antagonist, is used for treating autosomal dominant polycystic kidney disease (ADPKD). We focused on changes in urinary osmolality (U-Osm) after tolvaptan initiation to determine whether they were associated with the therapeutic response to tolvaptan. METHODS This was a single-centre, prospective, observational cohort study. Seventy-two patients with ADPKD who received tolvaptan were recruited. We analysed the relationship between changes in U-Osm and annual estimated glomerular filtration rate (eGFR) in terms of renal prognostic value using univariable and multivariable linear regression analyses. RESULTS The mean value of U-Osm immediately before tolvaptan initiation was 351.8 ± 142.2 mOsm/kg H2O, which decreased to 97.6 ± 23.8 mOsm/kg H2O in the evening. The decrease in U-Osm was maintained in the outpatient clinic 1 month later. However, the 1-month values of U-Osm showed higher variability (160.2 ± 83.8 mOsm/kg H2O) than did those in the first evening of tolvaptan administration. Multivariate analysis revealed that the baseline eGFR, baseline urinary protein and U-Osm change in the evening of the day of admission (initial U-Osm drop) were significantly correlated with the subsequent annual change in eGFR. CONCLUSIONS U-Osm can be measured easily and rapidly, and U-Osm change within a short time after tolvaptan initiation may be a useful index for the renal prognosis in actual clinical practice.
Collapse
Affiliation(s)
- Taro Akihisa
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, Japan
| | - Hiroshi Kataoka
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, Japan
| | - Shiho Makabe
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, Japan
| | - Shun Manabe
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, Japan
| | - Rie Yoshida
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, Japan
| | - Yusuke Ushio
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, Japan
| | - Masayo Sato
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, Japan
| | - Aiji Yajima
- Department of Blood Purification, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, Japan
| | - Norio Hanafusa
- Department of Blood Purification, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, Japan
| | - Ken Tsuchiya
- Department of Blood Purification, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, Japan
| | - Kosaku Nitta
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, Japan
| | - Junichi Hoshino
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, Japan
| | - Toshio Mochizuki
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
6
|
Capelli I, Lerario S, Ciurli F, Berti GM, Aiello V, Provenzano M, La Manna G. Investigational agents for autosomal dominant polycystic kidney disease: preclinical and early phase study insights. Expert Opin Investig Drugs 2024; 33:469-484. [PMID: 38618918 DOI: 10.1080/13543784.2024.2342327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
INTRODUCTION Autosomal Dominant Polycystic Kidney Disease (ADPKD) is the most common inherited kidney condition caused by a single-gene mutation. It leads patients to kidney failure in more than 50% of cases by the age of 60, and, given the dominant inheritance, this disease is present in the family history in more than 90% of cases. AREAS COVERED This review aims to analyze the set of preclinical and early-phase studies to provide a general view of the current progress on ADPKD therapeutic options. Articles from PubMed and the current status of the trials listed in clinicaltrials.gov were examined for the review. EXPERT OPINION Many potential therapeutic targets are currently under study for the treatment of ADPKD. A few drugs have reached the clinical phase, while many are currently still in the preclinical phase. Organoids could be a novel approach to the study of drugs in this phase. Other than pharmacological options, very important developing approaches are represented by gene therapy and the use of MiRNA inhibitors.
Collapse
Affiliation(s)
- Irene Capelli
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Sarah Lerario
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Francesca Ciurli
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Gian Marco Berti
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Valeria Aiello
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Michele Provenzano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Gaetano La Manna
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
7
|
Bais T, Meijer E, Kramers BJ, Vart P, Vervloet M, Salih M, Bammens B, Demoulin N, Todorova P, Müller RU, Halbritter J, Paliege A, Gall ECL, Knebelmann B, Torra R, Ong ACM, Karet Frankl FE, Gansevoort RT. HYDROchlorothiazide versus placebo to PROTECT polycystic kidney disease patients and improve their quality of life: study protocol and rationale for the HYDRO-PROTECT randomized controlled trial. Trials 2024; 25:120. [PMID: 38355627 PMCID: PMC10865620 DOI: 10.1186/s13063-024-07952-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) leads to progressive renal cyst formation and loss of kidney function in most patients. Vasopressin 2 receptor antagonists (V2RA) like tolvaptan are currently the only available renoprotective agents for rapidly progressive ADPKD. However, aquaretic side effects substantially limit their tolerability and therapeutic potential. In a preliminary clinical study, the addition of hydrochlorothiazide (HCT) to tolvaptan decreased 24-h urinary volume and appeared to increase renoprotective efficacy. The HYDRO-PROTECT study will investigate the long-term effect of co-treatment with HCT on tolvaptan efficacy (rate of kidney function decline) and tolerability (aquaresis and quality of life) in patients with ADPKD. METHODS The HYDRO-PROTECT study is an investigator-initiated, multicenter, double-blind, placebo-controlled, randomized clinical trial. The study is powered to enroll 300 rapidly progressive patients with ADPKD aged ≥ 18 years, with an eGFR of > 25 mL/min/1.73 m2, and on stable treatment with the highest tolerated dose of tolvaptan in routine clinical care. Patients will be randomly assigned (1:1) to daily oral HCT 25 mg or matching placebo treatment for 156 weeks, in addition to standard care. OUTCOMES The primary study outcome is the rate of kidney function decline (expressed as eGFR slope, in mL/min/1.73 m2 per year) in HCT versus placebo-treated patients, calculated by linear mixed model analysis using all available creatinine values from week 12 until the end of treatment. Secondary outcomes include changes in quality-of-life questionnaire scores (TIPS, ADPKD-UIS, EQ-5D-5L, SF-12) and changes in 24-h urine volume. CONCLUSION The HYDRO-PROTECT study will demonstrate whether co-treatment with HCT can improve the renoprotective efficacy and tolerability of tolvaptan in patients with ADPKD.
Collapse
Affiliation(s)
- Thomas Bais
- Department of Nephrology, University Medical Center Groningen, Groningen, The Netherlands
| | - Esther Meijer
- Department of Nephrology, University Medical Center Groningen, Groningen, The Netherlands
| | - Bart J Kramers
- Department of Nephrology, University Medical Center Groningen, Groningen, The Netherlands
| | - Priya Vart
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, The Netherlands
| | - Marc Vervloet
- Department of Nephrology, Amsterdam University Medical Centers, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mahdi Salih
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Bert Bammens
- Department of Nephrology, Dialysis and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Nathalie Demoulin
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Polina Todorova
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department 2 for Internal Medicine, Cologne, Germany
| | - Roman-Ulrich Müller
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department 2 for Internal Medicine, Cologne, Germany
| | - Jan Halbritter
- Department of Nephrology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Paliege
- Department of Nephrology, Universitätsklinikum Carl Gustav Carus Dresden, Dresden, Germany
| | - Emilie Cornec-Le Gall
- University Brest, Inserm, UMR 1078, GGB, Brest, 29609, France
- Service de Néphrologie, Hémodialyse et Transplantation Rénale, CHRU Brest, Brest, 29609, France
| | - Bertrand Knebelmann
- Department of Nephrology, Necker-Enfants Malades Hospital AP-HP, Paris, France
| | - Roser Torra
- Inherited Kidney Diseases, Nephrology Department, Fundació Puigvert, Institut d'Investigació Biomèdica Sant Pau (IIB-SANT PAU), Barcelona, Spain
| | - Albert C M Ong
- Academic Nephrology Unit, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Fiona E Karet Frankl
- Department of Medical Genetics and Division of Renal Medicine, University of Cambridge, Cambridge, UK
| | - Ron T Gansevoort
- Department of Nephrology, University Medical Center Groningen, Groningen, The Netherlands.
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, PO Box 30.001, 9700, RB, Groningen, The Netherlands.
| |
Collapse
|
8
|
Cepoi MR, Duca ST, Chetran A, Costache AD, Spiridon MR, Afrăsânie I, Leancă SA, Dmour BA, Matei IT, Miftode RS, Miftode L, Prepeliuc CS, Haba MȘC, Bădescu MC, Costache II. Chronic Kidney Disease Associated with Ischemic Heart Disease: To What Extent Do Biomarkers Help? Life (Basel) 2023; 14:34. [PMID: 38255650 PMCID: PMC10817293 DOI: 10.3390/life14010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Chronic kidney disease represents a complex and multifaceted pathology characterized by the presence of structural or functional renal anomalies associated with a persistent reduction in renal function. As the disease progresses, complications arise due to the chronic inflammatory syndrome, hydro-electrolytic disorders, and toxicity secondary to the uremic environment. Cardiovascular complications are the leading cause of death for these patients. Ischemic cardiac pathology can be both a consequence and complication of chronic kidney disease, highlighting the need to identify specific cardiorenal dysfunction biomarkers targeting pathophysiological mechanisms common to both conditions. This identification is crucial for establishing accurate diagnoses, prognoses, and risk stratifications for patients. This work is intended to elucidate the intricate relationship between chronic kidney disease and ischemic heart disease and to investigate the roles of cardiorenal biomarkers, including cardiac troponin, natriuretic peptides, galectin-3, copeptin, fibroblast growth factor 23 and its co-receptor Klotho, soluble suppression of tumorigenicity 2, and plasma growth differentiation factor 15.
Collapse
Affiliation(s)
- Maria-Ruxandra Cepoi
- Department of Internal Medicine, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (M.-R.C.); (S.T.D.); (A.C.); (I.A.); (S.A.L.); (B.-A.D.); (I.T.M.); (R.S.M.); (M.Ș.C.H.); (M.C.B.); (I.I.C.)
- Department of Cardiology, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania;
| | - Stefania Teodora Duca
- Department of Internal Medicine, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (M.-R.C.); (S.T.D.); (A.C.); (I.A.); (S.A.L.); (B.-A.D.); (I.T.M.); (R.S.M.); (M.Ș.C.H.); (M.C.B.); (I.I.C.)
- Department of Cardiology, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania;
| | - Adriana Chetran
- Department of Internal Medicine, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (M.-R.C.); (S.T.D.); (A.C.); (I.A.); (S.A.L.); (B.-A.D.); (I.T.M.); (R.S.M.); (M.Ș.C.H.); (M.C.B.); (I.I.C.)
- Department of Cardiology, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania;
| | - Alexandru Dan Costache
- Department of Internal Medicine, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (M.-R.C.); (S.T.D.); (A.C.); (I.A.); (S.A.L.); (B.-A.D.); (I.T.M.); (R.S.M.); (M.Ș.C.H.); (M.C.B.); (I.I.C.)
- Department of Cardiovascular Rehabilitation, Clinical Rehabilitation Hospital, 700661 Iași, Romania
| | - Marilena Renata Spiridon
- Department of Cardiology, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania;
| | - Irina Afrăsânie
- Department of Internal Medicine, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (M.-R.C.); (S.T.D.); (A.C.); (I.A.); (S.A.L.); (B.-A.D.); (I.T.M.); (R.S.M.); (M.Ș.C.H.); (M.C.B.); (I.I.C.)
- Department of Cardiology, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania;
| | - Sabina Andreea Leancă
- Department of Internal Medicine, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (M.-R.C.); (S.T.D.); (A.C.); (I.A.); (S.A.L.); (B.-A.D.); (I.T.M.); (R.S.M.); (M.Ș.C.H.); (M.C.B.); (I.I.C.)
- Department of Cardiology, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania;
| | - Bianca-Ana Dmour
- Department of Internal Medicine, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (M.-R.C.); (S.T.D.); (A.C.); (I.A.); (S.A.L.); (B.-A.D.); (I.T.M.); (R.S.M.); (M.Ș.C.H.); (M.C.B.); (I.I.C.)
- Department of III Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Iulian Theodor Matei
- Department of Internal Medicine, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (M.-R.C.); (S.T.D.); (A.C.); (I.A.); (S.A.L.); (B.-A.D.); (I.T.M.); (R.S.M.); (M.Ș.C.H.); (M.C.B.); (I.I.C.)
- Department of Cardiology, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania;
| | - Radu Stefan Miftode
- Department of Internal Medicine, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (M.-R.C.); (S.T.D.); (A.C.); (I.A.); (S.A.L.); (B.-A.D.); (I.T.M.); (R.S.M.); (M.Ș.C.H.); (M.C.B.); (I.I.C.)
- Department of Cardiology, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania;
| | - Larisa Miftode
- Department of Infectious Diseases, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (L.M.); (C.S.P.)
- “St. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iași, Romania
| | - Cristian Sorin Prepeliuc
- Department of Infectious Diseases, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (L.M.); (C.S.P.)
- “St. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iași, Romania
| | - Mihai Ștefan Cristian Haba
- Department of Internal Medicine, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (M.-R.C.); (S.T.D.); (A.C.); (I.A.); (S.A.L.); (B.-A.D.); (I.T.M.); (R.S.M.); (M.Ș.C.H.); (M.C.B.); (I.I.C.)
