1
|
Bao Y, Fang W. A recombinant fungal photolyase autonomously enters human cell nuclei to fix UV-induced DNA lesions. Biotechnol Lett 2024; 46:459-467. [PMID: 38523200 DOI: 10.1007/s10529-024-03474-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/24/2024] [Accepted: 02/10/2024] [Indexed: 03/26/2024]
Abstract
Solar ultraviolet radiations induced DNA damages in human skin cells with cyclobutane pyrimidine dimers (CPD) and (6-4) photoproducts (6-4PPs) as the most frequent lesions. CPDs are repaired much slower than 6-4PPs by the nucleotide excision repair pathway, which are thus the major lesions that interfere with key cellular processes and give rise to gene mutations, possibly resulting in skin cancer. In prokaryotes and multicellular eukaryotes other than placental mammals, CPDs can be rapidly repaired by CPD photolyases in one simple enzymatic reaction using the energy of blue light. In this study, we aim to construct recombinant CPD photolyases that can autonomously enter human cell nuclei to fix UV-induced CPDs. A fly cell penetration peptide and a viral nucleus localization signal peptide were recombined with a fungal CPD photolyase to construct a recombinant protein. This engineered CPD photolyase autonomously crosses cytoplasm and nuclear membrane of human cell nuclei, which then efficiently photo-repairs UV-induced CPD lesions in the genomic DNA. This further protects the cells by increasing SOD activity, and decreasing cellular ROSs, malondialdehyde and apoptosis.
Collapse
Affiliation(s)
- Yuting Bao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China
| | - Weiguo Fang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Ramírez-Gamboa D, Díaz-Zamorano AL, Meléndez-Sánchez ER, Reyes-Pardo H, Villaseñor-Zepeda KR, López-Arellanes ME, Sosa-Hernández JE, Coronado-Apodaca KG, Gámez-Méndez A, Afewerki S, Iqbal HMN, Parra-Saldivar R, Martínez-Ruiz M. Photolyase Production and Current Applications: A Review. Molecules 2022; 27:molecules27185998. [PMID: 36144740 PMCID: PMC9505440 DOI: 10.3390/molecules27185998] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
The photolyase family consists of flavoproteins with enzyme activity able to repair ultraviolet light radiation damage by photoreactivation. DNA damage by the formation of a cyclobutane pyrimidine dimer (CPD) and a pyrimidine-pyrimidone (6-4) photoproduct can lead to multiple affections such as cellular apoptosis and mutagenesis that can evolve into skin cancer. The development of integrated applications to prevent the negative effects of prolonged sunlight exposure, usually during outdoor activities, is imperative. This study presents the functions, characteristics, and types of photolyases, their therapeutic and cosmetic applications, and additionally explores some photolyase-producing microorganisms and drug delivery systems.
Collapse
Affiliation(s)
- Diana Ramírez-Gamboa
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | | | - Humberto Reyes-Pardo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | | | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Karina G. Coronado-Apodaca
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Ana Gámez-Méndez
- Department of Basic Sciences, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500 Pte, San Pedro Garza Garcia 66238, Mexico
| | - Samson Afewerki
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Roberto Parra-Saldivar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
- Correspondence: (R.P.-S.); (M.M.-R.)
| | - Manuel Martínez-Ruiz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
- Correspondence: (R.P.-S.); (M.M.-R.)
| |
Collapse
|
3
|
Arvanitaki ES, Stratigi K, Garinis GA. DNA damage, inflammation and aging: Insights from mice. FRONTIERS IN AGING 2022; 3:973781. [PMID: 36160606 PMCID: PMC9490123 DOI: 10.3389/fragi.2022.973781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022]
Abstract
Persistent DNA lesions build up with aging triggering inflammation, the body’s first line of immune defense strategy against foreign pathogens and irritants. Once established, DNA damage-driven inflammation takes on a momentum of its own, due to the amplification and feedback loops of the immune system leading to cellular malfunction, tissue degenerative changes and metabolic complications. Here, we discuss the use of murine models with inborn defects in genome maintenance and the DNA damage response for understanding how irreparable DNA lesions are functionally linked to innate immune signaling highlighting their relevance for developing novel therapeutic strategies against the premature onset of aging-associated diseases.
