1
|
Chamboko CR, Veldman W, Tata RB, Schoeberl B, Tastan Bishop Ö. Human Cytochrome P450 1, 2, 3 Families as Pharmacogenes with Emphases on Their Antimalarial and Antituberculosis Drugs and Prevalent African Alleles. Int J Mol Sci 2023; 24:ijms24043383. [PMID: 36834793 PMCID: PMC9961538 DOI: 10.3390/ijms24043383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Precision medicine gives individuals tailored medical treatment, with the genotype determining the therapeutic strategy, the appropriate dosage, and the likelihood of benefit or toxicity. Cytochrome P450 (CYP) enzyme families 1, 2, and 3 play a pivotal role in eliminating most drugs. Factors that affect CYP function and expression have a major impact on treatment outcomes. Therefore, polymorphisms of these enzymes result in alleles with diverse enzymatic activity and drug metabolism phenotypes. Africa has the highest CYP genetic diversity and also the highest burden of malaria and tuberculosis, and this review presents current general information on CYP enzymes together with variation data concerning antimalarial and antituberculosis drugs, while focusing on the first three CYP families. Afrocentric alleles such as CYP2A6*17, CYP2A6*23, CYP2A6*25, CYP2A6*28, CYP2B6*6, CYP2B6*18, CYP2C8*2, CYP2C9*5, CYP2C9*8, CYP2C9*9, CYP2C19*9, CYP2C19*13, CYP2C19*15, CYP2D6*2, CYP2D6*17, CYP2D6*29, and CYP3A4*15 are implicated in diverse metabolic phenotypes of different antimalarials such as artesunate, mefloquine, quinine, primaquine, and chloroquine. Moreover, CYP3A4, CYP1A1, CYP2C8, CYP2C18, CYP2C19, CYP2J2, and CYP1B1 are implicated in the metabolism of some second-line antituberculosis drugs such as bedaquiline and linezolid. Drug-drug interactions, induction/inhibition, and enzyme polymorphisms that influence the metabolism of antituberculosis, antimalarial, and other drugs, are explored. Moreover, a mapping of Afrocentric missense mutations to CYP structures and a documentation of their known effects provided structural insights, as understanding the mechanism of action of these enzymes and how the different alleles influence enzyme function is invaluable to the advancement of precision medicine.
Collapse
Affiliation(s)
- Chiratidzo R Chamboko
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6139, South Africa
| | - Wayde Veldman
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6139, South Africa
| | - Rolland Bantar Tata
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6139, South Africa
| | - Birgit Schoeberl
- Translational Medicine, Novartis Institutes for BioMedical Research, 220 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6139, South Africa
| |
Collapse
|
2
|
Abdullahi ST, Soyinka JO, Olagunju A, Bolarinwa RA, Olarewaju OJ, Bakare‐Odunola MT, Winterberg M, Tarning J, Owen A, Khoo S. CYP2B6*6 Genotype Specific Differences in Artemether-Lumefantrine Disposition in Healthy Volunteers. J Clin Pharmacol 2020; 60:351-360. [PMID: 31549442 PMCID: PMC7028104 DOI: 10.1002/jcph.1527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/03/2019] [Indexed: 12/30/2022]
Abstract
Cytochrome P450 2B6 (CYP2B6) is involved in the metabolism of the antimalarial drugs artemether and lumefantrine. Here we investigated the effect of CYP2B6*6 on the plasma pharmacokinetics of artemether, lumefantrine, and their metabolites in healthy volunteers. Thirty healthy and previously genotyped adult volunteers-15 noncarriers (CYP2B6*1/*1) and 15 homozygote carriers (CYP2B6*6/*6)-selected from a cohort of 150 subjects from the Ilorin metropolitan area were administered the complete 3-day course of artemether and lumefantrine (80 and 480 mg twice daily, respectively). Intensive pharmacokinetic sampling was conducted at different time points before and after the last dose. Plasma concentrations of artemether, lumefantrine, dihydroartemisinin, and desbutyllumefantrine were quantified using validated liquid chromatography-mass spectrometric methods. Pharmacokinetic parameters were evaluated using noncompartmental analysis. Artemether clearance of CYP2B6*6/*6 volunteers was nonsignificantly lower by 26% (ratios of geometric mean [90% CI]; 0.74 [0.52-1.05]), and total exposure (the area under the plasma concentration-time curve from time 0 to infinity [AUC0-∞ ]) was greater by 35% (1.35 [0.95-1.93]) when compared with those of *1/*1 volunteers. Similarly, assuming complete bioconversion from artemether, the dihydroartemisinin AUC0-∞ was 22% lower. On the contrary, artemether-to-dihydroartemisinin AUC0-∞ ratio was 73% significantly higher (1.73 [1.27-2.37]). Comparison of lumefantrine exposure and lumefantrine-to-desbutyllumefantrine metabolic ratio of *6/*6 with corresponding data from *1/*1 volunteers showed no differences. The increased artemether-to-dihydroartemisinin metabolic ratio of *6/*6 volunteers is unlikely to result in differences in artemether-lumefantrine efficacy and treatment outcomes. This is the first study in humans to associate CYP2B6*6 genotype with artemether disposition.