- Department of Cardiology, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania;
| | - Minerva Codruța Bădescu
- Department of Internal Medicine, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (M.-R.C.); (S.T.D.); (A.C.); (I.A.); (S.A.L.); (B.-A.D.); (I.T.M.); (R.S.M.); (M.Ș.C.H.); (M.C.B.); (I.I.C.)
- Department of III Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Irina Iuliana Costache
- Department of Internal Medicine, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (M.-R.C.); (S.T.D.); (A.C.); (I.A.); (S.A.L.); (B.-A.D.); (I.T.M.); (R.S.M.); (M.Ș.C.H.); (M.C.B.); (I.I.C.)
- Department of Cardiology, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania;
| |
Collapse
|
9
|
Sorić Hosman I, Cvitković Roić A, Fištrek Prlić M, Vuković Brinar I, Lamot L. Predicting autosomal dominant polycystic kidney disease progression: review of promising Serum and urine biomarkers. Front Pediatr 2023; 11:1274435. [PMID: 38027263 PMCID: PMC10667601 DOI: 10.3389/fped.2023.1274435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is one of the leading causes of end-stage renal disease. In spite of the recent tremendous progress in the understanding of ADPKD pathogenesis, the molecular mechanisms of the disease remain incompletely understood. Considering emerging new targeted therapies for ADPKD, it has become crucial to disclose easily measurable and widely available biomarkers for identifying patients with future rapid disease progression. This review encompasses all the research with a shared goal of identifying promising serum or urine biomarkers for predicting ADPKD progression or response to therapy. The rate of the ADPKD progress varies significantly between patients. The phenotypic variability is only partly explained by the underlying genetic lesion diversity. Considering significant decline in kidney function in ADPKD is not usually evident until at least 50% of the parenchyma has been destroyed, conventional kidney function measures, such as glomerular filtration rate (GFR), are not suitable for monitoring disease progression in ADPKD, particularly in its early stages. Since polycystic kidney enlargement usually precedes the decline in GFR, height-adjusted total kidney volume (ht-TKV) has been accepted as an early biomarker for assessing disease severity in ADPKD patients. However, since measuring ht-TKV is time-consuming and observer-dependent, the identification of a sensitive and quickly measurable biomarker is of a great interest for everyday clinical practice. Throughout the last decade, due to development of proteomic and metabolomic techniques and the enlightenment of multiple molecular pathways involved in the ADPKD pathogenesis, a number of urine and serum protein biomarkers have been investigated in ADPKD patients, some of which seem worth of further exploring. These include copeptin, angiotensinogen, monocyte chemoattractant protein 1, kidney injury molecule-1 and urine-to-plasma urea ratio among many others. The aim of the current review is to provide an overview of all of the published evidence on potentially clinically valuable serum and urine biomarkers that could be used for predicting disease progression or response to therapy in patients with ADPKD. Hopefully, this review will encourage future longitudinal prospective clinical studies evaluating proposed biomarkers as prognostic tools to improve management and outcome of ADPKD patients in everyday clinical practice.
Collapse
Affiliation(s)
- Iva Sorić Hosman
- Department of Pediatrics, General Hospital Zadar, Zadar, Croatia
| | - Andrea Cvitković Roić
- Department of Nephrology and Urology, Clinic for Pediatric Medicine Helena, Zagreb, Croatia
- Department of Pediatrics, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Pediatrics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Margareta Fištrek Prlić
- Department of Nephrology, Hypertension, Dialysis and Transplantation, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Ivana Vuković Brinar
- Department of Nephrology, Hypertension, Dialysis and Transplantation, University Hospital Centre Zagreb, Zagreb, Croatia
- Department of Internal Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Lovro Lamot
- Division of Nephrology, Dialysis and Transplantation, Department of Pediatrics, University Hospital Centre Zagreb, Zagreb, Croatia
- Department of Pediatrics, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
10
|
Arjune S, Oehm S, Todorova P, Gansevoort RT, Bakker SJL, Erger F, Benzing T, Burst V, Grundmann F, Antczak P, Müller RU. Copeptin in autosomal dominant polycystic kidney disease: real-world experiences from a large prospective cohort study. Clin Kidney J 2023; 16:2194-2204. [PMID: 37915893 PMCID: PMC10616446 DOI: 10.1093/ckj/sfad118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Indexed: 11/03/2023] Open
Abstract
Background The identification of new biomarkers in autosomal-dominant polycystic kidney disease (ADPKD) is crucial to improve and simplify prognostic assessment as a basis for patient selection for targeted therapies. Post hoc analyses of the TEMPO 3:4 study indicated that copeptin could be one of those biomarkers. Methods Copeptin was tested in serum samples from patients of the AD(H)PKD study. Serum copeptin levels were measured using a time-resolved amplified cryptate emission (TRACE)-based assay. In total, we collected 711 values from 389 patients without tolvaptan treatment and a total of 243 values (of which 64 were pre-tolvaptan) from 94 patients on tolvaptan. These were associated with rapid progression and disease-causing gene variants and their predictive capacity tested and compared with the Mayo Classification. Results As expected, copeptin levels showed a significant negative correlation with estimated glomerular filtration rate (eGFR). Measurements on tolvaptan showed significantly higher copeptin levels (9.871 pmol/L vs 23.90 pmol/L at 90/30 mg; P < .0001) in all chronic kidney disease stages. Linear regression models (n = 133) show that copeptin is an independent predictor of eGFR slope. A clinical model (including eGFR, age, gender, copeptin) was nearly as good (R2 = 0.1196) as our optimal model (including height-adjusted total kidney volume, eGFR, copeptin, R2 = 0.1256). Adding copeptin to the Mayo model improved future eGFR estimation. Conclusion Copeptin levels are associated with kidney function and independently explained future eGFR slopes. As expected, treatment with tolvaptan strongly increases copeptin levels.
Collapse
Affiliation(s)
- Sita Arjune
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Rare Diseases Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Simon Oehm
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Polina Todorova
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Ron T Gansevoort
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stephan J L Bakker
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Florian Erger
- Center for Rare Diseases Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Rare Diseases Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Volker Burst
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Emergency Department, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Franziska Grundmann
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Philipp Antczak
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Rare Diseases Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| |
Collapse
|
11
|
Geurts F, Xue L, Kramers BJ, Zietse R, Gansevoort RT, Fenton RA, Meijer E, Salih M, Hoorn EJ. Prostaglandin E2, Osmoregulation, and Disease Progression in Autosomal Dominant Polycystic Kidney Disease. Clin J Am Soc Nephrol 2023; 18:1426-1434. [PMID: 37574650 PMCID: PMC10637469 DOI: 10.2215/cjn.0000000000000269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Prostaglandin E2 (PGE2) plays a physiological role in osmoregulation, a process that is affected early in autosomal dominant polycystic kidney disease (ADPKD). PGE2 has also been implicated in the pathogenesis of ADPKD in preclinical models, but human data are limited. Here, we hypothesized that urinary PGE2 excretion is associated with impaired osmoregulation, disease severity, and disease progression in human ADPKD. METHODS Urinary excretions of PGE2 and its metabolite (PGEM) were measured in a prospective cohort of patients with ADPKD. The associations between urinary PGE2 and PGEM excretions, markers of osmoregulation, eGFR and height-adjusted total kidney volume were assessed using linear regression models. Cox regression and linear mixed models were used for the longitudinal analysis of the associations between urinary PGE2 and PGEM excretions and disease progression defined as 40% eGFR loss or kidney failure, and change in eGFR over time. In two intervention studies, we quantified the effect of starting tolvaptan and adding hydrochlorothiazide to tolvaptan on urinary PGE2 and PGEM excretions. RESULTS In 562 patients with ADPKD (61% female, eGFR 63±28 ml/min per 1.73 m 2 ), higher urinary PGE2 or PGEM excretions were independently associated with higher plasma copeptin, lower urine osmolality, lower eGFR, and greater total kidney volume. Participants with higher baseline urinary PGE2 and PGEM excretions had a higher risk of 40% eGFR loss or kidney failure (hazard ratio, 1.28; 95% confidence interval [CI], 1.13 to 1.46 and hazard ratio, 1.50; 95% CI, 1.26 to 1.80 per two-fold higher urinary PGE2 or PGEM excretions) and a faster change in eGFR over time (-0.39 [95% CI, -0.59 to -0.20] and -0.53 [95% CI, -0.75 to -0.31] ml/min per 1.73 m 2 per year). In the intervention studies, urinary PGEM excretion was higher after starting tolvaptan, while urinary PGE2 excretion was higher after adding hydrochlorothiazide to tolvaptan. CONCLUSIONS Higher urinary PGE2 and PGEM excretions in patients with ADPKD are associated with impaired osmoregulation, disease severity, and progression.
Collapse
Affiliation(s)
- Frank Geurts
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Laixi Xue
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Bart J. Kramers
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, Groningen, The Netherlands
| | - Robert Zietse
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ron T. Gansevoort
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Esther Meijer
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, Groningen, The Netherlands
| | - Mahdi Salih
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ewout J. Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
12
|
Gkika V, Louka M, Tsagkatakis M, Tsirpanlis G. The Efficacy, the Treatment Response and the Aquaretic Effects of a Three-Year Tolvaptan Regimen in Polycystic Kidney Disease Patients. Clin Pract 2023; 13:1035-1042. [PMID: 37736928 PMCID: PMC10514807 DOI: 10.3390/clinpract13050092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/23/2023] Open
Abstract
Tolvaptan, a selective vasopressin V2 receptor antagonist, is the first and only approved specific treatment for Autosomal-Dominant Polycystic Kidney Disease (ADPKD), and is used in current clinical practice. Real clinical data are missing. In this retrospective study, 41 ADPKD patients received tolvaptan for 3 years, from 2018 to 2021. Total kidney volume (TKV) was measured using Magnetic Resonance Imaging, at initiation and at the end of the treatment period. A complete biochemistry/hematology profile and a 24 h urine volume collection were performed monthly for the first 18 months and every 3 months thereafter. At the end of the treatment period, the median (IQR) estimated Glomerular Filtration Rate (e-GFR) was 5.3 (-1.3, 8.7) mL/min higher than the expected e-GFR decline without treatment, while the prediction for End Stage Chronic Kidney Disease (ESKD) had been prolonged by 1 (0, 2) year. Total Kidney Volume did not change significantly (2250 (1357) mL at 3 years of treatment vs. 2180 (1091) mL expected without treatment, p = 0.48). Younger patients with a relatively preserved e-GFR, lower hypertension burden, better familiar renal prognosis and more severe imaging data showed better outcomes. The aquaretic adverse effects of tolvaptan did not affect renal function and electrolyte balance in 51 patients, in a follow-up period of 18 months. Consequently, tolvaptan seems to be effective in preventing progression of ADPKD when administered in a timely manner in patients with better familiar renal history, shorter hypertension duration and worse imaging profile. Increased diuresis does not affect treatment efficacy.
Collapse
Affiliation(s)
- Vasiliki Gkika
- Department of Nephrology, General Hospital of Athens “G. Gennimatas”, 11527 Athens, Greece; (V.G.); (M.L.)
| | - Michaela Louka
- Department of Nephrology, General Hospital of Athens “G. Gennimatas”, 11527 Athens, Greece; (V.G.); (M.L.)
| | | | - George Tsirpanlis
- Department of Nephrology, General Hospital of Athens “G. Gennimatas”, 11527 Athens, Greece; (V.G.); (M.L.)
| |
Collapse
|
13
|
Yu ASL, Landsittel DP. Biomarkers in Polycystic Kidney Disease: Are We There? ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:285-293. [PMID: 37088529 DOI: 10.1053/j.akdh.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 04/25/2023]
Abstract
This article describes the use of prognostic, predictive, and response biomarkers that have been developed for autosomal dominant polycystic kidney disease and their use in clinical care or drug development. We focus on biochemical markers that can be assayed in patients' blood and urine and their association with the outcome of decreased glomerular filtration rate. There have been several studies on prognostic biomarkers. The most promising ones have been markers of tubular injury, inflammation, metabolism, or the vasopressin-urinary concentration axis. So far, none have been shown to be superior to kidney volume-based biomarkers. Several biomarkers are additive to kidney volume and genotype in prognostic models, but there have been few direct comparisons between the biochemical markers to identify the best ones. Moreover, there is a lack of uniformity in the statistical tools used to assess and compare biomarkers. There have been few reports of predictive and response biomarkers, and none are suitable surrogate endpoints. The U.S. Food and Drug Administration's Biomarker Qualification Program provides a regulatory pathway to approve biomarkers for use across multiple drug-development programs.