Collapse
Affiliation(s)
- Ermioni S. Arvanitaki
- Department of Biology, University of Crete, Heraklion, Greece
- Foundation for Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| | | | - George A. Garinis
- Department of Biology, University of Crete, Heraklion, Greece
- Foundation for Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
- *Correspondence: George A. Garinis,
| |
Collapse
|
4
|
Kajitani GS, Quayle C, Garcia CCM, Fotoran WL, Dos Santos JFR, van der Horst GTJ, Hoeijmakers JHJ, Menck CFM. Photorepair of Either CPD or 6-4PP DNA Lesions in Basal Keratinocytes Attenuates Ultraviolet-Induced Skin Effects in Nucleotide Excision Repair Deficient Mice. Front Immunol 2022; 13:800606. [PMID: 35422806 PMCID: PMC9004445 DOI: 10.3389/fimmu.2022.800606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Ultraviolet (UV) radiation is one of the most genotoxic, universal agents present in the environment. UVB (280-315 nm) radiation directly damages DNA, producing cyclobutane pyrimidine dimers (CPDs) and pyrimidine 6-4 pyrimidone photoproducts (6-4PPs). These photolesions interfere with essential cellular processes by blocking transcription and replication polymerases, and may induce skin inflammation, hyperplasia and cell death eventually contributing to skin aging, effects mediated mainly by keratinocytes. Additionally, these lesions may also induce mutations and thereby cause skin cancer. Photolesions are repaired by the Nucleotide Excision Repair (NER) pathway, responsible for repairing bulky DNA lesions. Both types of photolesions can also be repaired by distinct (CPD- or 6-4PP-) photolyases, enzymes that specifically repair their respective photolesion by directly splitting each dimer through a light-dependent process termed photoreactivation. However, as photolyases are absent in placental mammals, these organisms depend solely on NER for the repair of DNA UV lesions. However, the individual contribution of each UV dimer in the skin effects, as well as the role of keratinocytes has remained elusive. In this study, we show that in NER-deficient mice, the transgenic expression and photorepair of CPD-photolyase in basal keratinocytes completely inhibited UVB-induced epidermal thickness and cell proliferation. On the other hand, photorepair by 6-4PP-photolyase in keratinocytes reduced but did not abrogate these UV-induced effects. The photolyase mediated removal of either CPDs or 6-4PPs from basal keratinocytes in the skin also reduced UVB-induced apoptosis, ICAM-1 expression, and myeloperoxidase activation. These findings indicate that, in NER-deficient rodents, both types of photolesions have causal roles in UVB-induced epidermal cell proliferation, hyperplasia, cell death and inflammation. Furthermore, these findings also support the notion that basal keratinocytes, instead of other skin cells, are the major cellular mediators of these UVB-induced effects.
