1
|
Lin F, Xiao T, Wang B, Wang L, Liu G, Wang R, Xie C, Tang Z. Mechanisms and markers of malignant transformation of oral submucous fibrosis. Heliyon 2024; 10:e23314. [PMID: 38163180 PMCID: PMC10755325 DOI: 10.1016/j.heliyon.2023.e23314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Oral submucous fibrosis (OSF) is a chronic premalignant disease associated with betel quid chewing. Epidemiological studies indicate that there are approximately 5 million individuals suffering from OSF worldwide, with a concerning malignancy transformation rate of up to 4.2 %. When OSF progresses to oral squamous cell carcinoma (OSCC), the 5-year survival rate for OSCC drops to below 60 %. Therefore, early screening and diagnosis are essential for both preventing and effectively treating OSF and its potential malignant transformation. Numerous studies have shown that the malignant transformation of OSF is associated with various factors, including epigenetic reprogramming, epithelial-mesenchymal transition, hypoxia, cell cycle changes, immune regulation disturbances, and oxidative damage. This review article focuses on the unraveling the potential mechanisms underlying the malignant transformation of OSF, as well as the abnormal expression of biomarkers throughout this transformative process, with the aim of aiding early screening for carcinogenic changes in OSF. Furthermore, we discuss the significance of utilizing blood and saliva components from patients with OSF, along with optical diagnostic techniques, in the early screening of OSF malignant transformation.
Collapse
Affiliation(s)
- Fen Lin
- Hospital of Stomatology, Zhongshan city, Zhongshan, Guangdong 528400, China
| | - Ting Xiao
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
| | - Baisheng Wang
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
| | - Liping Wang
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
| | - Gui Liu
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
| | - Rifu Wang
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
| | - Changqing Xie
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
- Postdoctoral Research Workstation, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha 410078, Hunan, China
| | - Zhangui Tang
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
2
|
Özdemir İ, Pınarlı FG, Pınarlı FA, Aksakal FNB, Okur A, Uyar Göçün P, Karadeniz C. Epigenetic silencing of the tumor suppressor genes SPI1, PRDX2, KLF4, DLEC1, and DAPK1 in childhood and adolescent lymphomas. Pediatr Hematol Oncol 2018; 35:131-144. [PMID: 30020823 DOI: 10.1080/08880018.2018.1467986] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of the study was to investigate the expression and methylation status of seven distinctive genes with tumor suppressing properties in childhood and adolescent lymphomas. A total of 96 patients with Hodgkin Lymphoma (HL, n = 41), Non-Hodgkin Lymphoma (NHL, n = 15), and reactive lymphoid hyperplasia (RLH, n = 40, as controls) are included in the research. The expression status of CDKN2A, SPI1, PRDX2, DLEC1, FOXO1, KLF4 and DAPK1 genes were measured with QPCR method after the RNA isolation from paraffin blocks of tumor tissue and cDNA conversion. DNA isolation was performed from samples with low gene expression followed by methylation PCR study specific to promoter regions of these genes. We found that SPI1, PRDX2, DLEC1, KLF4, and DAPK1 genes are significantly less expressed in patient than the control group (p = 0.0001). However, expression of CDKNA2 and FOXO1 genes in the patient and control groups were not statistically different. The methylation ratios of all genes excluding the CDKN2A and FOXO1 were significantly higher in the HL and NHL groups than the controls (p = 0.0001). We showed that SPI1, PRDX2, DLEC1, KLF4 and DAPK1 genes are epigenetically silenced via hypermethylation in the tumor tissues of children with HL and NHL. As CDKN2A gene was not expressed in both patient and control groups, we conclude that it is not specific to malignancy. As FOXO1 gene was similarly expressed in both groups, its relationship with malignancy could not be established. The epigenetically silenced genes may be candidates for biomarkers or therapeutic targets in childhood and adolescent lymphomas.
Collapse
Affiliation(s)
- İhsan Özdemir
- a Department of Pediatrics , Gazi University Medical Faculty , Ankara , Turkey
| | - Faruk Güçlü Pınarlı
- b Department of Pediatric Oncology , Gazi University Medical Faculty , Ankara , Turkey
| | - Ferda Alpaslan Pınarlı
- c Center of Cell Research and Genetic Diagnosis, Dışkapı Yıldırım Beyazıt Research Hospital , Health Sciences University , Ankara , Turkey
| | - F Nur Baran Aksakal
- d Department of Public Health , Gazi University Medical Faculty , Ankara , Turkey
| | - Arzu Okur
- b Department of Pediatric Oncology , Gazi University Medical Faculty , Ankara , Turkey
| | - Pınar Uyar Göçün
- e Department of Pathology , Gazi University Medical Faculty , Ankara , Turkey
| | - Ceyda Karadeniz
- b Department of Pediatric Oncology , Gazi University Medical Faculty , Ankara , Turkey
| |
Collapse
|
3
|
Venci A, Mazza R, Spinelli O, Di Schiena L, Bettio D. Acute promyelocytic leukemia with a cryptic insertion of RARA into PML on chromosome 15 due to uniparental isodisomy: A case report. Oncol Lett 2017; 13:4180-4184. [PMID: 28599418 PMCID: PMC5453168 DOI: 10.3892/ol.2017.5979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/30/2016] [Indexed: 01/03/2023] Open
Abstract
Acute promyelocytic leukemia is a myeloid disorder that is characterized by the specific t(15;17) variant in ~98% of cases. The typical hypergranular and microgranular or hypogranular types exist, and are frequently associated with disseminated intravascular coagulopathy. Rare cases of promyelocytic leukemia-retinoic acid receptor α (PML-RARA) fusion without the reciprocal RARA-PML have been reported in cytogenetically normal samples. Conversely, fluorescence in situ hybridization (FISH) analysis has revealed a cryptic insertion of the RARA gene into the PML gene on chromosome 15. The current study reports a unique case with a normal karyotype and molecular evidence of the PML-RARA short isoform 3-fusion transcript, with FISH analysis revealing two fusion signals on the two copies of chromosome 15, but absence of the reciprocal on the two copies of chromosome 17. This finding raised the hypothesis of chromosome 15 uniparental isodysomy as consequence of normal chromosome 15 loss and duplication of the rearranged chromosome, as supported by polymorphic loci molecular analysis. The clinical, cytogenetic and molecular characterization of this case are presented and discussed in the present study.