Collapse
Affiliation(s)
- Alan S L Yu
- Division of Nephrology and Hypertension and the Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS.
| | - Douglas P Landsittel
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University Bloomington, Bloomington, IN
| |
Collapse
|
14
|
Liu J, Bankir L, Verma A, Waikar SS, Palsson R. Association of the Urine-to-Plasma Urea Ratio With CKD Progression. Am J Kidney Dis 2023; 81:394-405. [PMID: 36356680 DOI: 10.1053/j.ajkd.2022.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/01/2022] [Indexed: 11/09/2022]
Abstract
RATIONALE & OBJECTIVES The urine-to-plasma (U/P) ratio of urea is correlated with urine-concentrating capacity and associated with progression of autosomal dominant polycystic kidney disease. As a proposed biomarker of tubular function, we hypothesized that the U/P urea ratio would also be associated with progression of more common forms of chronic kidney disease (CKD). STUDY DESIGN Observational cohort study. SETTING & PARTICIPANTS 3,723 adults in the United States with estimated glomerular filtration rate (eGFR) of 20-70 mL/min/1.73 m2, enrolled in the Chronic Renal Insufficiency Cohort (CRIC) Study. EXPOSURE U/P urea ratio, calculated from 24-hour urine collections and plasma samples at baseline. OUTCOME Associations of U/P urea ratio with eGFR slope, initiation of kidney replacement therapy (KRT), and CKD progression, defined as 50% decline in eGFR or incident KRT. ANALYTICAL APPROACH Multivariable linear mixed-effects models tested associations with eGFR slope. Cox proportional hazards models tested associations with dichotomous CKD outcomes. RESULTS The median U/P urea ratio was 14.8 (IQR, 9.5-22.2). Compared with participants in the highest U/P urea ratio quintile, those in the lowest quintile had a greater eGFR decline by 1.06 mL/min/1.73 m2 per year (P < 0.001) over 7.0 (IQR, 3.0-11.0) years of follow-up observation. Each 1-SD lower natural log-transformed U/P urea ratio was independently associated with CKD progression (HR, 1.22 [95% CI, 1.12-1.33]) and incident KRT (HR, 1.22 [95% CI, 1.10-1.33]). Associations differed by baseline eGFR (P interaction = 0.009). Among those with an eGFR ≥30 mL/min/1.73 m2, each 1-SD lower in ln(U/P urea ratio) was independently associated with CKD progression (HR, 1.30 [95% CI, 1.18-1.45]), but this was not significant among those with eGFR <30 mL/min/1.73 m2 (HR, 1.00 [95% CI, 0.84-1.20]). LIMITATIONS Possibility of residual confounding. Single baseline 24-hour urine collection for U/P urea ratio. CONCLUSIONS In a large and diverse cohort of patients with common forms of CKD, U/P urea was independently associated with disease progression and incident kidney failure. Associations were not significant among those with advanced CKD at baseline.
Collapse
Affiliation(s)
- Jing Liu
- Kidney Research Institute, Renal Division, West China Hospital of Sichuan University, Chengdu, People's Republic of China; Section of Nephrology, Boston Medical Center and Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
| | - Lise Bankir
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France; CNRS, ERL 8228, Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Ashish Verma
- Section of Nephrology, Boston Medical Center and Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
| | - Sushrut S Waikar
- Section of Nephrology, Boston Medical Center and Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
| | - Ragnar Palsson
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; Medical School, Harvard University, Boston, Massachusetts.
| |
Collapse
|
15
|
Iglesias P, Silvestre RA, Fernández-Reyes MJ, Díez JJ. The role of copeptin in kidney disease. Endocrine 2023; 79:420-429. [PMID: 36242751 DOI: 10.1007/s12020-022-03219-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022]
Abstract
Copeptin is a 39-amino acid glycopeptide that is secreted equimolecularly with arginine-vasopressin (AVP) from the prepro-hormone AVP in the posterior pituitary. While AVP is a very unstable molecule and is accompanied by significant technical troubles in its quantification, copeptin is a stable and easily quantifiable molecule. For this reason, circulating copeptin is currently used as a surrogate for AVP in different pathological conditions, including renal diseases. In recent years it has been shown that copeptin is associated with an increased risk of developing chronic kidney disease in the general population. In addition, copeptin has also been associated with multiple renal diseases with relevant clinical consequences and potential therapeutic implications. In the present review, we update and summarize the clinical significance of copeptin as a surrogate marker for AVP concentrations in different kidney diseases, as well as in renal replacement therapy (hemodialysis and peritoneal dialysis) and renal transplantation.
Collapse
Affiliation(s)
- Pedro Iglesias
- Department of Endocrinology and Nutrition, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain.
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana, Majadahonda, Madrid, Spain.
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Ramona A Silvestre
- Department of Clinical Biochemistry, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
- Department of Physiology, Medical School, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Juan J Díez
- Department of Endocrinology and Nutrition, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana, Majadahonda, Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
16
|
Bankir L, Guerrot D, Bichet DG. Vaptans or voluntary increased hydration to protect the kidney: how do they compare? Nephrol Dial Transplant 2023; 38:562-574. [PMID: 34586414 DOI: 10.1093/ndt/gfab278] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 11/13/2022] Open
Abstract
The adverse effects of vasopressin (AVP) in diverse forms of chronic kidney disease have been well described. They depend on the antidiuretic action of AVP mediated by V2 receptors (V2R). Tolvaptan, a selective V2R antagonist, is now largely used for the treatment of patients with autosomal dominant polycystic kidney disease. Another way to reduce the adverse effects of AVP is to reduce endogenous AVP secretion by a voluntary increase in fluid intake. These two approaches differ in several ways, including the level of thirst and AVP. With voluntary increased drinking, plasma osmolality will decline and so will AVP secretion. Thus, not only will V2R-mediated effects be reduced, but also those mediated by V1a and V1b receptors (V1aR and V1bR). In contrast, selective V2R antagonism will induce a loss of fluid that will stimulate AVP secretion and thus increase AVP's influence on V1a and V1b receptors. V1aR is expressed in the luminal side of the collecting duct (CD) and in inner medullary interstitial cells, and their activation induces the production of prostaglandins, mostly prostaglandin E2 (PGE2). Intrarenal PGE2 has been shown to reduce sodium and water reabsorption in the CD and increase blood flow in the renal medulla, both effects contributing to increase sodium and water excretion and reduce urine-concentrating activity. Conversely, non-steroidal anti-inflammatory drugs have been shown to induce significant water and sodium retention and potentiate the antidiuretic effects of AVP. Thus, during V2R antagonism, V1aR-mediated actions may be responsible for part of the diuresis observed with this drug. These V1aR-dependent effects do not take place with a voluntary increase in fluid intake. In summary, while both strategies may have beneficial effects, the information reviewed here leads us to assume that pharmacological V2R antagonism, with resulting stimulation of V1aR and increased PGE2 production, may provide greater benefit than voluntary high water intake. The influence of tolvaptan on the PGE2 excretion rate and the possibility to use somewhat lower tolvaptan doses than presently prescribed remain to be evaluated.
Collapse
Affiliation(s)
- Lise Bankir
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,CNRS, ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Dominique Guerrot
- Départment de Néphrologie, Hôpital Universitaire de Rouen, Rouen, France.,Université de Normandie, UNIROUEN, INSERM U1096, Rouen, France
| | - Daniel G Bichet
- Université de Montréal, Montréal, Quebec, Canada.,Département de Pharmacologie, Département de Physiologie, and Département de Médecine, Hôpital du Sacré-Coeur de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
17
|
Abstract
An exploration of the normal limits of physiologic responses and how these responses are lost when the kidney is injured rarely occurs in clinical practice. However, the differences between "resting" and "stressed" responses identify an adaptive reactiveness that is diminished before baseline function is impaired. This functional reserve is important in the evaluation of prognosis and progression of kidney disease. Here, we discuss stress tests that examine protein-induced hyperfiltration, proximal tubular secretion, urea-selective concentration defects, and acid retention. We discuss diseases in which these tests have been used to diagnose subclinical injury. The study and follow-up of abnormal functional reserve may add considerable understanding to the natural history of CKD.
Collapse
Affiliation(s)
- Armando Armenta
- Department of Nephrology, National Institute of Cardiology “Ignacio Chavez,” Mexico City, Mexico
| | - Magdalena Madero
- Department of Nephrology, National Institute of Cardiology “Ignacio Chavez,” Mexico City, Mexico
| | - Bernardo Rodriguez-Iturbe
- Department of Nephrology, National Institute of Cardiology "Ignacio Chavez," Mexico City, Mexico .,Department of Nephrology and Mineral Metabolism, National Institute of Health Sciences and Nutrition "Salvador Zubirán," Mexico City, Mexico
| |
Collapse
|
18
|
Akihisa T, Kataoka H, Makabe S, Manabe S, Yoshida R, Ushio Y, Sato M, Tsuchiya K, Mochizuki T, Nitta K. Initial decline in eGFR to predict tolvaptan response in autosomal-dominant polycystic kidney disease. Clin Exp Nephrol 2022; 26:540-551. [PMID: 35165806 DOI: 10.1007/s10157-022-02192-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/29/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Tolvaptan, a vasopressin V2 receptor antagonist, is used to treat autosomal-dominant polycystic kidney disease (ADPKD). Although tolvaptan curbs disease progression, a few reports have examined factors related to treatment response. The estimated glomerular filtration rate (eGFR) decreases soon after tolvaptan is initiated. We investigated whether initial eGFR decline affects renal prognosis of patients. METHODS This was a single-center, retrospective observational cohort study. Eighty-three patients with ADPKD who initiated tolvaptan were selected. We analyzed the relationship of the initial eGFR change with clinical parameters and analyzed the annual eGFR change in terms of renal prognostic value using univariable and multivariable linear regression analyses. RESULTS The initial eGFR change was - 4.6 ± 8.0%/month. The initial eGFR change correlated significantly with the annual eGFR change in multivariable analysis, suggesting that the larger decline in the initial eGFR change, the better the renal prognosis. Furthermore, the change in fractional excretion (FE) of free water (FEH2O) correlated positively with initial eGFR change. FEH2O and urea nitrogen FE (FEUN) increased significantly; however, sodium FE (FENa) level remained unchanged. In approximately half of the patients, FENa unexpectedly decreased. CONCLUSIONS The initial eGFR decline might be caused by suppressing glomerular hyperfiltration, due to the pharmacological effect of tolvaptan, and/or by reducing renal plasma flow, due to potential volume depletion. The initial eGFR change reflects the tolvaptan effect, can be easily evaluated in clinical practice, and may be useful as one of the clinical indicator for predicting renal prognosis in patients under tolvaptan.
Collapse
Affiliation(s)
- Taro Akihisa
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Hiroshi Kataoka
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Shiho Makabe
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Shun Manabe
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Rie Yoshida
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Yusuke Ushio
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Masayo Sato
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Ken Tsuchiya
- Department of Blood Purification, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Toshio Mochizuki
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Kosaku Nitta
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
19
|
The wind of change in the management of autosomal dominant polycystic kidney disease in childhood. Pediatr Nephrol 2022; 37:473-487. [PMID: 33677691 PMCID: PMC8921141 DOI: 10.1007/s00467-021-04974-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/28/2020] [Accepted: 01/27/2021] [Indexed: 12/27/2022]
Abstract
Significant progress has been made in understanding the genetic basis of autosomal dominant polycystic kidney disease (ADPKD), quantifying disease manifestations in children, exploring very-early onset ADPKD as well as pharmacological delay of disease progression in adults. At least 20% of children with ADPKD have relevant, yet mainly asymptomatic disease manifestations such as hypertension or proteinuria (in line with findings in adults with ADPKD, where hypertension and cardiovascular damage precede decline in kidney function). We propose an algorithm for work-up and management based on current recommendations that integrates the need to screen regularly for hypertension and proteinuria in offspring of affected parents with different options regarding diagnostic testing, which need to be discussed with the family with regard to ethical and practical aspects. Indications and scope of genetic testing are discussed. Pharmacological management includes renin-angiotensin system blockade as first-line therapy for hypertension and proteinuria. The vasopressin receptor antagonist tolvaptan is licensed for delaying disease progression in adults with ADPKD who are likely to experience kidney failure. A clinical trial in children is currently ongoing; however, valid prediction models to identify children likely to suffer kidney failure are lacking. Non-pharmacological interventions in this population also deserve further study.