Collapse
Affiliation(s)
- Gustavo S Kajitani
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.,Departamento de Ciências Biológicas (DECBI), Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Carolina Quayle
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Camila C M Garcia
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.,Departamento de Ciências Biológicas (DECBI), Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Wesley L Fotoran
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Juliana F R Dos Santos
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Jan H J Hoeijmakers
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands.,University Hospital of Cologne, Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Institute for Genome Stability in Aging and Disease, Cologne, Germany.,Princess Maxima Center for Pediatric Oncology, ONCODE Institute, Utrecht, Netherlands
| | - Carlos F M Menck
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Pedrosa VM, Sanches AG, da Silva MB, Gratão PL, Isaac VL, Gindri M, Teixeira GH. Production of mycosporine-like amino acid (MAA)-loaded emulsions as chemical barriers to control sunscald in fruits and vegetables. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:801-812. [PMID: 34223643 DOI: 10.1002/jsfa.11415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/11/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Sunscald is a physiological disorder that occurs in many horticultural products when exposed to excessive solar radiation and high temperatures. Traditionally, sunscald is controlled using physical barriers that reflect radiation, however this practice is not always efficient. A possible alternative would be the use of chemical barriers, such as mycosporine-like amino acids (MAAs), which protect aquatic organisms against ultraviolet (UV) radiation. Thus, this study aimed to develop a lipid-based emulsion containing MAAs for using in the preharvest of horticultural products. RESULTS Emulsions were developed using 10% (w/v) of corn oil (CO) and soybean oil (SO), carnauba wax (CW), and beeswax (BW) as lipid bases (LBs). The emulsion containing CW and ammonium hydroxide was the most stable, resembling commercial wax. Therefore, this formulation was used as the basis for the incorporation of the commercial product Helioguard™ 365, a source of MAA, in concentrations of 0%, 1%, 2%, and 4% (v/v). The MAA incorporation resulted in little modifications in the stability of the emulsion, providing an increase in the absorbance with peaks in the UV-B ranging from 280 to 300 nm. CONCLUSION The lipid-base emulsion containing MAAs could be used as a chemical barrier to control sunscald in horticultural products. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Vanessa Md Pedrosa
- Faculdade de Ciências Agrárias e Veterinárias (FCAV), Campus de Jaboticabal, Departamento de Ciências da Produção Agrícola, Universidade Estadual Paulista (UNESP), Jaboticabal, Brazil
| | - Alex G Sanches
- Faculdade de Ciências Agrárias e Veterinárias (FCAV), Campus de Jaboticabal, Departamento de Ciências da Produção Agrícola, Universidade Estadual Paulista (UNESP), Jaboticabal, Brazil
| | - Maryelle B da Silva
- Faculdade de Ciências Agrárias e Veterinárias (FCAV), Campus de Jaboticabal, Departamento de Ciências da Produção Agrícola, Universidade Estadual Paulista (UNESP), Jaboticabal, Brazil
| | - Priscila L Gratão
- Faculdade de Ciências Agrárias e Veterinárias (FCAV), Campus de Jaboticabal, Departamento de Biologia Aplicada à Agropecuária, Universidade Estadual Paulista (UNESP), Jaboticabal, Brazil
| | - Vera Lb Isaac
- Faculdade de Ciências Farmacêuticas (FCF), Campus de Araraquara, Departamento de Fármacos e Medicamentos Rodovia Araraquara Jaú, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Marcelo Gindri
- Faculdade de Ciências Agrárias e Veterinárias (FCAV), Campus de Jaboticabal, Departamento de Zootecnia, Universidade Estadual Paulista (UNESP), Jaboticabal, Brazil
| | - Gustavo Ha Teixeira
- Faculdade de Ciências Agrárias e Veterinárias (FCAV), Campus de Jaboticabal, Departamento de Ciências da Produção Agrícola, Universidade Estadual Paulista (UNESP), Jaboticabal, Brazil
| |
Collapse
|
6
|
The splicing factor XAB2 interacts with ERCC1-XPF and XPG for R-loop processing. Nat Commun 2021; 12:3153. [PMID: 34039990 PMCID: PMC8155215 DOI: 10.1038/s41467-021-23505-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
RNA splicing, transcription and the DNA damage response are intriguingly linked in mammals but the underlying mechanisms remain poorly understood. Using an in vivo biotinylation tagging approach in mice, we show that the splicing factor XAB2 interacts with the core spliceosome and that it binds to spliceosomal U4 and U6 snRNAs and pre-mRNAs in developing livers. XAB2 depletion leads to aberrant intron retention, R-loop formation and DNA damage in cells. Studies in illudin S-treated cells and Csbm/m developing livers reveal that transcription-blocking DNA lesions trigger the release of XAB2 from all RNA targets tested. Immunoprecipitation studies reveal that XAB2 interacts with ERCC1-XPF and XPG endonucleases outside nucleotide excision repair and that the trimeric protein complex binds RNA:DNA hybrids under conditions that favor the formation of R-loops. Thus, XAB2 functionally links the spliceosomal response to DNA damage with R-loop processing with important ramifications for transcription-coupled DNA repair disorders. XPA-binding protein (XAB)-2 is the human homologue of the yeast pre-mRNA splicing factor Syf1. Here the authors use an in vivo biotinylation tagging approach to show XAB2’s role in DNA repair, RNA splicing and transcription during mammalian development.