Collapse
Affiliation(s)
- Anna Venci
- Cytogenetic and Medical Genetic Laboratory, Operative Unit of Clinical Investigations, Humanitas Clinical and Research Center, I-20089 Milan, Italy
| | - Rita Mazza
- Operative Unit of Medical Oncology and Hematology, Humanitas Clinical and Research Center, I-20089 Milan, Italy
| | - Orietta Spinelli
- Hematology and Bone Marrow Transplant Unit, Azienda Ospedaliera Papa Giovanni XXIII, I-24127 Bergamo, Italy
| | - Luciana Di Schiena
- Cytogenetic and Medical Genetic Laboratory, Operative Unit of Clinical Investigations, Humanitas Clinical and Research Center, I-20089 Milan, Italy
| | - Daniela Bettio
- Cytogenetic and Medical Genetic Laboratory, Operative Unit of Clinical Investigations, Humanitas Clinical and Research Center, I-20089 Milan, Italy
| |
Collapse
|
4
|
Abstract
The hallmark of type 1 diabetes (T1D) is a decline in functional β-cell mass arising as a result of autoimmunity. Immunomodulatory interventions at disease onset have resulted in partial stabilization of β-cell function, but full recovery of insulin secretion has remained elusive. Revised efforts have focused on disease prevention through interventions administered at earlier disease stages. To support this paradigm, there is a parallel effort ongoing to identify circulating biomarkers that have the potential to identify stress and death of the islet β-cells. Whereas no definitive biomarker(s) have been fully validated, several approaches hold promise that T1D can be reliably identified in the pre-symptomatic phase, such that either β-cell preservation or immunomodulatory agents might be employed in at-risk populations. This review summarizes the most promising protein- and nucleic acid-based biomarkers discovered to date and reviews the context in which they have been studied.
Collapse
Affiliation(s)
- Raghavendra G Mirmira
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Medicine, Indiana University School of Medicine, I635 Barnhill Drive, MS 2031, Indianapolis, IN, 46202, USA
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- The Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Biosciences Research Institute, Indianapolis, IN, 46202, USA
| | - Emily K Sims
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- The Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Farooq Syed
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- The Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Carmella Evans-Molina
- Department of Medicine, Indiana University School of Medicine, I635 Barnhill Drive, MS 2031, Indianapolis, IN, 46202, USA.
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- The Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- The Roudebush VA Medical Center, Indianapolis, IN, 46202, USA.
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize recent advances in the development of nucleic acid-based biomarkers of type 1 diabetes (T1D). RECENT FINDINGS Recent rodent and human studies have identified new roles for stress pathways intrinsic to the β cell during the development of T1D. As such, methods to identify an authentic nucleic acid signature of β cell stress and/or death may improve our ability to predict T1D at earlier timepoints, allowing for optimal timing of immunomodulatory interventions. To this end, both targeted and unbiased approaches have begun to identify changes in microRNA expression patterns in T1D. Moreover, a number of groups have developed distinct assays that quantitatively detect circulating unmethylated insulin DNA, which is thought to primarily emanate from dying β cells. SUMMARY Here we highlight unique blood and urine microRNA signatures identified in T1D cohorts, compare differences between first, second, and third-generation assays that detect circulating unmethylated insulin DNA, and review recent technological advances that have the capacity to improve T1D biomarker development.