Collapse
Affiliation(s)
- Sa'ad T. Abdullahi
- Department of Pharmaceutical ChemistryObafemi Awolowo UniversityIle‐IfeNigeria
- Department of Pharmaceutical & Medicinal ChemistryUniversity of IlorinIlorinNigeria
| | - Julius O. Soyinka
- Department of Pharmaceutical ChemistryObafemi Awolowo UniversityIle‐IfeNigeria
| | - Adeniyi Olagunju
- Department of Pharmaceutical ChemistryObafemi Awolowo UniversityIle‐IfeNigeria
- Department of Molecular & Clinical PharmacologyUniversity of LiverpoolLiverpoolUK
| | - Rahman A. Bolarinwa
- Department of HaematologyObafemi Awolowo University Teaching Hospitals ComplexIle‐IfeNigeria
| | - Olusola J. Olarewaju
- Department of HaematologyObafemi Awolowo University Teaching Hospitals ComplexIle‐IfeNigeria
| | | | - Markus Winterberg
- Mahidol‐Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global HealthUniversity of OxfordOxfordUK
| | - Joel Tarning
- Mahidol‐Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global HealthUniversity of OxfordOxfordUK
| | - Andrew Owen
- Department of Molecular & Clinical PharmacologyUniversity of LiverpoolLiverpoolUK
| | - Saye Khoo
- Department of Molecular & Clinical PharmacologyUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
3
|
Pharmacogenomic implications of the evolutionary history of infectious diseases in Africa. THE PHARMACOGENOMICS JOURNAL 2016; 17:112-120. [PMID: 27779243 PMCID: PMC5380847 DOI: 10.1038/tpj.2016.78] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/06/2016] [Accepted: 07/19/2016] [Indexed: 12/20/2022]
Abstract
As the common birthplace of all human populations, modern humans have lived longer on the African continent than in any other geographical region of the world. This long history, along with the evolutionary need to adapt to environmental challenges such as exposure to infectious agents, has led to greater genetic variation in Africans. The vast genetic variation in Africans also extends to genes involved in the absorption, distribution, metabolism and excretion of pharmaceuticals. Ongoing cataloging of these clinically relevant variants reveals huge allele-frequency differences within and between African populations. Here, we examine Africa's large burden of infectious disease, discuss key examples of known genetic variation modulating disease risk, and provide examples of clinically relevant variants critical for establishing dosing guidelines. We propose that a more systematic characterization of the genetic diversity of African ancestry populations is required if the current benefits of precision medicine are to be extended to these populations.