Collapse
|
7
|
Siametis A, Niotis G, Garinis GA. DNA Damage and the Aging Epigenome. J Invest Dermatol 2021; 141:961-967. [PMID: 33494932 DOI: 10.1016/j.jid.2020.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/29/2022]
Abstract
In mammals, genome instability and aging are intimately linked as illustrated by the growing list of patients with progeroid and animal models with inborn DNA repair defects. Until recently, DNA damage was thought to drive aging by compromising transcription or DNA replication, thereby leading to age-related cellular malfunction and somatic mutations triggering cancer. However, recent evidence suggests that DNA lesions also elicit widespread epigenetic alterations that threaten cell homeostasis as a function of age. In this review, we discuss the functional links of persistent DNA damage with the epigenome in the context of aging and age-related diseases.
Collapse
Affiliation(s)
- Athanasios Siametis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece; Department of Biology, University of Crete, Heraklion, Greece
| | - George Niotis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece; Department of Biology, University of Crete, Heraklion, Greece
| | - George A Garinis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece; Department of Biology, University of Crete, Heraklion, Greece.
| |
Collapse
|
8
|
DNA Damage Response and Metabolic Reprogramming in Health and Disease. Trends Genet 2020; 36:777-791. [PMID: 32684438 DOI: 10.1016/j.tig.2020.06.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 01/08/2023]
Abstract
Nuclear DNA damage contributes to cellular malfunction and the premature onset of age-related diseases, including cancer. Until recently, the canonical DNA damage response (DDR) was thought to represent a collection of nuclear processes that detect, signal and repair damaged DNA. However, recent evidence suggests that beyond nuclear events, the DDR rewires an intricate network of metabolic circuits, fine-tunes protein synthesis, trafficking, and secretion as well as balances growth with defense strategies in response to genotoxic insults. In this review, we discuss how the active DDR signaling mobilizes extranuclear and systemic responses to promote cellular homeostasis and organismal survival in health and disease.
Collapse
|
9
|
Deshmukh J, Pofahl R, Haase I. Epidermal Rac1 regulates the DNA damage response and protects from UV-light-induced keratinocyte apoptosis and skin carcinogenesis. Cell Death Dis 2017; 8:e2664. [PMID: 28277539 PMCID: PMC5386559 DOI: 10.1038/cddis.2017.63] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/31/2016] [Accepted: 01/09/2017] [Indexed: 12/13/2022]
Abstract
Non-melanoma skin cancer (NMSC) is the most common type of cancer. Increased expression and activity of Rac1, a small Rho GTPase, has been shown previously in NMSC and other human cancers; suggesting that Rac1 may function as an oncogene in skin. DMBA/TPA skin carcinogenesis studies in mice have shown that Rac1 is required for chemically induced skin papilloma formation. However, UVB radiation by the sun, which causes DNA damage, is the most relevant cause for NMSC. A potential role of Rac1 in UV-light-induced skin carcinogenesis has not been investigated so far. To investigate this, we irradiated mice with epidermal Rac1 deficiency (Rac1-EKO) and their controls using a well-established protocol for long-term UV-irradiation. Most of the Rac1-EKO mice developed severe skin erosions upon long-term UV-irradiation, unlike their controls. These skin erosions in Rac1-EKO mice healed subsequently. Surprisingly, we observed development of squamous cell carcinomas (SCCs) within the UV-irradiation fields. This shows that the presence of Rac1 in the epidermis protects from UV-light-induced skin carcinogenesis. Short-term UV-irradiation experiments revealed increased UV-light-induced apoptosis of Rac1-deficient epidermal keratinocytes in vitro as well as in vivo. Further investigations using cyclobutane pyrimidine dimer photolyase transgenic mice revealed that the observed increase in UV-light-induced keratinocyte apoptosis in Rac1-EKO mice is DNA damage dependent and correlates with caspase-8 activation. Furthermore, Rac1-deficient keratinocytes showed reduced levels of p53, γ-H2AX and p-Chk1 suggesting an attenuated DNA damage response upon UV-irradiation. Taken together, our data provide direct evidence for a protective role of Rac1 in UV-light-induced skin carcinogenesis and keratinocyte apoptosis probably through regulating mechanisms of the DNA damage response and repair pathways.