Collapse
Affiliation(s)
- Farooq Syed
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Carmella Evans-Molina
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- The Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- The Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
6
|
Nawaz I, Moumad K, Martorelli D, Ennaji MM, Zhou X, Zhang Z, Dolcetti R, Khyatti M, Ernberg I, Hu LF. Detection of nasopharyngeal carcinoma in Morocco (North Africa) using a multiplex methylation-specific PCR biomarker assay. Clin Epigenetics 2015; 7:89. [PMID: 26300994 PMCID: PMC4546349 DOI: 10.1186/s13148-015-0119-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/31/2015] [Indexed: 12/25/2022] Open
Abstract
Background Silencing of tumor suppressor genes (TSGs) or activation of oncogenes by, e.g., aberrant promoter methylation, may be early events during carcinogenesis. The methylation status of such genes can be used for early detection of cancer. We are pursuing this approach in our efforts to develop markers for early detection and follow-up of nasopharyngeal carcinoma (NPC). We set out to develop this approach to allow identification of NPC from Morocco and then also compared with NPC samples from different geographical locations and different ethnicity with different NPC incidences, Epstein-Barr virus (EBV) prevalence, and environments. Results By multiplex methylation-specific PCR (MMSP), multiple relevant genes can be detected simultaneously, to achieve high sensitivity and specificity. The strong association of EBV with NPC is also very useful in such an approach. We have initially screened for 12 potential marker genes including EBV genes coding for EBV nuclear antigen 1 (EBNA1) and latent membrane protein-1 (LMP1) and ten potential TSGs obtained from previously published data. The resulting assay included EBNA1, LMP1, and three cellular TSGs: ITGA9, RASSF1A, and P16. We evaluated this assay on 64 NPC patient biopsies from Morocco, Italy, and China compared to deoxyribonucleic acid (DNA) from 20 nasopharyngeal control tissues. In the Moroccan NPC cohort (n = 44), prevalence of the EBNA1 gene showed the highest sensitivity (36/44; 82 %) with 94 % specificity. Out of eight (18 %) EBNA1 negative Moroccan samples, only three were positive for at least one methylated cellular gene. By detection of cellular marker genes, the sensitivity increased from 82 to 89 % (39/44). In the whole material of 64 biopsies from three geographical locations, at least any one marker (viral or cellular) could be detected in 91 % of biopsies with 90 % specificity. In a pilot evaluating assay performance on serum DNA from NPC and controls including samples from Italy (n = 11) and China (n = 5), at least any one marker from the MMSP assay could be detected in 88 %, but the specificity was only 50 %. Conclusions An MMSP assay has the potential for detection of NPC by screening in high-risk populations. Serum-derived DNA seems not as good as earlier published NPC swab DNA for screening purpose.
Collapse
Affiliation(s)
- Imran Nawaz
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Box 280, Stockholm, SE-17177 Sweden.,Department of Microbiology, Faculty of Life Sciences, University of Balochistan, Quetta, Pakistan
| | - Khalid Moumad
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Oncovirology Laboratory, Institut Pasteur du Maroc, 20360 Casablanca, Morocco
| | - Debora Martorelli
- Cancer Bio-Immunotherapy Unit Centro di Riferimento Oncologico IRCCS - National Cancer Institute, Via Franco Gallini, 233081 Aviano, PN Italy
| | - Moulay Mustapha Ennaji
- University Hassan II, Faculty of Sciences and Techniques, Mohammedia - Casablanca, Laboratory of Virology, Microbiology and Quality/ETB, Mohammedia, , BP 146, 20650 Morocco
| | - Xiaoying Zhou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Box 280, Stockholm, SE-17177 Sweden.,Department of Orolaryngology - Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Guangxi, People's Republic of China
| | - Zhe Zhang
- Department of Orolaryngology - Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Guangxi, People's Republic of China
| | - Riccardo Dolcetti
- Cancer Bio-Immunotherapy Unit Centro di Riferimento Oncologico IRCCS - National Cancer Institute, Via Franco Gallini, 233081 Aviano, PN Italy
| | - Meriem Khyatti
- Oncovirology Laboratory, Institut Pasteur du Maroc, 20360 Casablanca, Morocco
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Box 280, Stockholm, SE-17177 Sweden
| | - Li-Fu Hu
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Box 280, Stockholm, SE-17177 Sweden
| |
Collapse
|
7
|
Nawaz I, Qiu X, Wu H, Li Y, Fan Y, Hu LF, Zhou Q, Ernberg I. Development of a multiplex methylation specific PCR suitable for (early) detection of non-small cell lung cancer. Epigenetics 2014; 9:1138-48. [PMID: 24937636 DOI: 10.4161/epi.29499] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lung cancer is a worldwide health problem and a leading cause of cancer-related deaths. Silencing of potential tumor suppressor genes (TSGs) by aberrant promoter methylation is an early event in the initiation and development of cancer. Thus, methylated cancer type-specific TSGs in DNA can serve as useful biomarkers for early cancer detection. We have now developed a "Multiplex Methylation Specific PCR" (MMSP) assay for analysis of the methylation status of multiple potential TSGs by a single PCR reaction. This method will be useful for early diagnosis and treatment outcome studies of non-small cell lung cancer (NSCLC). Genome-wide CpG methylation and expression microarrays were performed on lung cancer tissues and matched distant non-cancerous tissues from three NSCLC patients from China. Thirty-eight potential TSGs were selected and analyzed by methylation PCR on bisulfite treated DNA. On the basis of sensitivity and specificity, six marker genes, HOXA9, TBX5, PITX2, CALCA, RASSF1A, and DLEC1, were selected to establish the MMSP assay. This assay was then used to analyze lung cancer tissues and matched distant non-cancerous tissues from 70 patients with NSCLC, as well as 24 patients with benign pulmonary lesion as controls. The sensitivity of the assay was 99% (69/70). HOXA9 and TBX5 were the 2 most sensitive marker genes: 87% (61/70) and 84% (59/70), respectively. RASSF1A and DLEC1 showed the highest specificity at 99% (69/70). Using the criterion of identifying at least any two methylated marker genes, 61/70 cancer samples were positive, corresponding to a sensitivity of 87% and a specificity of 94%. Early stage I or II NSCLC could even be detected with a 100% specificity and 86% sensitivity. In conclusion, MMSP has the potential to be developed into a population-based screening tool and can be useful for early diagnosis of NSCLC. It might also be suitable for monitoring treatment outcome and recurrence.