Collapse
|
4
|
Dinter D, Gajski G, Domijan AM, Garaj-Vrhovac V. Cytogenetic and oxidative status of human lymphocytes after exposure to clinically relevant concentrations of antimalarial drugs atovaquone and proguanil hydrochloride in vitro. Fundam Clin Pharmacol 2015; 29:575-85. [PMID: 26434663 DOI: 10.1111/fcp.12153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/24/2015] [Accepted: 09/04/2015] [Indexed: 12/17/2022]
Abstract
Atovaquone (ATO) and proguanil hydrochloride (PROG) is the fixed combination for the prevention and treatment of Plasmodium falciparum malaria. As safe and effective antimalarial drugs are needed in both the treatment and the prophylaxis of malaria, this study was performed to investigate their possible cyto/genotoxic potential towards human lymphocytes and the possible mechanism responsible for it. Two different concentrations of ATO and PROG were used with and without S9 metabolic activation. The concentrations used were those found in human plasma when a fixed-dose combination of ATO and PROG was used: 2950/130 ng/mL after prophylactic treatment and 11 800/520 ng/mL after treatment of malaria, respectively. Possible cellular and DNA-damaging effects were evaluated by cell viability and alkaline comet assays, while oxidative stress potential was evaluated by formamidopyrimidine-DNA glycosylase (Fpg)-modified comet assay, in addition to measuring malondialdehyde and glutathione levels. According to our results, the ATO/PROG combination displayed only weak cyto/genotoxic potential towards human lymphocytes with no impact on oxidative stress parameters, suggesting that oxidative stress is not implicated in their mechanism of action towards human lymphocytes. Given that the key portion of the damaging effects was induced after S9 metabolic activation, it is to presume that the principal metabolite of PROG, cycloguanil, had the greatest impact. The obtained results indicate that the ATO/PROG combination is relatively safe for the consumption from the aspect of cyto/genotoxicity, especially if used for prophylactic treatment. Nevertheless, further cytogenetic research and regular patient monitoring are needed to minimize the risk of adverse events especially among frequent travellers.
Collapse
Affiliation(s)
- Domagoj Dinter
- Oral Solid Forms, Pliva Croatia Ltd., Prilaz baruna Filipovića 25, 10000, Zagreb, Croatia
| | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Ana-Marija Domijan
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000, Zagreb, Croatia
| | - Vera Garaj-Vrhovac
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| |
Collapse
|
5
|
Hastings IM, Hodel EM. Pharmacological considerations in the design of anti-malarial drug combination therapies - is matching half-lives enough? Malar J 2014; 13:62. [PMID: 24552440 PMCID: PMC3975950 DOI: 10.1186/1475-2875-13-62] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/15/2014] [Indexed: 11/20/2022] Open
Abstract
Anti-malarial drugs are now mainly deployed as combination therapy (CT), primarily as a mechanism to prevent or slow the spread of resistance. This strategy is justified by mathematical arguments that generally assume that drug 'resistance' is a binary all-or-nothing genetic trait. Herein, a pharmacological, rather than a purely genetic, approach is used to investigate resistance and it is argued that this provides additional insight into the design principles of anti-malarial CTs. It is usually suggested that half-lives of constituent drugs in a CT be matched: it appears more important that their post-treatment anti-malarial activity profiles be matched and strategies identified that may achieve this. In particular, the considerable variation in pharmacological parameters noted in both human and parasites populations may compromise this matching and it is, therefore, essential to accurately quantify the population pharmacokinetics of the drugs in the CTs. Increasing drug dosages will likely follow a law of diminishing returns in efficacy, i.e. a certain increase in dose will not necessarily lead to the same percent increase in efficacy. This may allow individual drug dosages to be lowered without proportional decrease in efficacy, reducing any potential toxicity, and allowing the other drug(s) in the CT to compensate for this reduced dosage; this is a dangerous strategy which is discussed further. Finally, pharmacokinetic and pharmacodynamic drug interactions and the role of resistance mechanisms are discussed. This approach generated an idealized target product profile (TPP) for anti-malarial CTs. There is a restricted pipeline of anti-malarial drugs but awareness of pharmacological design principles during the development stages could optimize CT design pre-deployment. This may help prevent changes in drug dosages and/or regimen that have previously occurred post-deployment in most current anti-malarial drugs.