Collapse
Affiliation(s)
- Jayesh Deshmukh
- Department of Dermatology, University of Cologne, Kerpener Strasse 62, Cologne 50937, Germany
| | - Ruth Pofahl
- Department of Dermatology, University of Cologne, Kerpener Strasse 62, Cologne 50937, Germany
| | - Ingo Haase
- Department of Dermatology, University of Cologne, Kerpener Strasse 62, Cologne 50937, Germany
| |
Collapse
|
10
|
The role of XPC: implications in cancer and oxidative DNA damage. Mutat Res 2011; 728:107-17. [PMID: 21763452 DOI: 10.1016/j.mrrev.2011.07.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/30/2011] [Accepted: 07/01/2011] [Indexed: 01/14/2023]
Abstract
The accumulation of DNA damage is a slow but hazardous phenomenon that may lead to cell death, accelerated aging features and cancer. One of the most versatile and important defense mechanisms against the accumulation of DNA damage is nucleotide excision repair (NER), in which the Xeroderma pigmentosum group C (XPC) protein plays a prominent role. NER can be divided into global genome repair (GG-NER) and transcription coupled repair (TC-NER). XPC is a key factor in GG-NER where it functions in DNA damage recognition and after which the repair machinery is recruited to eliminate the DNA damage. Defective XPC functioning has been shown to result in a cancer prone phenotype, in human as well as in mice. Mutation accumulation in XPC deficient mice is accelerated and increased, resulting in an increased tumor incidence. More recently XPC has also been linked to functions outside of NER since XPC deficient mice show a divergent tumor spectrum compared to other NER deficient mouse models. Multiple in vivo and in vitro experiments indicate that XPC appears to be involved in the initiation of several DNA damage-induced cellular responses. XPC seems to function in the removal of oxidative DNA damage, redox homeostasis and cell cycle control. We hypothesize that this combination of increased oxidative DNA damage sensitivity, disturbed redox homeostasis together with inefficient cell cycle control mechanisms are causes of the observed increased cancer susceptibility in oxygen exposed tissues. Such a phenotype is absent in other NER-deficient mice, including Xpa.
Collapse
|
11
|
Mitchell DL, Fernandez AA. Different types of DNA damage play different roles in the etiology of sunlight-induced melanoma. Pigment Cell Melanoma Res 2010; 24:119-24. [PMID: 20955242 DOI: 10.1111/j.1755-148x.2010.00789.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- David L Mitchell
- Department of Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA.
| | | |
Collapse
|
12
|
Antoniou C, Kosmadaki MG, Stratigos AJ, Katsambas AD. Photoaging: prevention and topical treatments. Am J Clin Dermatol 2010; 11:95-102. [PMID: 20141230 DOI: 10.2165/11530210-000000000-00000] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A rapidly increasing number of people visit dermatologists for the prevention and treatment of aging skin. Sun avoidance and sunscreen use are widely accepted strategies of primary prevention against photoaging. Convincing evidence shows that topical application of retinoids has an effect on reversing, at least partially, mild to moderate photodamage. Antioxidants and alpha-hydroxy acids can alter the skin structure and function. Enzymes that repair DNA damage or oligonucleotides that enhance the endogenous capacity for DNA damage repair may prove to be future preventive/therapeutic interventions for aging skin.