Collapse
|
20
|
Blijdorp CJ, Severs D, Musterd-Bhaggoe UM, Gansevoort RT, Zietse R, Hoorn EJ. Serum bicarbonate is associated with kidney outcomes in autosomal dominant polycystic kidney disease. Nephrol Dial Transplant 2021; 36:2248-2255. [PMID: 33377160 PMCID: PMC8643593 DOI: 10.1093/ndt/gfaa283] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Metabolic acidosis accelerates progression of chronic kidney disease, but whether this is also true for autosomal dominant polycystic kidney disease (ADPKD) is unknown. METHODS Patients with ADPKD from the DIPAK (Developing Interventions to halt Progression of ADPKD) trial were included [n = 296, estimated glomerular filtration rate (eGFR) 50 ± 11 mL/min/1.73 m2, 2.5 years follow-up]. Outcomes were worsening kidney function (30% decrease in eGFR or kidney failure), annual eGFR change and height-adjusted total kidney and liver volumes (htTKV and htTLV). Cox and linear regressions were adjusted for prognostic markers for ADPKD [Mayo image class and predicting renal outcomes in ADPKD (PROPKD) scores] and acid-base parameters (urinary ammonium excretion). RESULTS Patients in the lowest tertile of baseline serum bicarbonate (23.1 ± 1.6 mmol/L) had a significantly greater risk of worsening kidney function [hazard ratio = 2.95, 95% confidence interval (CI) 1.21-7.19] compared with patients in the highest tertile (serum bicarbonate 29.0 ± 1.3 mmol/L). Each mmol/L decrease in serum bicarbonate increased the risk of worsening kidney function by 21% in the fully adjusted model (hazard ratio = 1.21, 95% CI 1.06-1.37). Each mmol/L decrease of serum bicarbonate was also associated with further eGFR decline (-0.12 mL/min/1.73 m2/year, 95% CI -0.20 to -0.03). Serum bicarbonate was not associated with changes in htTKV or htTLV growth. CONCLUSIONS In patients with ADPKD, a lower serum bicarbonate within the normal range predicts worse kidney outcomes independent of established prognostic factors for ADPKD and independent of urine ammonium excretion. Serum bicarbonate may add to prognostic models and should be explored as a treatment target in ADPKD.
Collapse
Affiliation(s)
- Charles J Blijdorp
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - David Severs
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Usha M Musterd-Bhaggoe
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ronald T Gansevoort
- Department of Nephrology, University Medical Center Groningen, Groningen, The Netherlands
| | - Robert Zietse
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ewout J Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
21
|
Urinary Aquaporin 2 as a Potential Indicator Predicting Tolvaptan Response in Patients With ADPKD. Kidney Int Rep 2021; 6:2436-2444. [PMID: 34514204 PMCID: PMC8418978 DOI: 10.1016/j.ekir.2021.06.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 11/26/2022] Open
Abstract
Introduction Tolvaptan is used to treat autosomal dominant polycystic kidney disease (ADPKD) because it inhibits binding of the antidiuretic hormone vasopressin to the vasopressin V2 receptor (V2R), which suppresses the insertion of preformed water channel aquaporin 2 (AQP2) molecules in the luminal membrane of the collecting duct cells. Methods This single-center, prospective observational cohort study investigated whether decreased AQP2 elimination in urine affects the renal prognosis of patients who received tolvaptan. We selected 92 patients with ADPKD who were administered tolvaptan in our hospital. We evaluated correlations between changes in urinary AQP2 (U-AQP2) and clinical parameters and the annual change in total kidney volume (TKV) and estimated glomerular filtration rate (eGFR) as renal prognostic factors using univariable and multivariable multiple regression analyses. Results The observation period was 2.4 ± 1.5 years. U-AQP2 per milligram of urinary creatinine (U-AQP2/Cr) decreased from 67.8 ± 50.6 to 20.7 ± 15.1 fmol/mg urinary creatinine after 1 month of tolvaptan treatment. This initial change in U-AQP2/Cr was correlated with high baseline U-AQP2/Cr, low baseline eGFR, and a large initial change in eGFR (baseline to 1 month). The initial change in U-AQP2/Cr (baseline to 1 month) was strongly correlated with the annual change in TKV and eGFR in multivariable analysis. Conclusion Initial decrease in U-AQP2/Cr in the first month of treatment reflects the pharmacologic effect of tolvaptan and could be an indicator of renal prognosis during tolvaptan treatment.
Collapse
|
22
|
Emerging non-pharmacological interventions in ADPKD: an update on dietary advices for clinical practice. Curr Opin Nephrol Hypertens 2021; 30:482-492. [PMID: 34261861 DOI: 10.1097/mnh.0000000000000734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Patients with Autosomal Dominant Polycystic Kidney Disease (ADPKD) reach kidney failure at a median age of 58 years. There has been a strong interest in medical interventions to improve prognosis. With increasing understanding of the underlying pathophysiology, there is also a rationale for non-pharmaceutical interventions. However, these have received little attention. This review, therefore, focuses on dietary interventions in ADPKD. RECENT FINDINGS Recent studies regarding salt, protein and water intake, caloric restriction, BMI, caffeine and alcohol are discussed in this review. In general, these studies suggest that advices do not need to be different from those in chronic kidney disease (CKD). On the basis of research in the general population and CKD, these advices will likely decrease cardiovascular morbidity and mortality. With respect to delaying ADPKD progression, evidence for salt restriction is growing. For increasing water intake and targeting glucose metabolism by intermittent fasting, preclinical studies are promising. Long-term randomized human intervention studies are, however, lacking. SUMMARY In ADPKD, advices regarding dietary interventions can, in general, be the same as in CKD to decrease cardiovascular morbidity and mortality. Whether these interventions also delay disease progression needs further study.
Collapse
|
23
|
Underwood CF, Mcmullan S, Goodchild AK, Phillips JK, Hildreth CM. The subfornical organ drives hypertension in polycystic kidney disease via the hypothalamic paraventricular nucleus. Cardiovasc Res 2021; 118:1138-1149. [PMID: 33774660 DOI: 10.1093/cvr/cvab122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/25/2021] [Indexed: 11/14/2022] Open
Abstract
AIMS Hypertension is a prevalent yet poorly understood feature of polycystic kidney disease. Previously we demonstrated that increased glutamatergic neurotransmission within the hypothalamic paraventricular nucleus produces hypertension in the Lewis Polycystic Kidney rat model of polycystic kidney disease. Here we tested the hypothesis that augmented glutamatergic drive to the paraventricular nucleus in Lewis Polycystic Kidney rats originates from the forebrain lamina terminalis, a sensory structure that relays blood-borne information throughout the brain. METHODS AND RESULTS Anatomical experiments revealed that 38% of paraventricular nucleus-projecting neurons in the subfornical organ of the lamina terminalis expressed Fos/Fra, an activation marker, in Lewis Polycystic Kidney rats while <1% of neurons were Fos/Fra+ in Lewis control rats (P = 0.01, n = 8). In anaesthetised rats, subfornical organ neuronal inhibition using isoguvacine produced a greater reduction in systolic blood pressure in the Lewis Polycystic Kidney versus Lewis rats (-21 ± 4 vs. -7 ± 2 mmHg, P < 0.01; n = 10), which could be prevented by prior blockade of paraventricular nucleus ionotropic glutamate receptors using kynurenic acid. Blockade of ionotropic glutamate receptors in the paraventricular nucleus produced an exaggerated depressor response in Lewis Polycystic Kidney relative to Lewis rats (-23 ± 4 vs. -2 ± 3 mmHg, P < 0.001; n = 13), which was corrected by prior inhibition of the subfornical organ with muscimol but unaffected by chronic systemic angiotensin II type I receptor antagonism or lowering of plasma hyperosmolality through high-water intake (P > 0.05); treatments that both nevertheless lowered blood pressure in Lewis Polycystic Kidney rats (P < 0.0001). CONCLUSION Our data reveal multiple independent mechanisms contribute to hypertension in polycystic kidney disease, and identify high plasma osmolality, angiotensin II type I receptor activation and, importantly, a hyperactive subfornical organ to paraventricular nucleus glutamatergic pathway as potential therapeutic targets. TRANSLATIONAL PERSPECTIVE Hypertension is a significant comorbidity for all forms of chronic kidney disease and for individuals with polycystic kidney disease, often an early presenting feature. Nevertheless, the cause(s) of hypertension in polycystic kidney disease are poorly defined. Here we define the contribution of a neural pathway that contributes to hypertension in polycystic kidney disease. Critically, targeting this pathway may provide an additional antihypertensive effect beyond that achieved with current conventional antihypertensive therapies. Future work identifying the drivers of this neural pathway will aid in the development of newer generation antihypertensive medication.
Collapse
Affiliation(s)
- Conor F Underwood
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, AUSTRALIA.,Department of Anatomy, School of Biomedical Sciences, University of Otago, Otago, NEW ZEALAND
| | - Simon Mcmullan
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, AUSTRALIA
| | - Ann K Goodchild
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, AUSTRALIA
| | - Jacqueline K Phillips
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, AUSTRALIA
| | - Cara M Hildreth
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, AUSTRALIA
| |
Collapse
|
24
|
Signal transduction in primary cilia - analyzing and manipulating GPCR and second messenger signaling. Pharmacol Ther 2021; 224:107836. [PMID: 33744260 DOI: 10.1016/j.pharmthera.2021.107836] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
The primary cilium projects from the surface of most vertebrate cells, where it senses extracellular signals to regulate diverse cellular processes during tissue development and homeostasis. Dysfunction of primary cilia underlies the pathogenesis of severe diseases, commonly referred to as ciliopathies. Primary cilia contain a unique protein repertoire that is distinct from the cell body and the plasma membrane, enabling the spatially controlled transduction of extracellular cues. G-protein coupled receptors (GPCRs) are key in sensing environmental stimuli that are transmitted via second messenger signaling into a cellular response. Here, we will give an overview of the role of GPCR signaling in primary cilia, and how ciliary GPCR signaling can be targeted by pharmacology, chemogenetics, and optogenetics.
Collapse
|
25
|
Heida JE, Gansevoort RT, Messchendorp AL, Meijer E, Casteleijn NF, Boertien WE, Zittema D. Use of the Urine-to-Plasma Urea Ratio to Predict ADPKD Progression. Clin J Am Soc Nephrol 2021; 16:204-212. [PMID: 33504546 PMCID: PMC7863649 DOI: 10.2215/cjn.10470620] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 12/09/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND OBJECTIVES Predicting disease progression in patients with autosomal dominant polycystic kidney disease (ADPKD) poses a challenge, especially in early-stage disease when kidney function is not yet affected. Ongoing growth of cysts causes maximal urine-concentrating capacity to decrease from early on. We therefore hypothesized that the urine-to-plasma urea ratio, as a reflection of the urine-concentrating capacity, can be used as a marker to predict ADPKD progression. DESIGN The urine-to-plasma urea ratio was calculated by dividing concentrations of early morning fasting spot urine urea by plasma urea. First, this ratio was validated as surrogate marker in 30 patients with ADPKD who underwent a prolonged water deprivation test. Thereafter, association with kidney outcome was evaluated in 583 patients with ADPKD with a broad range of kidney function. Multivariable mixed-model regression was used to assess association with eGFR slope, and logarithmic regression to identify patients with rapidly progressive disease, using a cutoff of -3.0 ml/min per 1.73 m2 per year. The urine-to-plasma urea ratio was compared with established predictors, namely, sex, age, baseline eGFR, Mayo Clinic height-adjusted total kidney volume class, and PKD gene mutation. RESULTS The maximal urine-concentrating capacity and urine-to-plasma urea ratio correlated strongly (R=0.90; P<0.001). Next, the urine-to-plasma urea ratio was significantly associated with rate of eGFR decline during a median follow-up of 4.0 (interquartile range, 2.6-5.0) years, both crude and after correction for established predictors (β=0.58; P=0.02). The odds ratio of rapidly progressive disease was 1.35 (95% confidence interval, 1.19 to 1.52; P<0.001) for every 10 units decrease in urine-to-plasma urea ratio, with adjustment for predictors. A combined risk score of the urine-to-plasma urea ratio, Mayo Clinic height-adjusted total kidney volume class, and PKD mutation predicted rapidly progressive disease better than each of the predictors separately. CONCLUSIONS The urine-to-plasma urea ratio, which is calculated from routine laboratory measurements, predicts disease progression in ADPKD in addition to other risk markers. PODCAST This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2021_01_27_CJN10470620_final.mp3.
Collapse
Affiliation(s)
- Judith E. Heida
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ron T. Gansevoort
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - A. Lianne Messchendorp
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Esther Meijer
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Niek F. Casteleijn
- Department of Urology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wendy E. Boertien
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Debbie Zittema
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | |
Collapse
|
26
|
Aukema HM. Prostaglandins as potential targets for the treatment of polycystic kidney disease. Prostaglandins Leukot Essent Fatty Acids 2021; 164:102220. [PMID: 33285393 DOI: 10.1016/j.plefa.2020.102220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022]
Abstract
Polycystic kidney disease (PKD) is characterized by the proliferation of fluid-filled kidney cysts that enlarge over time, causing damage to the surrounding kidney and ultimately resulting in kidney failure. Both increased cell proliferation and fluid secretion are stimulated by increased cyclic adenosine monophosphate (cAMP) in PKD kidneys, so many treatments for the disease target cAMP lowering. Prostaglandins (PG) levels are elevated in multiple animal models of PKD and mediate many of their effects by elevating cAMP levels. Inhibiting the production of PG with cyclooxygenase 2 (COX2) inhibitors reduces PG levels and reduces disease progression. However, COX inhibitors also block beneficial PG and can cause nephrotoxicity. In an orthologous model of the main form of PKD, PGD2 and PGI2 were the two PG highest in kidneys and most affected by a COX2 inhibitor. Future studies are needed to determine whether specific blockage of PGD2 and/or PGI2 activity would lead to more targeted and effective treatments with fewer undesirable side-effects.