Collapse
Affiliation(s)
- Imran Nawaz
- Department of Microbiology; Tumor and Cell Biology; Karolinska Institute; Stockholm, Sweden; Department of Microbiology; Faculty of Life Sciences; University of Balochistan; Quetta, Pakistan
| | - Xiaoming Qiu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment; Tianjin Lung Cancer Institute; Tianjin Medical University General Hospital; Tianjin, PR China
| | - Heng Wu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment; Tianjin Lung Cancer Institute; Tianjin Medical University General Hospital; Tianjin, PR China
| | - Yang Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment; Tianjin Lung Cancer Institute; Tianjin Medical University General Hospital; Tianjin, PR China
| | - Yaguang Fan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment; Tianjin Lung Cancer Institute; Tianjin Medical University General Hospital; Tianjin, PR China
| | - Li-Fu Hu
- Department of Microbiology; Tumor and Cell Biology; Karolinska Institute; Stockholm, Sweden
| | - Qinghua Zhou
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment; Tianjin Lung Cancer Institute; Tianjin Medical University General Hospital; Tianjin, PR China
| | - Ingemar Ernberg
- Department of Microbiology; Tumor and Cell Biology; Karolinska Institute; Stockholm, Sweden
| |
Collapse
|
8
|
p16INK4A and p14ARF gene promoter hypermethylation as prognostic biomarker in oral and oropharyngeal squamous cell carcinoma: a review. DISEASE MARKERS 2014; 2014:260549. [PMID: 24803719 PMCID: PMC3997957 DOI: 10.1155/2014/260549] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/17/2014] [Indexed: 12/18/2022]
Abstract
Head and neck squamous cell carcinoma is a heterogeneous group of tumors with each subtype having a distinct histopathological and molecular profile. Most tumors share, to some extent, the same multistep carcinogenic pathways, which include a wide variety of genetic and epigenetic changes. Epigenetic alterations represent all changes in gene expression patterns that do not alter the actual DNA sequence. Recently, it has become clear that silencing of cancer related genes is not exclusively a result of genetic changes such as mutations or deletions, but it can also be regulated on epigenetic level, mostly by means of gene promoter hypermethylation. Results from recent studies have demonstrated that DNA methylation patterns contain tumor-type-specific signatures, which could serve as biomarkers for clinical outcome in the near future. The topic of this review discusses gene promoter hypermethylation in oral and oropharyngeal squamous cell carcinoma (OSCC). The main objective is to analyse the available data on gene promoter hypermethylation of the cell cycle regulatory proteins p16INK4A and p14ARF and to investigate their clinical significance as novel biomarkers in OSCC. Hypermethylation of both genes seems to possess predictive properties for several clinicopathological outcomes. We conclude that the methylation status of p16INK4A is definitely a promising candidate biomarker for predicting clinical outcome of OSCC, especially for recurrence-free survival.
Collapse
|
9
|
van Kempen PMW, Noorlag R, Braunius WW, Stegeman I, Willems SM, Grolman W. Differences in methylation profiles between HPV-positive and HPV-negative oropharynx squamous cell carcinoma: a systematic review. Epigenetics 2013; 9:194-203. [PMID: 24169583 DOI: 10.4161/epi.26881] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Oropharyngeal squamous cell carcinoma (OPSCC) is associated with human papillomavirus (HPV). HPV-positive OPSCC is considered a distinct molecular entity with a better prognosis than HPV-negative cases of OPSCC. However, the exact pathogenic mechanisms underlying the differences in clinical and molecular behavior between HPV-positive and HPV-negative OPSCC remain poorly understood. Epigenetic events play an important role in the development of cancer. Hypermethylation of DNA in promoter regions and global hypomethylation are 2 epigenetic changes that have been frequently observed in human cancers. It is suggested that heterogeneous epigenetic changes play a role in the clinical and biological differences between HPV-positive and HPV-negative tumors. Unraveling the differences in methylation profiles of HPV-associated OPSCC may provide for promising clinical applications and may pave the road for personalized cancer treatment. This systematic review aims to assess the current state of knowledge regarding differences in promoter hypermethylation and global methylation between HPV-positive and HPV-negative OPSCC.
Collapse
Affiliation(s)
- Pauline M W van Kempen
- Department of Otorhinolaryngology-Head and Neck Surgery; University Medical Center Utrecht; Utrecht; the Netherlands
| | - Rob Noorlag
- Department of Oral and Maxillofacial Surgery; University Medical Center Utrecht; Utrecht, the Netherlands
| | - Weibel W Braunius
- Department of Otorhinolaryngology-Head and Neck Surgery; University Medical Center Utrecht; Utrecht; the Netherlands
| | - Inge Stegeman
- Department of Otorhinolaryngology-Head and Neck Surgery; University Medical Center Utrecht; Utrecht; the Netherlands; Brain Center Rudolf Magnus; University Medical Center Utrecht; the Netherlands
| | - Stefan M Willems
- Department of Pathology; University Medical Center Utrecht; Utrecht, the Netherlands; Department of Molecular Carcinogenesis; Netherlands Cancer Institute; Amsterdam, the Netherlands
| | - Wilko Grolman
- Department of Otorhinolaryngology-Head and Neck Surgery; University Medical Center Utrecht; Utrecht; the Netherlands; Brain Center Rudolf Magnus; University Medical Center Utrecht; the Netherlands
| |
Collapse
|
10
|
Development of a non-invasive method, multiplex methylation specific PCR (MMSP), for early diagnosis of nasopharyngeal carcinoma. PLoS One 2012; 7:e45908. [PMID: 23144779 PMCID: PMC3489875 DOI: 10.1371/journal.pone.0045908] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 08/23/2012] [Indexed: 12/15/2022] Open
Abstract
Increasing evidence demonstrated that inactivation of tumor suppressor genes (TSGs) by aberrant promoter methylation is an early event during carcinogenesis. Aiming at developing early diagnostic or prognostic tools for various tumors, we took an EBV-associated tumor, nasopharyngeal carcinoma (NPC), as a model and developed a powerful assay based on "multiplex methylation specific-PCR (MMSP)". The MMSP assay was designed to detect tumor-specific methylation status of several NPC-related genes and was capable of acquiring multiplex information simultaneously through a single PCR reaction with the tiny tumor DNA derived from the direct body fluid close to the primary tumor. In this study, we collected paired nasopharyngeal (NP) swabs and NPC biopsies from 49 NPC patients and twenty noncancerous controls. A panel of markers including two EBV, and two cellular TSG markers were applied in this NPC-specific-MMSP assay. We optimized the working condition of MMSP so that it provides information equal to that from the corresponding separate PCRs. The results showed that MMSP patterns of NPC swab were largely consistent with those of corresponding biopsies and significantly distinguished themselves from those of 20 noncancerous volunteers. Among the 69 samples (49 NPCs and 20 normal controls), the sensitivity of detecting NPC from NP swabs is 98%. The specificity is as high as 100%. In conclusion, being characterized by its noninvasiveness, high reproducibility and informativeness, MMSP assay is a reliable and potential diagnostic tool for NPC. It paves the way for the development of population screening and early diagnosis approaches for various tumor types.