Collapse
Affiliation(s)
- Ian M Hastings
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Eva Maria Hodel
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
6
|
Abstract
Owing to the absence of antiparasitic vaccines and the constant threat of drug resistance, the development of novel antiparasitic chemotherapies remains of major importance for disease control. A better understanding of drug transport (uptake and efflux), drug metabolism and the identification of drug targets, and mechanisms of drug resistance would facilitate the development of more effective therapies. Here, we focus on malaria and African trypanosomiasis. We review existing drugs and drug development, emphasizing high-throughput genomic and genetic approaches, which hold great promise for elucidating antiparasitic mechanisms. We describe the approaches and technologies that have been influential for each parasite and develop new ideas for future research directions, including mode-of-action studies for drug target deconvolution.
Collapse
Affiliation(s)
- David Horn
- Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Manoj T. Duraisingh
- Harvard School of Public Health, 665 Huntington Avenue, Building 1, Room 715, Boston, Massachusetts 02115, USA
| |
Collapse
|
7
|
Pharmacogenomics and Personalized Medicine for Infectious Diseases. OMICS FOR PERSONALIZED MEDICINE 2013. [PMCID: PMC7122342 DOI: 10.1007/978-81-322-1184-6_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Humans have been plagued by the scourge of invasion by pathogens leading to infectious diseases from the time in memoriam and are still the cause of morbidity and mortality among millions of individuals. Trying to understand the disease mechanisms and finding the remedial measures have been the quest of humankind. The susceptibility to disease of an individual in a given population is determined by ones genetic buildup. Response to treatment and the disease prognosis also depends upon individual’s genetic predisposition. The environmental stress induces mutations and is leading to the emergence of ever-increasing more dreaded infectious pathogens, and now we are in the era of increasing antibiotic resistance that has thrown up a challenge to find new treatment regimes. Discoveries in the science of high-throughput sequencing and array technologies have shown new hope and are bringing a revolution in human health. The information gained from sequencing of both human and pathogen genomes is a way forward in deciphering host-pathogen interactions. Deciphering the pathogen virulence factors, host susceptibility genes, and the molecular programs involved in the pathogenesis of disease has paved the way for discovery of new molecular targets for drugs, diagnostic markers, and vaccines. The genomic diversity in the human population leads to differences in host responses to drugs and vaccines and is the cause of poor response to treatment as well as adverse reactions. The study of pharmacogenomics of infectious diseases is still at an early stage of development, and many intricacies of the host-pathogen interaction are yet to be understood in full measure. However, progress has been made over the decades of research in some of the important infectious diseases revealing how the host genetic polymorphisms of drug-metabolizing enzymes and transporters affect the bioavailability of the drugs which further determine the efficacy and toxicology of the drugs used for treatment. Further, the field of structural biology and chemistry has intertwined to give rise to medical structural genomics leading the way to the discovery of new drug targets against infectious diseases. This chapter explores how the advent of “omics” technologies is making a beginning in bringing about a change in the prevention, diagnosis, and treatments of the infectious diseases and hence paving way for personalized medicine.
Collapse
|
8
|
Effect of single nucleotide polymorphisms in cytochrome P450 isoenzyme and N-acetyltransferase 2 genes on the metabolism of artemisinin-based combination therapies in malaria patients from Cambodia and Tanzania. Antimicrob Agents Chemother 2012; 57:950-8. [PMID: 23229480 DOI: 10.1128/aac.01700-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The pharmacogenetics of antimalarial agents are poorly known, although the application of pharmacogenetics might be critical in optimizing treatment. This population pharmacokinetic-pharmacogenetic study aimed at assessing the effects of single nucleotide polymorphisms (SNPs) in cytochrome P450 isoenzyme genes (CYP, namely, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, and CYP3A5) and the N-acetyltransferase 2 gene (NAT2) on the pharmacokinetics of artemisinin-based combination therapies in 150 Tanzanian patients treated with artemether-lumefantrine, 64 Cambodian patients treated with artesunate-mefloquine, and 61 Cambodian patients treated with dihydroartemisinin-piperaquine. The frequency of SNPs varied with the enzyme and the population. Higher frequencies of mutant alleles were found in Cambodians than Tanzanians for CYP2C9*3, CYP2D6*10 (100C → T), CYP3A5*3, NAT2*6, and NAT2*7. In contrast, higher frequencies of mutant alleles were found in Tanzanians for CYP2D6*17 (1023C → T and 2850C → T), CYP3A4*1B, NAT2*5, and NAT2*14. For 8 SNPs, no significant differences in frequencies were observed. In the genetic-based population pharmacokinetic analyses, none of the SNPs improved model fit. This suggests that pharmacogenetic data need not be included in appropriate first-line treatments with the current artemisinin derivatives and quinolines for uncomplicated malaria in specific populations. However, it cannot be ruled out that our results represent isolated findings, and therefore more studies in different populations, ideally with the same artemisinin-based combination therapies, are needed to evaluate the influence of pharmacogenetic factors on the clearance of antimalarials.