Collapse
Affiliation(s)
- Harold M Aukema
- Department of Food and Human Nutritional Sciences, University of Manitoba, MB R3T 2N2, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada.
| |
Collapse
|
27
|
Heida JE, Minović I, van Faassen M, Kema IP, Boertien WE, Bakker SJL, van Beek AP, Gansevoort RT. Effect of Vasopressin on the Hypothalamic-Pituitary-Adrenal Axis in ADPKD Patients during V2 Receptor Antagonism. Am J Nephrol 2020; 51:861-870. [PMID: 33147589 DOI: 10.1159/000511000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/31/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND Patients with autosomal dominant polycystic kidney disease (ADPKD) are treated with a vasopressin V2 receptor antagonist (V2RA) to slow disease progression. This drug increases vasopressin considerably in these patients with already elevated baseline levels. Vasopressin is known to stimulate the hypothalamic-pituitary-adrenal (HPA) axis through V1 and V3 receptor activation. It is unknown whether this increase in vasopressin during V2RA treatment affects glucocorticoid production. METHODS Twenty-seven ADPKD patients were studied on and off treatment with a V2RA and compared to age- and sex-matched healthy controls and IgA nephropathy patients, the latter also matched for kidney function. Vasopressin was measured by its surrogate copeptin. Twenty-four-hour urinary excretions of cortisol, cortisone, tetrahydrocortisone, tetrahydrocortisol, allotetrahydrocortisol, and the total glucocorticoid pool were measured. RESULTS At baseline, ADPKD patients demonstrated a higher copeptin concentration in comparison with healthy controls, while urinary excretion of cortisol and cortisone was lower (medians of 0.23 vs. 0.34 μmol/24 h, p = 0.007, and 0.29 vs. 0.53 μmol/24 h, p < 0.001, respectively). There were no differences in cortisol and cortisone excretion compared to IgA nephropathy patients. Cortisol, cortisone, and total glucocorticoid excretions correlated with kidney function (R = 0.37, 0.58, and 0.19, respectively; all p < 0.05). Despite that V2RA treatment resulted in a 3-fold increase in copeptin, only cortisone excretion increased (median of 0.44 vs. baseline 0.29 μmol/24 h, p < 0.001), whereas no changes in cortisol or total glucocorticoid excretion were observed. CONCLUSIONS Increased concentration of vasopressin in ADPKD patients at baseline and during V2RA treatment does not result in activation of the HPA axis. The impaired glucocorticoid production in these patients is related to their degree of kidney function impairment.
Collapse
Affiliation(s)
- Judith E Heida
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands,
| | - Isidor Minović
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martijn van Faassen
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wendy E Boertien
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stephan J L Bakker
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - André P van Beek
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ron T Gansevoort
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
28
|
Urine concentration ability is reduced to the same degree in adult dominant polycystic kidney disease compared with other chronic kidney diseases in the same CKD-stage and lower THAN in healthy control subjects - a CASE control study. BMC Nephrol 2020; 21:379. [PMID: 32867720 PMCID: PMC7457520 DOI: 10.1186/s12882-020-02043-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/23/2020] [Indexed: 01/20/2023] Open
Abstract
Background Concentration of the urine is primarily regulated via vasopressin dependent aquaporin-2 water channels in the apical membrane of kidney principal cells. It is unclear whether urine concentration ability in ADPKD differs from other patients with similar degree of impaired renal function (non-ADPKD patients). The purpose of this case control study was to measure urine concentration ability in ADPKD patients compared to non-ADPKD patients and healthy controls. Methods A seventeen hour long water deprivation test was carried out in 17 ADPKD patients (CKD I-IV), 16 non-ADPKD patients (CKD I-IV), and 18 healthy controls. Urine was collected in 4 consecutive periods during water deprivation (12 h, 1 h, 2 h and 2 h, respectively) and analyzed for osmolality (u-Osm), output (UO), fractional excretion of sodium (FENa), aquaporin2 (u-AQP2) and ENaC (u-ENaC). Blood samples were drawn trice (after 13-, 15-, and 17 h after water deprivation) for analyses of osmolality (p-Osm), vasopressin (p-AVP), and aldosterone (p-Aldo). Results U-Osm was significantly lower and FENa significantly higher in both ADPKD patients and non-ADPKD patients compared to healthy controls during the last three periods of water deprivation. During the same periods, UO was higher and secretion rates of u-AQP2 and u-ENaC were lower and at the same level in the two groups of patients compared to controls. P-AVP and p-Osm did not differ significantly between the three groups. P-Aldo was higher in both groups of patients than in controls. Conclusions Urine concentration ability was reduced to the same extent in patients with ADPKD and other chronic kidney diseases with the same level of renal function compared to healthy controls. The lower urine excretion of AQP2 and ENaC suggests that the underlying mechanism may be a reduced tubular response to vasopressin and aldosterone. Trial registration Current Controlled Trial NCT04363554, date of registration: 20.08.2017.
Collapse
|
29
|
Perrier ET, Armstrong LE, Bottin JH, Clark WF, Dolci A, Guelinckx I, Iroz A, Kavouras SA, Lang F, Lieberman HR, Melander O, Morin C, Seksek I, Stookey JD, Tack I, Vanhaecke T, Vecchio M, Péronnet F. Hydration for health hypothesis: a narrative review of supporting evidence. Eur J Nutr 2020; 60:1167-1180. [PMID: 32632658 PMCID: PMC7987589 DOI: 10.1007/s00394-020-02296-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE An increasing body of evidence suggests that excreting a generous volume of diluted urine is associated with short- and long-term beneficial health effects, especially for kidney and metabolic function. However, water intake and hydration remain under-investigated and optimal hydration is poorly and inconsistently defined. This review tests the hypothesis that optimal chronic water intake positively impacts various aspects of health and proposes an evidence-based definition of optimal hydration. METHODS Search strategy included PubMed and Google Scholar using relevant keywords for each health outcome, complemented by manual search of article reference lists and the expertise of relevant practitioners for each area studied. RESULTS The available literature suggest the effects of increased water intake on health may be direct, due to increased urine flow or urine dilution, or indirect, mediated by a reduction in osmotically -stimulated vasopressin (AVP). Urine flow affects the formation of kidney stones and recurrence of urinary tract infection, while increased circulating AVP is implicated in metabolic disease, chronic kidney disease, and autosomal dominant polycystic kidney disease. CONCLUSION In order to ensure optimal hydration, it is proposed that optimal total water intake should approach 2.5 to 3.5 L day-1 to allow for the daily excretion of 2 to 3 L of dilute (< 500 mOsm kg-1) urine. Simple urinary markers of hydration such as urine color or void frequency may be used to monitor and adjust intake.
Collapse
Affiliation(s)
- Erica T Perrier
- Health, Hydration & Nutrition Science, Danone Research, Route Départementale 128, 91767, Palaiseau cedex, France.
| | - Lawrence E Armstrong
- Department of Kinesiology, University of Connecticut, Storrs, CT, USA.,Hydration & Nutrition, LLC, Newport News, VA, USA
| | - Jeanne H Bottin
- Health, Hydration & Nutrition Science, Danone Research, Route Départementale 128, 91767, Palaiseau cedex, France
| | - William F Clark
- London Health Sciences Centre and Western University, London, ON, Canada
| | - Alberto Dolci
- Health, Hydration & Nutrition Science, Danone Research, Route Départementale 128, 91767, Palaiseau cedex, France
| | - Isabelle Guelinckx
- Health, Hydration & Nutrition Science, Danone Research, Route Départementale 128, 91767, Palaiseau cedex, France
| | - Alison Iroz
- Health, Hydration & Nutrition Science, Danone Research, Route Départementale 128, 91767, Palaiseau cedex, France
| | - Stavros A Kavouras
- College of Health Solutions and Hydration Science Lab, Arizona State University, Phoenix, AZ, USA
| | - Florian Lang
- Department of Physiology, Eberhard Karls University, Tübingen, Germany
| | | | - Olle Melander
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Clementine Morin
- Health, Hydration & Nutrition Science, Danone Research, Route Départementale 128, 91767, Palaiseau cedex, France
| | - Isabelle Seksek
- Health, Hydration & Nutrition Science, Danone Research, Route Départementale 128, 91767, Palaiseau cedex, France
| | - Jodi D Stookey
- Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Ivan Tack
- Explorations Fonctionnelles Physiologiques, Hôpital Rangueil, Toulouse, France
| | - Tiphaine Vanhaecke
- Health, Hydration & Nutrition Science, Danone Research, Route Départementale 128, 91767, Palaiseau cedex, France
| | - Mariacristina Vecchio
- Health, Hydration & Nutrition Science, Danone Research, Route Départementale 128, 91767, Palaiseau cedex, France
| | - François Péronnet
- École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
30
|
Park HC, Kim J, Cho AJ, Kim DH, Lee YK, Ryu H, Kim H, Oh KH, Oh YK, Hwang YH, Lee KB, Kim SW, Kim YH, Lee J, Ahn C. Urinary Angiotensinogen in addition to Imaging Classification in the Prediction of Renal Outcome in Autosomal Dominant Polycystic Kidney Disease. J Korean Med Sci 2020; 35:e165. [PMID: 32508065 PMCID: PMC7279941 DOI: 10.3346/jkms.2020.35.e165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/24/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Intrarenal renin-angiotensin system (RAS) is known to play the major role in the development of hypertension and renal progression in autosomal dominant polycystic kidney disease (ADPKD). Urinary angiotensinogen to creatinine ratio (AGT/Cr) was suggested as a novel biomarker to reflect intrarenal RAS activity. This study was performed to evaluate urinary AGT/Cr as a predictive biomarker for renal function decline in addition to imaging classification in a prospective ADPKD cohort. METHODS From 2011 to 2016, a total of 364 ADPKD patients were enrolled in the prospective cohort called the KoreaN Cohort Study for Outcomes in Patients With Chronic Kidney Disease (KNOW-CKD). Among them, a total of 207 subjects in chronic kidney disease stage 1-4 with baseline urinary AGT and total kidney volume and subsequent renal function follow-up data over more than 1 year were included in the analysis. Patients were defined as slow progressors (SP) if they are classified as 1A or 1B by imaging classification whereas rapid progressors (RP) if they are classified as 1C-1E. Patients were divided according to AGT/Cr quartiles and annual estimated glomerular filtration rate (eGFR) slope was compared among highest quartile (hAGT group) and the rest of quartiles (lAGT group). Patients were divided into 4 groups to evaluate the predictive value of urinary AGT/Cr in addition to imaging classification: SP/lAGT, SP/hAGT, RP/lAGT, and RP/hAGT. The Cox regression model was used to evaluate the hazard ratio (HR) between groups. RESULTS The mean age was 45.9 years and 88.9% had hypertension. Baseline eGFR was 79.0 ± 28.4 mL/min/1.73 m² and median height-adjusted total kidney volume was 788.2 (471.2; 1,205.2) mL/m. The patients in the hAGT group showed lower eGFR (72.4 ± 24.8 vs. 81.1 ± 29.2 mL/min/1.73 m², P = 0.039), lower plasma hemoglobin (13.0 ± 1.4 vs. 13.7 ± 1.6 g/dL, P = 0.007), higher urinary protein to creatinine ratio (0.14 [0.09, 0.38] vs. 0.07 [0.04, 0.12] g/g, P = 0.007) compared to the lAGT group. The hAGT group was an independent risk factor for faster eGFR decline after adjusting for gender, RP, baseline eGFR, and other known risk factors. During median follow-up duration of 4.6 years, a total of 29 renal events (14.0%) occurred. The SP/hAGT group showed significantly higher risk of developing renal outcome compared to SP/lAGT group (HR, 13.4; 95% confidence interval, 1.282-139.324; P = 0.03). CONCLUSION Urinary AGT/Cr can be a useful predictive marker in the patients with relatively small ADPKD. Various biomarkers should be considered to define RP when implementing novel treatment in the patients with ADPKD.