Collapse
|
11
|
de Freitas Cordeiro-Silva M, Stur E, Agostini LP, de Podestá JRV, de Oliveira JC, Soares MS, Mendonça EF, Gouvea SA, Von Zeidler SV, Louro ID. Promoter hypermethylation in primary squamous cell carcinoma of the oral cavity and oropharynx: a study of a Brazilian cohort. Mol Biol Rep 2012; 39:10111-9. [PMID: 22936053 DOI: 10.1007/s11033-012-1885-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 08/22/2012] [Indexed: 12/20/2022]
Abstract
Epigenetic silencing of cancer-related genes plays an important role in oral/oropharyngeal squamous cell carcinoma (OSCC). We evaluated promoter hypermethylation of 4 cancer-related genes in OSCCs of a Brazilian cohort and determined its relationship with exposure to alcohol, tobacco, HPV infection and clinicopathological parameters. CDKN2A (cyclin-dependent kinase inhibitor 2A or p16), SFN (stratifin or 14-3-3 σ), EDNRB (endothelin receptor B) and RUNX3 (runt-related transcript factor-3) had their methylation patterns evaluated by MSP analysis in OSCC tumors (n = 45). HPV detection was carried out by PCR/RFLP. Aberrant methylation was detected in 44/45 (97.8 %) OSCC; 24.4 % at CDKN2A, 77.8 % at EDNRB, 17.8 % at RUNX3 and 97.8 % at SFN gene. There was no significant association between methylation patterns and clinical parameters. HPV (subtype 16) was detected in 3 out of 45 patients (6 %). Our findings indicate that HPV infection is uncommon and methylation is frequent in Brazilian OSCCs, however, EDNRB and SFN gene methylation are not suitable OSCC biomarkers due to indistinct methylation in tumoral and normal samples. In contrast, CDKN2A and RUNX3 genes could be considered differentially methylated genes and potential tumor markers in OSCCs.
Collapse
Affiliation(s)
- Melissa de Freitas Cordeiro-Silva
- Núcleo de Genética Humana e Molecular Departamento de Ciências Biológicas, Centro de Ciências Humanas e Naturais Universidade Federal do Espírito Santo, Av. Marechal Campos, 1468. Maruípe, Vitoria, ES, CEP: 29040-090, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Borriello A, Caldarelli I, Bencivenga D, Criscuolo M, Cucciolla V, Tramontano A, Oliva A, Perrotta S, Della Ragione F. p57(Kip2) and cancer: time for a critical appraisal. Mol Cancer Res 2011; 9:1269-84. [PMID: 21816904 DOI: 10.1158/1541-7786.mcr-11-0220] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
p57(Kip2) is a cyclin-dependent kinase inhibitor belonging to the Cip/Kip family, which also includes p21(Cip1) and p27(Kip1). So far, p57(Kip2) is the least-studied Cip/Kip protein, and for a long time its relevance has been related mainly to its unique role in embryogenesis. Moreover, genetic and molecular studies on animal models and patients with Beckwith-Wiedemann syndrome have shown that alterations in CDKN1C (the p57(Kip2) encoding gene) have functional relevance in the pathogenesis of this disease. Recently, a number of investigations have identified and characterized heretofore unexpected roles for p57(Kip2). The protein appears to be critically involved in initial steps of cell and tissue differentiation, and particularly in neuronal development and erythropoiesis. Intriguingly, p27(Kip1), the Cip/Kip member that is most homologous to p57(Kip2), is primarily involved in the process of cell cycle exit. p57(Kip2) also plays a critical role in controlling cytoskeletal organization and cell migration through its interaction with LIMK-1. Furthermore, p57(Kip2) appears to modulate genome expression. Finally, accumulating evidence indicates that p57(Kip2) protein is frequently downregulated in different types of human epithelial and nonepithelial cancers as a consequence of genetic and epigenetic events. In summary, the emerging picture is that several aspects of p57(Kip2)'s functions are only poorly clarified. This review represents an appraisal of the data available on the p57(Kip2) gene and protein structure, and its role in human physiology and pathology. We particularly focus our attention on p57(Kip2) changes in cancers and pharmacological approaches for modulating p57(Kip2) levels.