Collapse
|
9
|
Paganotti GM, Gramolelli S, Tabacchi F, Russo G, Modiano D, Coluzzi M, Romano R. Distribution of human CYP2C8*2 allele in three different African populations. Malar J 2012; 11:125. [PMID: 22531455 PMCID: PMC3353233 DOI: 10.1186/1475-2875-11-125] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/25/2012] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate cytochrome P450 2C8*2 (CYP2C8*2) distribution and allele frequency in three populations from West and East Africa exposed to Plasmodium falciparum malaria. CYP2C8 enzyme is involved in the metabolism of the anti-malarials amodiaquine and chloroquine. The presence of the CYP2C8*2 defective allele has been recently associated to higher rate of chloroquine-resistant malaria parasites. METHODS A total of 503 young subjects were genotyped for the single nucleotide polymorphism rs11572103 (A/T). Eighty-eight were from southern Senegal, 262 from eastern Uganda and 153 from southern Madagascar. The PCR-RFLP technique was used to discriminate the wild-type (A) from the defective allele (T). RESULTS A CYP2C8*2 (T) allele frequency of 0.222 ± 0.044 was detected in Senegal, 0.105 ± 0.019 in Uganda and 0.150 ± 0.029 in Madagascar. CONCLUSIONS This study demonstrated that CYP2C8*2 allele is widespread in Africa. This allele occurs at different frequency in West and East Africa, being higher in Senegal than in Uganda and Madagascar. These data indicate that an important fraction of the populations analysed has a decreased enzymatic activity, thus being at higher risk for drug accumulation with two possible consequences: i) an exacerbation of drug-associated adverse side effects; ii) an increase of drug-resistance selection pressure on P. falciparum parasites.
Collapse
Affiliation(s)
- Giacomo M Paganotti
- Department of Public Health and Infectious Diseases, Sapienza University, P. le Aldo Moro 5, 00185 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
10
|
Paganotti GM, Gallo BC, Verra F, Sirima BS, Nebie I, Diarra A, Coluzzi M, Modiano D. Human Genetic Variation Is Associated With Plasmodium falciparum Drug Resistance. J Infect Dis 2011; 204:1772-8. [DOI: 10.1093/infdis/jir629] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
11
|
Roederer MW, McLeod H, Juliano JJ. Can pharmacogenomics improve malaria drug policy? Bull World Health Organ 2011; 89:838-45. [PMID: 22084530 DOI: 10.2471/blt.11.087320] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 07/05/2011] [Accepted: 07/08/2011] [Indexed: 01/27/2023] Open
Abstract
Coordinated global efforts to prevent and control malaria have been a tour-de-force for public health, but success appears to have reached a plateau in many parts of the world. While this is a multifaceted problem, policy strategies have largely ignored genetic variations in humans as a factor that influences both selection and dosing of antimalarial drugs. This includes attempts to decrease toxicity, increase effectiveness and reduce the development of drug resistance, thereby lowering health care costs. We review the potential hurdles to developing and implementing pharmacogenetic-guided policies at a national or regional scale for the treatment of uncomplicated falciparum malaria. We also consider current knowledge on some component drugs of artemisinin combination therapies and ways to increase our understanding of host genetics, with the goal of guiding policy decisions for drug selection.