Collapse
Affiliation(s)
- Hayne Cho Park
- Department of Internal Medicine, Hallym University College of Medicine, Seoul, Korea
- Hallym University Kidney Research Institute, Seoul, Korea
| | - Juhee Kim
- Department of Internal Medicine, Hallym University College of Medicine, Seoul, Korea
| | - AJin Cho
- Department of Internal Medicine, Hallym University College of Medicine, Seoul, Korea
- Hallym University Kidney Research Institute, Seoul, Korea
| | - Do Hyoung Kim
- Department of Internal Medicine, Hallym University College of Medicine, Seoul, Korea
- Hallym University Kidney Research Institute, Seoul, Korea
| | - Young Ki Lee
- Department of Internal Medicine, Hallym University College of Medicine, Seoul, Korea
- Hallym University Kidney Research Institute, Seoul, Korea
| | - Hyunjin Ryu
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Hyunsuk Kim
- Department of Internal Medicine, Hallym University College of Medicine, Seoul, Korea
- Hallym University Kidney Research Institute, Seoul, Korea
| | - Kook Hwan Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Yun Kyu Oh
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
| | | | - Kyu Beck Lee
- Department of Internal Medicine, Kangbuk Samsung Hospital, Seoul, Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Yeong Hoon Kim
- Department of Internal Medicine, Busan Paik Hospital, Busan, Korea
| | - Joongyub Lee
- Preventive and Management Center, Inha University Hospital, Incheon, Korea
| | - Curie Ahn
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea.
| | | |
Collapse
|
31
|
Sussman CR, Wang X, Chebib FT, Torres VE. Modulation of polycystic kidney disease by G-protein coupled receptors and cyclic AMP signaling. Cell Signal 2020; 72:109649. [PMID: 32335259 DOI: 10.1016/j.cellsig.2020.109649] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a systemic disorder associated with polycystic liver disease (PLD) and other extrarenal manifestations, the most common monogenic cause of end-stage kidney disease, and a major burden for public health. Many studies have shown that alterations in G-protein and cAMP signaling play a central role in its pathogenesis. As for many other diseases (35% of all approved drugs target G-protein coupled receptors (GPCRs) or proteins functioning upstream or downstream from GPCRs), treatments targeting GPCR have shown effectiveness in slowing the rate of progression of ADPKD. Tolvaptan, a vasopressin V2 receptor antagonist is the first drug approved by regulatory agencies to treat rapidly progressive ADPKD. Long-acting somatostatin analogs have also been effective in slowing the rates of growth of polycystic kidneys and liver. Although no treatment has so far been able to prevent the development or stop the progression of the disease, these encouraging advances point to G-protein and cAMP signaling as a promising avenue of investigation that may lead to more effective and safe treatments. This will require a better understanding of the relevant GPCRs, G-proteins, cAMP effectors, and of the enzymes and A-kinase anchoring proteins controlling the compartmentalization of cAMP signaling. The purpose of this review is to provide an overview of general GPCR signaling; the function of polycystin-1 (PC1) as a putative atypical adhesion GPCR (aGPCR); the roles of PC1, polycystin-2 (PC2) and the PC1-PC2 complex in the regulation of calcium and cAMP signaling; the cross-talk of calcium and cAMP signaling in PKD; and GPCRs, adenylyl cyclases, cyclic nucleotide phosphodiesterases, and protein kinase A as therapeutic targets in ADPKD.
Collapse
Affiliation(s)
- Caroline R Sussman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America
| | - Xiaofang Wang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America
| | - Fouad T Chebib
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
32
|
Nobakht N, Hanna RM, Al-Baghdadi M, Ameen KM, Arman F, Nobahkt E, Kamgar M, Rastogi A. Advances in Autosomal Dominant Polycystic Kidney Disease: A Clinical Review. Kidney Med 2020; 2:196-208. [PMID: 32734239 PMCID: PMC7380379 DOI: 10.1016/j.xkme.2019.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Polycystic kidney disease (PKD) is a multiorgan disorder resulting in fluid-filled cyst formation in the kidneys and other systems. The replacement of kidney parenchyma with an ever-increasing volume of cysts eventually leads to kidney failure. Recently, increased understanding of the pathophysiology of PKD and genetic advances have led to new approaches of treatment targeting physiologic pathways, which has been proven to slow the progression of certain types of the disease. We review the pathophysiologic patterns and recent advances in the clinical pharmacotherapy of autosomal dominant PKD. A multipronged approach with pharmacologic and nonpharmacologic treatments can be successfully used to slow down the rate of progression of autosomal dominant PKD to kidney failure.
Collapse
Affiliation(s)
- Niloofar Nobakht
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Ramy M. Hanna
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Division of Nephrology, Department of Medicine, University of California Irvine, Orange, CA
| | - Maha Al-Baghdadi
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Department of Medicine, University of Alabama Birmingham Huntsville Regional Campus, Huntsville, AL
| | - Khalid Mohammed Ameen
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Farid Arman
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Department of Medicine, University of Pennsylvania Medical Center, Philadelphia, PA
| | - Ehsan Nobahkt
- Division of Renal Diseases and Hypertension, Department of Medicine, George Washington University, Washington, DC
| | - Mohammad Kamgar
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Anjay Rastogi
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
33
|
Borrego Utiel FJ, Camacho Reina MV, Moriana Domínguez C, Merino García E. Osmolalidad urinaria en pacientes con poliquistosis renal: ¿medida o calculada? Nefrologia 2020; 40:202-204. [DOI: 10.1016/j.nefro.2019.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 10/26/2022] Open
|
34
|
Heida JE, Gansevoort RT, van Beek AP. Use of copeptin in the diagnosis of polyuria-polydipsia syndrome. Lancet 2020; 395:267. [PMID: 31982061 DOI: 10.1016/s0140-6736(19)33000-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/08/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Judith E Heida
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| | - Ron T Gansevoort
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - André P van Beek
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
35
|
Gimpel C, Bergmann C, Bockenhauer D, Breysem L, Cadnapaphornchai MA, Cetiner M, Dudley J, Emma F, Konrad M, Harris T, Harris PC, König J, Liebau MC, Marlais M, Mekahli D, Metcalfe AM, Oh J, Perrone RD, Sinha MD, Titieni A, Torra R, Weber S, Winyard PJD, Schaefer F. International consensus statement on the diagnosis and management of autosomal dominant polycystic kidney disease in children and young people. Nat Rev Nephrol 2019; 15:713-726. [PMID: 31118499 PMCID: PMC7136168 DOI: 10.1038/s41581-019-0155-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
These recommendations were systematically developed on behalf of the Network for Early Onset Cystic Kidney Disease (NEOCYST) by an international group of experts in autosomal dominant polycystic kidney disease (ADPKD) from paediatric and adult nephrology, human genetics, paediatric radiology and ethics specialties together with patient representatives. They have been endorsed by the International Pediatric Nephrology Association (IPNA) and the European Society of Paediatric Nephrology (ESPN). For asymptomatic minors at risk of ADPKD, ongoing surveillance (repeated screening for treatable disease manifestations without diagnostic testing) or immediate diagnostic screening are equally valid clinical approaches. Ultrasonography is the current radiological method of choice for screening. Sonographic detection of one or more cysts in an at-risk child is highly suggestive of ADPKD, but a negative scan cannot rule out ADPKD in childhood. Genetic testing is recommended for infants with very-early-onset symptomatic disease and for children with a negative family history and progressive disease. Children with a positive family history and either confirmed or unknown disease status should be monitored for hypertension (preferably by ambulatory blood pressure monitoring) and albuminuria. Currently, vasopressin antagonists should not be offered routinely but off-label use can be considered in selected children. No consensus was reached on the use of statins, but mTOR inhibitors and somatostatin analogues are not recommended. Children with ADPKD should be strongly encouraged to achieve the low dietary salt intake that is recommended for all children.
Collapse
Affiliation(s)
- Charlotte Gimpel
- Division of Pediatric Nephrology, Department of General Pediatrics, Adolescent Medicine and Neonatology, Center for Pediatrics, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany.
| | - Carsten Bergmann
- Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Human Genetics, Bioscientia, Ingelheim, Germany
| | - Detlef Bockenhauer
- University College London, Great Ormond Street Hospital, Institute of Child Health, London, UK
| | - Luc Breysem
- Department of Pediatric Radiology, University Hospital of Leuven, Leuven, Belgium
| | - Melissa A Cadnapaphornchai
- Rocky Mountain Pediatric Kidney Center, Rocky Mountain Hospital for Children at Presbyterian St Luke's Medical Center, Denver, CO, USA
| | - Metin Cetiner
- Department of Pediatrics II, University Hospital Essen, Essen, Germany
| | - Jan Dudley
- Renal Department, Bristol Royal Hospital for Children, Bristol, UK
| | - Francesco Emma
- Division of Nephrology and Dialysis, Ospedale Pediatrico Bambino Gesù-IRCCS, Rome, Italy
| | - Martin Konrad
- Department of General Pediatrics, University Children's Hospital, Münster, Germany
| | - Tess Harris
- PKD International, Geneva, Switzerland
- PKD Charity, London, UK
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Jens König
- Department of General Pediatrics, University Children's Hospital, Münster, Germany
| | - Max C Liebau
- Department of Pediatrics and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Matko Marlais
- University College London, Great Ormond Street Hospital, Institute of Child Health, London, UK
| | - Djalila Mekahli
- Department of Pediatric Nephrology, University Hospital of Leuven, Leuven, Belgium
- PKD Research Group, Laboratory of Pediatrics, Department of Development and Regeneration, GPURE, KU Leuven, Leuven, Belgium
| | - Alison M Metcalfe
- Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, UK
| | - Jun Oh
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald D Perrone
- Division of Nephrology, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Manish D Sinha
- Kings College London, Department of Paediatric Nephrology, Evelina London Children's Hospital, London, UK
| | - Andrea Titieni
- Department of General Pediatrics, University Children's Hospital, Münster, Germany
| | - Roser Torra
- Department of Nephrology, University of Barcelona, Barcelona, Spain
| | - Stefanie Weber
- Department of Pediatrics, University of Marburg, Marburg, Germany
| | - Paul J D Winyard
- University College London, Great Ormond Street Hospital, Institute of Child Health, London, UK
| | - Franz Schaefer
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University Hospital, Heidelberg, Germany
| |
Collapse
|
36
|
Lee MJ, Chang TI, Lee J, Kim YH, Oh KH, Lee SW, Kim SW, Park JT, Yoo TH, Kang SW, Choi KH, Ahn C, Han SH. Urine Osmolality and Renal Outcome in Patients with Chronic Kidney Disease: Results from the KNOW-CKD. Kidney Blood Press Res 2019; 44:1089-1100. [PMID: 31505490 DOI: 10.1159/000502291] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/21/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Urine osmolality indicates the ability of the kidney to concentrate the urine and reflects the antidiuretic action of vasopressin. However, results about the association between urine osmolality and adverse renal outcomes in chronic kidney disease (CKD) are conflicting. We investigated the association between urine osmolality and adverse renal outcomes in a nationwide prospective CKD cohort. METHODS A total of 1,999 CKD patients were categorized into 3 groups according to their urine osmolality tertiles. Primary outcome was a composite of 50% decline in the estimated glomerular filtration rate (eGFR), initiation of dialysis, or kidney transplantation. RESULTS During a mean follow-up of 35.2 ± 19.0 months, primary outcome occurred in 432 (21.6%) patients; 240 (36.4%), 162 (24.3%), and 30 (4.5%) in the lowest, middle, and highest tertiles, respectively. Low urine osmolality was independently associated with a greater risk of CKD progression (hazard ratio [HR], 1.71; 95% confidence interval [CI], 1.12-2.59). This association was particularly evident in patients with CKD stages 3-4 (per 10 mosm/kg decrease; HR, 1.02; 95% CI, 1.00-1.03). Adding urine osmolality to a base model with conventional factors significantly increased the ability to predict CKD progression (C-statistics, 0.86; integrated discrimination improvement [IDI], 0.021; both p < 0.001). However, adding both urine osmolality and eGFR did not further improve the predictive ability compared with the addition of eGFR only (C-statistics, p = 0.29; IDI, p = 0.09). CONCLUSIONS Low urine osmolality was an independent risk factor for adverse renal outcomes in CKD patients, but its predictive ability did not surpass eGFR. Thus, kidney function should be considered while interpreting the clinical significance of urine osmolality.