Collapse
Affiliation(s)
- Adriana Borriello
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lee S, Syed N, Taylor J, Smith P, Griffin B, Baens M, Bai M, Bourantas K, Stebbing J, Naresh K, Nelson M, Tuthill M, Bower M, Hatzimichael E, Crook T. DUSP16 is an epigenetically regulated determinant of JNK signalling in Burkitt's lymphoma. Br J Cancer 2010; 103:265-74. [PMID: 20551953 PMCID: PMC2906728 DOI: 10.1038/sj.bjc.6605711] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background: The mitogen-activated protein kinase (MAPK) phosphatases or dual specificity phosphatases (DUSPs) are a family of proteins that catalyse the inactivation of MAPK in eukaryotic cells. Little is known of the expression, regulation or function of the DUSPs in human neoplasia. Methods: We used RT–PCR and quantitative PCR (qPCR) to examine the expression of DUSP16 mRNA. The methylation in the DUSP16 CpG island was analysed using bisulphite sequencing and methylation-specific PCR. The activation of MAPK was determined using western blotting with phospho-specific antibodies for extra-cellular signal-related kinase (ERK), p38 and c-Jun N-terminal kinase (JNK). The proliferation of cell lines was assessed using the CellTiter 96 Aqueous One assay. Results: The expression of DUSP16, which inactivates MAPK, is subject to methylation-dependent transcriptional silencing in Burkitt's Lymphoma (BL) cell lines and in primary BL. The silencing is associated with aberrant methylation in the CpG island in the 5′ regulatory sequences of the gene blocking its constitutive expression. In contrast to BL, the CpG island of DUSP16 is unmethylated in other non-Hodgkin's lymphomas (NHLs) and epithelial malignancies. In BL cell lines, neither constitutive nor inducible ERK or p38 activity varied significantly with DUSP16 status. However, activation of JNK was increased in lines with DUSP16 methylation. Furthermore, methylation in the DUSP16 CpG island blocked transcriptional induction of DUSP16, thereby abrogating a normal physiological negative feedback loop that limits JNK activity, and conferred increased cellular sensitivity to agents, such as sorbitol and anthracycline chemotherapeutic agents that activate JNK. Conclusion: DUSP16 is a new epigenetically regulated determinant of JNK activation in BL.
Collapse
Affiliation(s)
- S Lee
- Laboratory of Cancer Genetics and Epigenetics, Breakthrough Breast Cancer, Institute of Cancer Research, Fulham Road, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Hatzimichael E, Dasoula A, Shah R, Syed N, Papoudou-Bai A, Coley HM, Dranitsaris G, Bourantas KL, Stebbing J, Crook T. The prolyl-hydroxylase EGLN3 and not EGLN1 is inactivated by methylation in plasma cell neoplasia. Eur J Haematol 2009; 84:47-51. [PMID: 19737309 DOI: 10.1111/j.1600-0609.2009.01344.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
EGLN1 and EGLN3 are members of the egg-laying-defective 9 (EglN) prolyl-hydroxylases which during normoxia catalyse hydroxylation of the hypoxia-inducible factor (HIF)-1alpha, thereby promoting its ubiquitination by a complex containing the von Hippel-Lindau (VHL) tumour suppressor. EGLN3 also has pro-apoptotic activity in some cell types. Analyses of a well-characterised series of cases of plasma cell dyscrasias, including multiple myeloma (MM), Waldenström's macroglobulinaemia (WM) and monoclonal gammopathy of undetermined significance (MGUS) surprisingly demonstrated that the CpG island of EGLN3, and not EGLN1, is frequently methylated in these disorders. Multiple myeloma patients with a methylated EGLN3 promoter showed trends towards an increased risk of death, bone lytic lesions, anaemia, advanced stage of disease and the presence of extramedullary disease. Those individuals with methylation in the EGLN3 CpG island also had significantly lower albumin levels. These data suggest that the prolyl-hydroxylases may be a novel class of potential tumour suppressors in plasma cell neoplasia that warrant further investigation with regard to their potential utility as biomarkers. Moreover, we observed that EGLN3 is also methylated at high frequency in B-cell lymphoma subtypes, implying that loss of EGLN3 is an important epigenetic event not only in plasma cell neoplasias but also in B-cell neoplasias.
Collapse
|
16
|
Viet CT, Schmidt BL. Methylation array analysis of preoperative and postoperative saliva DNA in oral cancer patients. Cancer Epidemiol Biomarkers Prev 2008; 17:3603-11. [PMID: 19064577 DOI: 10.1158/1055-9965.epi-08-0507] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
PURPOSE To perform methylation array analysis of 807 cancer-associated genes using tissue and saliva of oral squamous cell carcinoma (OSCC) patients with the objective of identifying highly methylated gene loci that hold diagnostic and predictive value as a biomarker. EXPERIMENTAL DESIGN We did the methylation array on DNA extracted from preoperative saliva, postoperative saliva, and tissue of 13 patients with OSCC, and saliva of 10 normal subjects. We identified sites that were highly methylated in the tissue and preoperative saliva samples but not methylated in the postoperative saliva samples or in normal subjects. RESULTS High quality DNA was obtained and the methylation array was successfully run on all samples. We identified significant differences in methylation patterns between the preoperative and postoperative saliva from cancer patients. We established a gene classifier consisting of 41 gene loci from 34 genes that showed methylation in preoperative saliva and tissue but were not methylated in postoperative saliva or normal subjects. Gene panels of 4 to 10 genes were constructed from genes in the classifier. The panels had a sensitivity of 62% to 77% and a specificity of 83% to 100% for OSCC. CONCLUSIONS We report methylation array analysis of 807 cancer-associated genes in the saliva of oral cancer patients before and after oral cancer resection. Our methylation biomarker approach shows the proof of principle that methylation array analysis of saliva can produce a set of cancer-related genes that are specific and can be used as a composite biomarker for the early detection of oral cancer.