Collapse
Affiliation(s)
- Mary W Roederer
- Institute of Pharmacogenomics and Individualized Therapy, Eshelman School of Pharmacy, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC 27599-7361, United States of America.
| | | | | |
Collapse
|
12
|
Dinter D, Gajski G, Garaj-Vrhovac V. An alkaline comet assay study on the antimalarial drug atovaquone in human peripheral blood lymphocytes: a study based on clinically relevant concentrations. J Appl Toxicol 2011; 33:56-62. [PMID: 21735454 DOI: 10.1002/jat.1711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 05/20/2011] [Accepted: 05/20/2011] [Indexed: 11/08/2022]
Abstract
Atovaquone, a hydroxynaphthoquinone, is an anti-parasite drug, selectively targeting the mitochondrial respiratory chain of malaria parasite. It is used for both the treatment and prevention of malaria, usually in a fixed combination with proguanil. Although atovaquone has not often been associated with severe adverse reactions in the recommended dosages and has a relatively favorable side effect profile, the present study was undertaken to evaluate its cytogenotoxic potential towards human peripheral blood lymphocytes. Two different concentrations of atovaquone found in plasma when used in fixed-dose combination with proguanile hydrochloride were used with and without S9 metabolic activation: 2950 ng ml(-1) used for prophylactic treatment and 11 800 ng ml(-1) used in treatment of malaria. The results showed that lymphocyte viability was not affected after the treatment, suggesting that atovaquone was not cytotoxic in the given concentrations. With the alkaline comet assay we demonstrated that in human peripheral blood lymphocytes no significant changes in comet parameters occurred after the treatment. There were no differences in tested parameters with the addition of S9 metabolic activation, indicating that atovaquone either has no metabolite or it is not toxic in the given concentrations. Since no effects were observed after the treatment, it is to be concluded that atovaquone is safe from the aspect of genototoxicity in the recommended dosages.
Collapse
Affiliation(s)
- Domagoj Dinter
- Pliva Croatia Ltd, Oral Solid Forms, 10000, Zagreb, Croatia.
| | | | | |
Collapse
|
13
|
Grimberg BT, Mehlotra RK. Expanding the Antimalarial Drug Arsenal-Now, But How? Pharmaceuticals (Basel) 2011; 4:681-712. [PMID: 21625331 PMCID: PMC3102560 DOI: 10.3390/ph4050681] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 04/09/2011] [Accepted: 04/19/2011] [Indexed: 01/24/2023] Open
Abstract
The number of available and effective antimalarial drugs is quickly dwindling. This is mainly because a number of drug resistance-associated mutations in malaria parasite genes, such as crt, mdr1, dhfr/dhps, and others, have led to widespread resistance to all known classes of antimalarial compounds. Unfortunately, malaria parasites have started to exhibit some level of resistance in Southeast Asia even to the most recently introduced class of drugs, artemisinins. While there is much need, the antimalarial drug development pipeline remains woefully thin, with little chemical diversity, and there is currently no alternative to the precious artemisinins. It is difficult to predict where the next generation of antimalarial drugs will come from; however, there are six major approaches: (i) re-optimizing the use of existing antimalarials by either replacement/rotation or combination approach; (ii) repurposing drugs that are currently used to treat other infections or diseases; (iii) chemically modifying existing antimalarial compounds; (iv) exploring natural sources; (v) large-scale screening of diverse chemical libraries; and (vi) through parasite genome-based ("targeted") discoveries. When any newly discovered effective antimalarial treatment is used by the populus, we must maintain constant vigilance for both parasite-specific and human-related factors that are likely to hamper its success. This article is neither comprehensive nor conclusive. Our purpose is to provide an overview of antimalarial drug resistance, associated parasite genetic factors (1. Introduction; 2. Emergence of artemisinin resistance in P. falciparum), and the antimalarial drug development pipeline (3. Overview of the global pipeline of antimalarial drugs), and highlight some examples of the aforementioned approaches to future antimalarial treatment. These approaches can be categorized into "short term" (4. Feasible options for now) and "long term" (5. Next generation of antimalarial treatment-Approaches and candidates). However, these two categories are interrelated, and the approaches in both should be implemented in parallel with focus on developing a successful, long-lasting antimalarial chemotherapy.