Collapse
Affiliation(s)
- Mi Jung Lee
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, College of Medicine, Seongnam, Republic of Korea
| | - Tae Ik Chang
- Department of Internal Medicine, National Health Insurance Service Medical Center, Ilsan Hospital, Goyangshi, Republic of Korea
| | - Joongyub Lee
- Department of Prevention and Management, Inha University Hospital, Inha University School of Medicine, Incheon, Republic of Korea
| | - Yeong Hoon Kim
- Department of Internal Medicine, Inje University, Pusan Paik Hospital, Busan, Republic of Korea
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sung Woo Lee
- Department of Internal Medicine, Nowon Eulji Medical Center, Eulji University, Seoul, Republic of Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jung Tak Park
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Republic of Korea
| | - Tae-Hyun Yoo
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Republic of Korea
| | - Shin-Wook Kang
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Republic of Korea
| | - Kyu Hun Choi
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Republic of Korea
| | - Curie Ahn
- Department of Internal Medicine, Seoul National University, Seoul, Republic of Korea
| | - Seung Hyeok Han
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Republic of Korea,
| |
Collapse
|
37
|
Rastogi A, Ameen KM, Al-Baghdadi M, Shaffer K, Nobakht N, Kamgar M, Lerma EV. Autosomal dominant polycystic kidney disease: updated perspectives. Ther Clin Risk Manag 2019; 15:1041-1052. [PMID: 31692482 PMCID: PMC6716585 DOI: 10.2147/tcrm.s196244] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/01/2019] [Indexed: 12/17/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is an inherited multisystem disorder, characterized by renal and extra-renal fluid-filled cyst formation and increased kidney volume that eventually leads to end-stage renal disease. ADPKD is considered the fourth leading cause of end-stage renal disease in the United States and globally. Care of patients with ADPKD was, for a long time, limited to supportive lifestyle measures, due to the lack of therapeutic strategies targeting the main pathways involved in the pathophysiology of ADPKD. As the first FDA approved treatment of ADPKD, Vasopressin (V2) receptor blocking agent, tolvaptan, is an urgently awaited advance for ADPKD patients. In our review, we also shed some lights on what is beyond Tolvaptan as there are other medications in the pipeline and many medications have been or are currently being studied in clinical trials such as Tesevatinib, Metformin and Pravastatin, with the goal of slowing the rate of progression of ADPKD by reducing the increase in total kidney volume or maintaining eGFR. Here, we review updates in the perspectives and management of ADPKD.
Collapse
Affiliation(s)
- Anjay Rastogi
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Khalid Mohammed Ameen
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Maha Al-Baghdadi
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Kelly Shaffer
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Niloofar Nobakht
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Mohammad Kamgar
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Edgar V Lerma
- Department of Medicine, Divison of Nephrology, University of Illinois at Chicago/Advocate Christ Medical Center, Section of Nephrology, Oak Lawn, IL, USA
| |
Collapse
|
38
|
Gansevoort RT, van Gastel MDA, Chapman AB, Blais JD, Czerwiec FS, Higashihara E, Lee J, Ouyang J, Perrone RD, Stade K, Torres VE, Devuyst O. Plasma copeptin levels predict disease progression and tolvaptan efficacy in autosomal dominant polycystic kidney disease. Kidney Int 2019; 96:159-169. [PMID: 30898339 DOI: 10.1016/j.kint.2018.11.044] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/19/2018] [Accepted: 11/29/2018] [Indexed: 02/08/2023]
Abstract
In the TEMPO 3:4 Trial, treatment with tolvaptan, a vasopressin V2 receptor antagonist, slowed the increase in total kidney volume and decline in estimated glomerular filtration rate (eGFR) in autosomal dominant polycystic kidney disease (ADPKD). We investigated whether plasma copeptin levels, a marker of plasma vasopressin, are associated with disease progression, and whether pre-treatment copeptin and treatment-induced change in copeptin are associated with tolvaptan treatment efficacy. This post hoc analysis included 1,280 TEMPO 3:4 participants (aged 18-50 years, estimated creatinine clearance ≥60 ml/min and total kidney volume ≥750 mL) who had plasma samples available at baseline for measurement of copeptin using an automated immunofluorescence assay. In placebo-treated subjects, baseline copeptin predicted kidney growth and eGFR decline over 3 years. These associations were independent of sex, age, and baseline eGFR, but were no longer statistically significant after additional adjustment for baseline total kidney volume. In tolvaptan-treated subjects, copeptin increased from baseline to week 3 (6.3 pmol/L versus 21.9 pmol/L, respectively). In tolvaptan-treated subjects with higher baseline copeptin levels, a larger treatment effect was noted with respect to kidney growth rate and eGFR decline. Tolvaptan-treated subjects with a larger percentage increase in copeptin from baseline to week 3 had a better disease outcome, with less kidney growth and eGFR decline after three years. Copeptin holds promise as a biomarker to predict outcome and tolvaptan treatment efficacy in ADPKD.
Collapse
Affiliation(s)
- Ron T Gansevoort
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| | - Maatje D A van Gastel
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Arlene B Chapman
- Section of Nephrology, University of Chicago, Chicago, Illinois, USA
| | - Jaime D Blais
- Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland, USA
| | - Frank S Czerwiec
- Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland, USA
| | - Eiji Higashihara
- Department of ADPKD Research, Kyorin University School of Medicine, Tokyo, Japan
| | - Jennifer Lee
- Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland, USA
| | - John Ouyang
- Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland, USA
| | - Ronald D Perrone
- Department of Medicine, Division of Nephrology, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | | - Vicente E Torres
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland; and Division of Nephrology, Université Catholique de Louvain, Brussels, Belgium
| | | |
Collapse
|
39
|
Ranieri M, Di Mise A, Tamma G, Valenti G. Vasopressin-aquaporin-2 pathway: recent advances in understanding water balance disorders. F1000Res 2019; 8. [PMID: 30800291 PMCID: PMC6364380 DOI: 10.12688/f1000research.16654.1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/23/2019] [Indexed: 12/11/2022] Open
Abstract
The alteration of water balance and related disorders has emerged as being strictly linked to the state of activation of the vasopressin–aquaporin-2
(vasopressin–AQP2) pathway. The lack of responsiveness of the kidney to the vasopressin action impairs its ability to concentrate the urine, resulting in polyuria, polydipsia, and risk of severe dehydration for patients. Conversely, non-osmotic release of vasopressin is associated with an increase in water permeability in the renal collecting duct, producing water retention and increasing the circulatory blood volume. This review highlights some of the new insights and recent advances in therapeutic intervention targeting the dysfunctions in the vasopressin–AQP2 pathway causing diseases characterized by water balance disorders such as congenital nephrogenic diabetes insipidus, syndrome of inappropriate antidiuretic hormone secretion, nephrogenic syndrome of inappropriate antidiuresis, and autosomal dominant polycystic kidney disease. The recent clinical data suggest that targeting the vasopressin–AQP2 axis can provide therapeutic benefits in patients with water balance disorders.
Collapse
Affiliation(s)
- Marianna Ranieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy, 70125, Italy
| | - Annarita Di Mise
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy, 70125, Italy
| | - Grazia Tamma
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy, 70125, Italy.,Istituto Nazionale di Biostrutture e Biosistemi, Rome, Roma, Italy, 00136, Italy
| | - Giovanna Valenti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy, 70125, Italy.,Istituto Nazionale di Biostrutture e Biosistemi, Rome, Roma, Italy, 00136, Italy.,Center of Excellence in Comparative Genomics (CEGBA), University of Bari, Bari, Italy, 70125, Italy
| |
Collapse
|
40
|
Sagar PS, Zhang J, Luciuk M, Mannix C, Wong ATY, Rangan GK. Increased water intake reduces long-term renal and cardiovascular disease progression in experimental polycystic kidney disease. PLoS One 2019; 14:e0209186. [PMID: 30601830 PMCID: PMC6314616 DOI: 10.1371/journal.pone.0209186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 12/01/2018] [Indexed: 01/29/2023] Open
Abstract
Polycystic kidney disease (PKD) is the most common inherited cause of kidney failure and currently has limited treatment options. Increasing water intake reduces renal cyst growth in the pck rat (a genetic ortholog of autosomal recessive PKD) but it is not clear if this beneficial effect is present in other models of PKD. In this study, we tested the hypothesis that high water intake (HWI) reduces the progression of cystic renal disease in Lewis polycystic kidney (LPK) rats (a genetic ortholog of human nephronophthisis-9). Groups of female and male LPK (n = 8–10 per group) and Lewis (n = 4 per group) rats received water ad libitum supplemented with or without 5% glucose [to simulate HWI or normal water intake (NWI) respectively] from postnatal weeks 3 to 16. Water intake increased ~1.3-fold in the LPK+HWI group compared to LPK+NWI rats between weeks 3 to 10 but the differences were not significant at later timepoints. In LPK rats, HWI reduced the increases in the kidney to body weight ratio by 54% at week 10 and by 42% at week 16 compared to NWI (both p<0.01). The reduction in kidney enlargement was accompanied by decreases in the percentage renal cyst area, percentage renal interstitial collagen and proteinuria (all p<0.05). At week 16, HWI reduced systolic blood pressure and the heart to body to weight ratio by 16% and 21% respectively in males LPK rats (both p<0.01). In conclusion, a modest increase in water intake during the early phase of disease was sufficient to attenuate renal cystic disease in LPK rats, with secondary benefits on hypertension and cardiovascular disease. These data provide further preclinical evidence that increased water intake is a potential intervention in cystic renal diseases.
Collapse
Affiliation(s)
- Priyanka S. Sagar
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, Australia
- * E-mail:
| | - Jennifer Zhang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, Australia
| | - Magda Luciuk
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, Australia
| | - Carly Mannix
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, Australia
| | - Annette T. Y. Wong
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, Australia
| | - Gopala K. Rangan
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, Australia
| |
Collapse
|
41
|
Increased excitatory regulation of the hypothalamic paraventricular nucleus and circulating vasopressin results in the hypertension observed in polycystic kidney disease. J Hypertens 2019; 37:109-115. [DOI: 10.1097/hjh.0000000000001841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
42
|
Qian Q. Salt, water and nephron: Mechanisms of action and link to hypertension and chronic kidney disease. Nephrology (Carlton) 2018; 23 Suppl 4:44-49. [PMID: 30298656 PMCID: PMC6221012 DOI: 10.1111/nep.13465] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2018] [Indexed: 12/27/2022]
Abstract
Our knowledge on sodium and water homeostasis and regulation continues to evolve. A considerable amount of new information in this area has emerged in recent years. This review summarizes existing and new literature and discusses complex multi-organ effects of high-salt and low-water intake and role of arginine vasopressin in this process, as well as the potential clinical significance of non-osmotic sodium storage pool and rhythmicity of urine sodium excretion. It has become clear that sodium and water dysregulation can exert profound effects on kidney and vascular health, far greater than previously recognized. Maladaptation to a combined high-salt and low-water intake can be linked to the growing epidemic of hypertension and chronic kidney disease.
Collapse
Affiliation(s)
- Qi Qian
- Division of Nephrology and Hypertension, Department of Medicine, Mayo ClinicCollege of MedicineRochesterUSA
| |
Collapse
|
43
|
Tasneem M, Mannix C, Wong A, Zhang J, Rangan G. Is serum copeptin a modifiable biomarker in autosomal dominant polycystic kidney disease? World J Nephrol 2018; 7:51-57. [PMID: 29527508 PMCID: PMC5838414 DOI: 10.5527/wjn.v7.i2.51] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/29/2018] [Accepted: 02/28/2018] [Indexed: 02/06/2023] Open
Abstract
The availability of disease-modifying drugs for the management of autosomal dominant polycystic kidney disease (ADPKD) has accelerated the need to accurately predict renal prognosis and/or treatment response in this condition. Arginine vasopressin (AVP) is a critical determinant of postnatal kidney cyst growth in ADPKD. Copeptin (the C-terminal glycoprotein of the precursor AVP peptide) is an accurate surrogate marker of AVP release that is stable and easily measured by immunoassay. Cohort studies show that serum copeptin is correlated with disease severity in ADPKD, and predicts future renal events [decline in renal function and increase in total kidney volume (TKV)]. However, serum copeptin is strongly correlated with creatinine, and its additional value as a prognostic biomarker over estimated glomerular filtration rate and TKV is not certain. It has also been suggested that copeptin could be a predictive biomarker to select ADPKD patients who are most likely to benefit from AVP-modifying therapies, but prospective data to validate this assumption are required. In this regard, long-term randomised clinical trials evaluating the effect of prescribed water intake on renal cyst growth may contribute to addressing this hypothesis. In conclusion, although serum copeptin is aligned with the basic pathogenesis of ADPKD, further rigorous studies are needed to define if it will contribute to enabling the delivery of personalised care in ADPKD.
Collapse
Affiliation(s)
- Moomal Tasneem
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, the University of Sydney, Sydney 2145, Australia
- Department of Renal Medicine, Westmead Hospital, Sydney 2145, Australia
| | - Carly Mannix
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, the University of Sydney, Sydney 2145, Australia
- Department of Renal Medicine, Westmead Hospital, Sydney 2145, Australia
| | - Annette Wong
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, the University of Sydney, Sydney 2145, Australia
- Department of Renal Medicine, Westmead Hospital, Sydney 2145, Australia
| | - Jennifer Zhang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, the University of Sydney, Sydney 2145, Australia
- Department of Renal Medicine, Westmead Hospital, Sydney 2145, Australia
| | - Gopala Rangan
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, the University of Sydney, Sydney 2145, Australia
- Department of Renal Medicine, Westmead Hospital, Sydney 2145, Australia
| |
Collapse
|
44
|
Janssens P, Weydert C, De Rechter S, Wissing KM, Liebau MC, Mekahli D. Expanding the role of vasopressin antagonism in polycystic kidney diseases: From adults to children? Pediatr Nephrol 2018; 33:395-408. [PMID: 28455745 DOI: 10.1007/s00467-017-3672-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/21/2017] [Accepted: 03/30/2017] [Indexed: 02/07/2023]
Abstract
Polycystic kidney disease (PKD) encompasses a group of genetic disorders that are common causes of renal failure. The two classic forms of PKD are autosomal recessive polycystic kidney disease (ARPKD) and autosomal dominant polycystic kidney disease (ADPKD). Despite their clinical differences, ARPKD and ADPKD share many similarities. Altered intracellular Ca2+ and increased cyclic adenosine monophosphate (cAMP) concentrations have repetitively been described as central anomalies that may alter signaling pathways leading to cyst formation. The vasopressin V2 receptor (V2R) antagonist tolvaptan lowers cAMP in cystic tissues and slows renal cystic progression and kidney function decline when given over 3 years in adult ADPKD patients. Tolvaptan is currently approved for the treatment of rapidly progressive disease in adult ADPKD patients. On the occasion of the recent initiation of a clinical trial with tolvaptan in pediatric ADPKD patients, we aim to describe the most important aspects in the literature regarding the AVP-cAMP axis and the clinical use of tolvaptan in PKD.