Collapse
Affiliation(s)
- Chi T Viet
- Department of Oral and Maxillofacial Surgery, C-522, University of California, San Francisco, San Francisco, CA 94143-0440, USA
| | | |
Collapse
|
17
|
Gupta M, Raghavan M, Gale RE, Chelala C, Allen C, Molloy G, Chaplin T, Linch DC, Cazier JB, Young BD. Novel regions of acquired uniparental disomy discovered in acute myeloid leukemia. Genes Chromosomes Cancer 2008; 47:729-39. [PMID: 18506749 DOI: 10.1002/gcc.20573] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The acquisition of uniparental disomy (aUPD) in acute myeloid leukemia (AML) results in homozygosity for known gene mutations. Uncovering novel regions of aUPD has the potential to identify previously unknown mutational targets. We therefore aimed to develop a map of the regions of aUPD in AML. Here, we have analyzed a large set of diagnostic AML samples (n = 454) from young adults (age: 15-55 years) using genotype arrays. Acquired UPD was found in 17% of the samples with a nonrandom distribution particularly affecting chromosome arms 13q, 11p, and 11q. Novel recurrent regions of aUPD were uncovered at 2p, 17p, 2q, 17q, 1p, and Xq. Overall, aUPDs were observed across all cytogenetic risk groups, although samples with aUPD13q (5.4% of samples) belonged exclusively to the intermediate-risk group as defined by cytogenetics. All cases with a high FLT3-ITD level, measured previously, had aUPD13q covering the FLT3 gene. Significantly, none of the samples with FLT3-ITD(-)/FLT3-TKD(+) mutation exhibited aUPD13q. Of the 119 aUPDs observed, the majority (87%) were due to mitotic recombination while only 13% were due to nondisjunction. This study demonstrates aUPD is a frequent and significant finding in AML and pinpoints regions that may contain novel mutational targets.
Collapse
Affiliation(s)
- Manu Gupta
- Cancer Genomics Unit, Medical Oncology Centre, Barts and the London School of Medicine, Charterhouse Square, London EC1M 6BQ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Godman CA, Joshi R, Tierney BR, Greenspan E, Rasmussen TP, Wang HW, Shin DG, Rosenberg DW, Giardina C. HDAC3 impacts multiple oncogenic pathways in colon cancer cells with effects on Wnt and vitamin D signaling. Cancer Biol Ther 2008; 7:1570-80. [PMID: 18769117 DOI: 10.4161/cbt.7.10.6561] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Histone deacetylase 3 (HDAC3) is overexpressed in approximately half of all colon adenocarcinomas. We took an RNAi approach to determine how HDAC3 influenced chromatin modifications and the expression of growth regulatory genes in colon cancer cells. A survey of histone modifications revealed that HDAC3 knockdown in SW480 cells significantly increased histone H4-K12 acetylation, a modification present during chromatin assembly that has been implicated in imprinting. This modification was found to be most prominent in proliferating cells in the intestinal crypt and in APC(Min) tumors, but was less pronounced in the tumors that overexpress HDAC3. Gene expression profiling of SW480 revealed that HDAC3 shRNA impacted the expression of genes in the Wnt and vitamin D signaling pathways. The impact of HDAC3 on Wnt signaling was complex, with both positive and negative effects observed. However, long-term knockdown of HDAC3 suppressed beta-catenin translocation from the plasma membrane to the nucleus, and increased expression of Wnt inhibitors TLE1, TLE4 and SMO. HDAC3 knockdown also enhanced expression of the TLE1 and TLE4 repressors in HT-29 and HCT116 cells. HDAC3 shRNA enhanced expression of the vitamin D receptor in SW480 and HCT116 cells, and rendered SW480 cells sensitive to 1,25-dihydroxyvitamin D3. We propose that HDAC3 overexpression alters the epigenetic programming of colon cancer cells to impact intracellular Wnt signaling and their sensitivity to external growth regulation by vitamin D.
Collapse
Affiliation(s)
- Cassandra A Godman
- Department of Molecular & Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wakamatsu N, Collins JB, Parker JS, Tessema M, Clayton NP, Ton TVT, Hong HHL, Belinsky S, Devereux TR, Sills RC, Lahousse SA. Gene Expression Studies Demonstrate that the K-ras/Erk MAP Kinase Signal Transduction Pathway and Other Novel Pathways Contribute to the Pathogenesis of Cumene-induced Lung Tumors. Toxicol Pathol 2008; 36:743-52. [DOI: 10.1177/0192623308320801] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
National Toxicology Program (NTP) inhalation studies demonstrated that cumene significantly increased the incidence of alveolar/bronchiolar adenomas and carcinomas in B6C3F1 mice. Cumene or isopropylbenzene is a component of crude oil used primarily in the production of phenol and acetone. The authors performed global gene expression analysis to distinguish patterns of gene regulation between cumene-induced tumors and normal lung tissue and to look for patterns based on the presence or absence of K- ras and p53 mutations in the tumors. Principal component analysis segregated the carcinomas into groups with and without K- ras mutations, but failed to separate the tumors based on p53 mutation status. Expression of genes associated with the Erk MAP kinase signaling pathway was significantly altered in carcinomas with K- ras mutations compared to tumors without K- ras mutations or normal lung. Gene expression analysis also suggested that cumene-induced carcinomas with K- ras mutations have greater malignant potential than those without mutations. In addition, significance analysis of function and expression (SAFE) demonstrated expression changes of genes regulated by histone modification in carcinomas with K- ras mutations. The gene expression analysis suggested the formation of alveolar/bronchiolar carcinomas in cumene-exposed mice typically involves mutation of K- ras, which results in increased Erk MAP kinase signaling and modification of histones.