Collapse
Affiliation(s)
- Brian T. Grimberg
- Center for Global Health and Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; E-Mails: (B.T.G.); (R.K.M.); Tel.: +1-216-368-6328 or +1-216-368-6172, Fax: +1-216-368-4825
| | - Rajeev K. Mehlotra
- Center for Global Health and Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; E-Mails: (B.T.G.); (R.K.M.); Tel.: +1-216-368-6328 or +1-216-368-6172, Fax: +1-216-368-4825
| |
Collapse
|
14
|
Dandekar T, Dandekar G. Pharmacogenomic strategies against microbial resistance: from bright to bleak to innovative. Pharmacogenomics 2011; 11:1193-6. [PMID: 20860457 DOI: 10.2217/pgs.10.18] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The last decade saw an alarming increase in antibiotic resistance in infections, with more than 13 million deaths per year from infections. Counter strategies include hygiene, antibiotic restriction and new antibiotics such as quinupristin, linezolid, tigecycline, daptomycin and dalbavancin. Presently, pharmacogenomics with basic research is revealing new antimicrobial peptides and is applying old drugs in new ways to break resistance. New approaches with host-directed drug targeting emerge to circumvent resistance. A future systems perspective from large-scale molecular techniques and bioinformatic modeling allows pharmacogenomics to reveal new intervention angles. This includes the fight against resistance and its transmission, improved vaccines, disarmament of microbes and antibiotic options from novel molecular targets (lipids, RNA and carbohydrates). Such a system perspective is also essential for improved diagnostics and individualized medicine. However, an increase in public awareness and closer cooperation of industry and basic research are essential to turn research into powerful new drugs that will enable us to treat new arising infections in the future.
Collapse
Affiliation(s)
- Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | | |
Collapse
|
15
|
Hodel EM, Ley SD, Qi W, Ariey F, Genton B, Beck HP. A microarray-based system for the simultaneous analysis of single nucleotide polymorphisms in human genes involved in the metabolism of anti-malarial drugs. Malar J 2009; 8:285. [PMID: 20003204 PMCID: PMC2797017 DOI: 10.1186/1475-2875-8-285] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 12/09/2009] [Indexed: 02/03/2023] Open
Abstract
Background In order to provide a cost-effective tool to analyse pharmacogenetic markers in malaria treatment, DNA microarray technology was compared with sequencing of polymerase chain reaction (PCR) fragments to detect single nucleotide polymorphisms (SNPs) in a larger number of samples. Methods The microarray was developed to affordably generate SNP data of genes encoding the human cytochrome P450 enzyme family (CYP) and N-acetyltransferase-2 (NAT2) involved in anti-malarial drug metabolisms and with known polymorphisms, i.e. CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, and NAT2. Results For some SNPs, i.e. CYP2A6*2, CYP2B6*5, CYP2C8*3, CYP2C9*3/*5, CYP2C19*3, CYP2D6*4 and NAT2*6/*7/*14, agreement between both techniques ranged from substantial to almost perfect (kappa index between 0.61 and 1.00), whilst for other SNPs a large variability from slight to substantial agreement (kappa index between 0.39 and 1.00) was found, e.g. CYP2D6*17 (2850C>T), CYP3A4*1B and CYP3A5*3. Conclusion The major limit of the microarray technology for this purpose was lack of robustness and with a large number of missing data or with incorrect specificity.
Collapse
Affiliation(s)
- Eva Maria Hodel
- Swiss Tropical Institute, Socinstrasse 57, PO Box, 4002 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
16
|
Pharmacogenetics of antimalarial drugs: effect on metabolism and transport. THE LANCET. INFECTIOUS DISEASES 2009; 9:760-74. [DOI: 10.1016/s1473-3099(09)70320-2] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|