Collapse
Affiliation(s)
- Peter Janssens
- Laboratory of Pediatrics, University Hospitals Leuven, Leuven, Belgium. .,Department of Nephrology, University Hospitals Brussel, Brussel, Belgium.
| | - Caroline Weydert
- Laboratory of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Stephanie De Rechter
- Laboratory of Pediatrics, University Hospitals Leuven, Leuven, Belgium.,Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| | | | - Max Christoph Liebau
- Pediatric Nephrology, Department of Pediatrics and Center for Molecular Medicine, University Hospital of Cologne, Cologne, Germany.,Department II of Internal Medicine, University Hospital of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Djalila Mekahli
- Laboratory of Pediatrics, University Hospitals Leuven, Leuven, Belgium.,Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
45
|
Copeptin Blood Content as a Diagnostic Marker of Chronic Kidney Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1096:83-91. [PMID: 29572679 DOI: 10.1007/5584_2018_189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Plasma content of copeptin increases with the advancement of chronic kidney disease (CKD). The purpose of this study was to evaluate copeptin content as a potential marker of CKD, as a single pathology or with coexisting heart failure. Seventy-six patients were divided into the following groups: Group 1 (control), without CKD and heart failure; Group 2, CKD stage 3a; Group 3, CKD stage 3b; Group 4, CKD stage 4; Group 5, CKD stage 5; and Group 6, CKD stage 3b and heart failure. For all patients, plasma concentrations of copeptin, creatinine, urea, cystatin C, sodium, C-reactive protein (CRP), N-terminal prohormone of brain natriuretic peptide (NT-proBNP), and blood pH were assessed. We found that plasma content of creatinine, urea, CRP, cystatin, NT-proBNP, and copeptin increased with CKD progression. Heart failure in CKD patients was not the cause of an appreciable increase of copeptin level. Copeptin/creatinine, copeptin/cystatin C ratios, and especially copeptin/eGFR ratio enhanced copeptin prognostic sensitivity concerning renal failure in CKD, compared with copeptin alone. The copeptin×NT-proBNP ratio decreased along CKD progression, reaching a nadir in the accompanying heart failure. In contradistinction, copeptin×NT-proBNP/creatinine ratio increased along CKD progression, reaching a peak in the accompanying heart failure. We conclude that copeptin is an important marker in CKD, but not so concerning heart failure in the disease. A decrease in copeptin×NT-proBNP and an increase in copeptin×NT-proBNP/creatinine ratio are useful markers of cardiac function decline in CKD.
Collapse
|
46
|
Clark WF, Devuyst O, Roussel R. The vasopressin system: new insights for patients with kidney diseases: Epidemiological evidence and therapeutic perspectives. J Intern Med 2017; 282:310-321. [PMID: 28905441 DOI: 10.1111/joim.12654] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
People with chronic kidney disease (CKD) are at risk of severe outcomes, such as end-stage renal disease or cardiovascular disease, and CKD is a globally increasing health burden with a high personal and economic cost. Despite major progresses in prevention and therapeutics in last decades, research is still needed to reverse this epidemic trend. The regulation of water balance and the state of activation of the vasopressin system have emerged as factors tightly associated with kidney health, in the general population but also in specific conditions; among them, various stages of CKD, diabetes and autosomal dominant polycystic kidney disease (ADPKD). Basic science findings and also epidemiological evidence have justified important efforts towards interventional studies supporting causality, and opening therapeutic avenues. On the basis of recent clinical data, the blockade of V2 vasopressin receptors using tolvaptan in patients with rapidly progressing ADPKD has been granted in several countries, and a long-term randomized trial evaluating the effect of an increase in water intake in patients with CKD is on-going.
Collapse
Affiliation(s)
- W F Clark
- Division of Nephrology, Department of Medicine, London Health Sciences Centre, London, ON, Canada
| | - O Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - R Roussel
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Département de Diabétologie, Endocrinologie et Nutrition, Assistance Publique Hôpitaux de Paris, Hôpital Bichat, DHU FIRE, Paris, France.,Sorbonne Paris Cite, UFR de Médecine, Université Paris Diderot, Paris, France
| |
Collapse
|
47
|
Zittema D, van den Brand JAJG, Bakker SJL, Wetzels JF, Gansevoort RT. Copeptin, a surrogate marker for arginine vasopressin, is associated with disease severity and progression in IgA nephropathy patients. Nephrol Dial Transplant 2017; 32:i146-i153. [PMID: 28057871 DOI: 10.1093/ndt/gfw391] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 10/10/2016] [Indexed: 12/12/2022] Open
Abstract
Background Besides its essential role for water homeostasis, arginine vasopressin (AVP) may have deleterious effects on the kidney. Copeptin, a surrogate marker for AVP, has been shown to be related to renal outcome in patients with diabetic nephropathy and polycystic kidney disease. We investigated the association of copeptin with disease severity and progression in immunoglobulin A nephropathy (IgAN). Methods We included a prospective cohort of 59 patients with biopsy proven IgAN. Urinary excretion of α1 microglobulin (α1m), β 2 microglobulin (β2m), kidney injury molecule-1, neutrophil gelatinase-associated lipocalin and total protein were measured at baseline. Plasma copeptin was determined from stored baseline serum samples. Cox regression was performed for the composite renal outcome defined as doubling of serum creatinine, end-stage renal disease (ESRD) or start of immunosuppressive therapy, and for the individual components during 5-year follow-up. Results In IgAN patients [male: 72%, age: 42 ± 13 years, mean arterial pressure (MAP): 101 ± 12 mmHg, proteinuria: 1.4 (0.7-2.3) g/day, estimated glomerular filtration rate (eGFR): 48 ± 21 mL/min/1.73 m 2 ] median copeptin was 9.4 (5.3-18.4) pmol/L. At baseline, copeptin was associated with α1m [standardized beta (St. β) = 0.34, P = 0.009], β2m (St. β = 0.33, P = 0.01) and proteinuria (St. β = 0.36, P = 0.053), adjusted for sex and eGFR. During follow-up, the highest tertile of baseline copeptin was positively associated with the incidence of the composite renal outcome as well as with the individual components of doubling of creatinine, ESRD and start of immunosuppressive therapy. In Cox regression models, copeptin showed prognostic value over MAP, proteinuria and eGFR for the composite renal outcome. Conclusions Copeptin is associated with disease severity and prognosis in IgAN patients and may have additional prognostic value besides established risk markers.
Collapse
Affiliation(s)
- Debbie Zittema
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan A J G van den Brand
- Department of Nephrology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stephan J L Bakker
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jack F Wetzels
- Department of Nephrology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ron T Gansevoort
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
48
|
Heida JE, Boesten LSM, Ettema EM, Muller Kobold AC, Franssen CFM, Gansevoort RT, Zittema D. Comparison of ex vivo stability of copeptin and vasopressin. Clin Chem Lab Med 2017; 55:984-992. [PMID: 27879483 DOI: 10.1515/cclm-2016-0559] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/22/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND Copeptin, part of the vasopressin precursor, is increasingly used as marker for vasopressin and is claimed to have better ex vivo stability. However, no study has directly compared the ex vivo stability of copeptin and vasopressin. METHODS Blood of ten healthy volunteers was collected in EDTA tubes. Next, we studied the effect of various pre-analytical conditions on measured vasopressin and copeptin levels: centrifugation speed, short-term storage temperature and differences between whole blood and plasma, long-term storage temperature and repeated freezing and thawing. The acceptable change limit (ACL), indicating the maximal percentage change that can be explained by assay variability, was used as cut-off to determine changes in vasopressin and copeptin. RESULTS The ACL was 25% for vasopressin and 19% for copeptin. Higher centrifugation speed resulted in lower vasopressin levels, whereas copeptin concentration was unaffected. In whole blood, vasopressin was stable up to 2 h at 25°C and 6 h at 4°C. In plasma, vasopressin was stable up to 6 h at 25°C and 24 h at 4°C. In contrast, copeptin was stable in whole blood and plasma for at least 24h at both temperatures. At -20°C, vasopressin was stable up to 1 month and copeptin for at least 4 months. Both vasopressin and copeptin were stable after 4 months when stored at -80°C and -150°C. Vasopressin concentration decreased after four freeze-thaw cycles, whereas copeptin concentration was unaffected. CONCLUSION Vasopressin levels were considerably affected by pre-analytical conditions, while copeptin levels were stable. Therefore, a strict sample handling protocol for measurement of vasopressin is recommended.
Collapse
|
49
|
Abstract
Copeptin is derived from the cleavage of the precursor of arginine vasopressin (AVP), produced in an equimolar ratio in hypothalamus and processed during axonal transport AVP is an unstable peptide and has a short half-life of 5-20 min. Unlike AVP, copeptin is a stable molecule and can easily be measured. Recent evidence suggest that increased copeptin levels have been associated with worse outcomes in various clinical conditions including chronic kidney disease (CKD) and hypertension. In this review, the data regarding copeptin with kidney function (evaluated as glomerular filtration rate, increased albumin/protein excretion or both) and hypertension with regard to performed studies, prognosis and pathogenesis was summarised.
Collapse
|
50
|
Zacchia M, Di Iorio V, Trepiccione F, Caterino M, Capasso G. The Kidney in Bardet-Biedl Syndrome: Possible Pathogenesis of Urine Concentrating Defect. KIDNEY DISEASES 2017; 3:57-65. [PMID: 28868293 DOI: 10.1159/000475500] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/05/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND The ciliopathies are a growing number of disorders caused by mutations in genes involved in the function of the primary cilium. Bardet-Biedl syndrome (BBS) belongs to this group of disorders. In this setting, kidney dysfunction is highly variable, and urine concentrating defect, a common feature of multiple ciliopathies, has been described as the most frequent defect. Here we review the mechanism of urine concentration and describe the possible mechanism underling this defect in ciliopathies and especially BBS, based on the current body of literature. SUMMARY Active Na+ absorption along the thick ascending limb of the loop of Henle (TAL) is critical for generating the corticomedullary osmotic gradient, and the countercurrent anatomical arrangement of the 2 branches of the loop of Henle enhances this gradient. The vasa recta, paralleling the loop of Henle, operate into the countercurrent mechanism, minimizing washout of solutes from the interstitium. Final water reabsorption is mediated by the aquaporin 2 (AQP2) water channels along the distal nephron, and it is under hormonal control. Several studies demonstrated that hyposthenuria in BBS patients relies on kidney resistance to desmopressin, suggesting a renal origin. We recently showed that the majority of hyposthenuric BBS patients have also a defect regarding maximal urine dilution. Independent studies showed that BBS10 deficiency caused AQP2 mistrafficking in vitro; accordingly, we demonstrated impaired urinary AQP2 excretion in BBS patients with combined concentrating and diluting defect. Whether receptor signaling pathways or downstream events cause AQP2 deregulation is still unclear. In addition, reduced urinary uromodulin excretion in BBS patients opens the possibility that TAL dysfunction may also play a pathogenic role. KEY MESSAGE Impaired water handling in BBS is associated with AQP2 mistrafficking. The potential role of additional factors, such as the dissipation of the medullary osmotic gradient due to TAL dysfunction and/or structural anomalies, remains to be elucidated.
Collapse
Affiliation(s)
- Miriam Zacchia
- Division of Nephrology, Department of Cardiothoracic and Respiratory Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Valentina Di Iorio
- Eye Clinic, Multidisciplinary Department of Medical, Surgical, and Dental Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Francesco Trepiccione
- Division of Nephrology, Department of Cardiothoracic and Respiratory Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Marianna Caterino
- Department of Molecular Biology and Medical Biotechnologies, Università degli Studi di Napoli "Federico II," Naples, Italy
| | - Giovambattista Capasso
- Division of Nephrology, Department of Cardiothoracic and Respiratory Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy
| |
Collapse
|