Collapse
Affiliation(s)
- Nobuko Wakamatsu
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Jennifer B. Collins
- Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | | | - Mathewos Tessema
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | - Natasha P. Clayton
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Thai-Vu T. Ton
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Hue-Hua L. Hong
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Steven Belinsky
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | - Theodora R. Devereux
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Robert C. Sills
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Stephanie A. Lahousse
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
20
|
Hatzimichael E, Dasoula A, Benetatos L, Makis A, Stebbing J, Crook T, Syrrou M, Bourantas KL. The absence of CDKN1C (p57KIP2) promoter methylation in myeloid malignancies also characterizes plasma cell neoplasms. Br J Haematol 2008; 141:557-8. [DOI: 10.1111/j.1365-2141.2008.07034.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
21
|
Stolzing A, Hescheler J, Sethe S. Fusion and Regenerative Therapies: Is Immortality Really Recessive? Rejuvenation Res 2007; 10:571-86. [DOI: 10.1089/rej.2007.0570] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
22
|
Iliopoulos D, Malizos KN, Tsezou A. Epigenetic regulation of leptin affects MMP-13 expression in osteoarthritic chondrocytes: possible molecular target for osteoarthritis therapeutic intervention. Ann Rheum Dis 2007; 66:1616-21. [PMID: 17502362 PMCID: PMC2095321 DOI: 10.1136/ard.2007.069377] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2007] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To investigate whether epigenetic mechanisms can regulate leptin's expression and affect its downstream targets as metalloproteinases 3,9,13 in osteoarthritic chondrocytes. METHODS DNA methylation in leptin promoter was measured by DNA bisulfite sequencing, and mRNA expression levels were measured by real-time quantitative PCR in osteoarthritic as well as in normal cartilage. Osteoarthritic articular cartilage samples were obtained from two distinct locations of the knee (n = 15); from the main defective area of maximum load (advanced osteoarthritis (OA)) and from adjacent macroscopically intact regions (minimal OA). Using small interference RNA, we tested if leptin downregulation would affect matrix metalloproteinase (MMP)-13 activity. We also evaluated the effect of the demethylating agent, 5'-Aza-2-deoxycytidine (AZA) and of the histone deacetylase inhibitor trichostatin A (TSA) on leptin expression in chondrocyte cultures. Furthermore, we performed chromatin immunoprecipitation in leptin's promoter area. RESULTS We found a correlation between leptin expression and DNA methylation and also that leptin controls MMP-13 activity in chondrocytes. Leptin's downregulation with small interference RNA inhibited MMP-13 expression dramatically. After 5-AZA application in normal chondrocytes, leptin's methylation was decreased, while its expression was upregulated, and MMP-13 was activated. Furthermore, TSA application in normal chondrocyte cultures increased leptin's expression. Also, chromatin immunoprecipitation in leptin's promoter after TSA treatment revealed that histone H3 lysines 9 and 14 were acetylated. CONCLUSION We found that epigenetic mechanisms regulate leptin's expression in chondrocytes affecting its downstream target MMP-13. Small interference RNA against leptin deactivated directly MMP-13, which was upregulated after leptin's epigenetic reactivation, raising the issue of leptin's therapeutic potential for osteoarthritis.
Collapse
Affiliation(s)
- D Iliopoulos
- University of Thessalia, Medical School, Department of Biology, 22 Papakyriazi str. 41 222 Larisa, Greece
| | | | | |
Collapse
|
23
|
Affiliation(s)
- S Marsh
- Washington University, Division of Molecular Oncology, St Louis, USA
| |
Collapse
|
24
|
Environment, diet and CpG island methylation: epigenetic signals in gastrointestinal neoplasia. Food Chem Toxicol 2007; 46:1346-59. [PMID: 17976883 DOI: 10.1016/j.fct.2007.09.101] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 09/14/2007] [Accepted: 09/19/2007] [Indexed: 12/26/2022]
Abstract
The epithelial surfaces of the mammalian alimentary tract are characterised by very high rates of cell proliferation and DNA synthesis, and in humans they are highly susceptible to cancer. The role of somatic mutations as drivers of carcinogenesis in the alimentary tract is well established, but the importance of gene silencing by epigenetic mechanisms is increasingly recognised. Methylation of CpG islands is an important component of the epigenetic code that regulates gene expression during development and normal cellular differentiation, and a number of genes are well known to become abnormally methylated during the development of tumours of the oesophagus, stomach and colorectum. Aberrant patterns of DNA methylation develop as a result of pathological processes such as chronic inflammation, and in response to various dietary factors, including imbalances in the supply of methyl donors, particularly folates, and exposure to DNA methyltransferase inhibitors, which include polyphenols and possibly isothiocyanates from plant foods. However the importance of these environmental interactions in human health and disease remains to be established. Recent moves to modify the exposure of human populations to folate, by mandatory supplementation of cereal foods, emphasise the importance of understanding the susceptibility of the human epigenome to dietary and other environmental effects.
Collapse
|