Collapse
Affiliation(s)
- Christina Antoniou
- Department of Dermatology, University of Athens, School of Medicine, Andreas Sygros Hospital, Athens, Greece
| | | | | | | |
Collapse
|
13
|
Schumacher B, Hoeijmakers JH, Garinis GA. Sealing the gap between nuclear DNA damage and longevity. Mol Cell Endocrinol 2009; 299:112-7. [PMID: 19027821 DOI: 10.1016/j.mce.2008.10.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 08/03/2008] [Accepted: 10/15/2008] [Indexed: 10/21/2022]
Abstract
A number of progeroid syndromes with defects in the cellular response to DNA damage suggest that progressive genome instability represents an important aspect of the aging process. Here, we review a number of mouse models for progeroid syndromes that are caused by inherited defects in nucleotide excision repair and are characterized by rapid onset of aging symptoms and premature death. We argue that alterations in genome maintenance pathways impact complex physiological processes that may affect the onset of clinically defined age-related pathologies, including cancer as well as pathways that are normally associated with longevity.
Collapse
Affiliation(s)
- Björn Schumacher
- Department of Genetics, Centre for Biomedical Genetics, Erasmus University Medical Centre, PO Box 2040, 3000 CA Rotterdam, The Netherlands. [corrected]
| | | | | |
Collapse
|
14
|
How DNA lesions are turned into powerful killing structures: insights from UV-induced apoptosis. Mutat Res 2008; 681:197-208. [PMID: 18845270 DOI: 10.1016/j.mrrev.2008.09.001] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 09/08/2008] [Accepted: 09/09/2008] [Indexed: 11/22/2022]
Abstract
Mammalian cells treated with ultraviolet (UV) light provide one of the best-known experimental systems for depicting the biological consequences of DNA damage. UV irradiation induces the formation of DNA photoproducts, mainly cyclobutane pyrimidine dimers (CPDs) and (6-4) pyrimidine-pyrimidone photoproducts [(6-4)PPs], that drastically impairs DNA metabolism, culminating in the induction of cell death by apoptosis. While CPDs are the most important apoptosis-inducing lesions in DNA repair proficient cells, recent data indicates that (6-4)PPs also signals for apoptosis in DNA repair deficient cells. The toxic effects of these unrepaired DNA lesions are commonly associated with transcription blockage, but there is increasing evidence supporting a role for replication blockage as an apoptosis-inducing signal. This is supported by the observations that DNA double-strand breaks (DSBs) arise at the sites of stalled replication forks, that these DSBs are potent inducers of apoptosis and that inhibition of S phase progression diminishes the apoptotic response. Reactive oxygen species, generated after exposure of mammalian cells to longer UV wavelengths, may also induce apoptotic responses. In this regard, emphasis is given to the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxoG), but indirect induced lesions such as lipoperoxide DNA adducts also deserve attention. ATR is the main established sensor molecule for UV-induced DNA damage. However, there is evidence that ATM as well as the MAPK pathway also play a role in the UV response by activating either the death receptor or the mitochondrial damage pathway. Adding more complexity to the subject, cells under stress suffer other types of processes that may result in cell death. Autophagy is one of these processes, with extensive cross-talks with apoptosis. No matter the mechanisms, cell death avoids cells to perpetuate mutations induced by genotoxic lesions. The understanding of such death responses may provide the means for the development of strategies for the prevention and treatment of cancer.
Collapse
|
15
|
Dumstorf CA, Clark AB, Lin Q, Kissling GE, Yuan T, Kucherlapati R, McGregor WG, Kunkel TA. Participation of mouse DNA polymerase iota in strand-biased mutagenic bypass of UV photoproducts and suppression of skin cancer. Proc Natl Acad Sci U S A 2006; 103:18083-8. [PMID: 17114294 PMCID: PMC1838710 DOI: 10.1073/pnas.0605247103] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA polymerase iota (pol iota) is a conserved Y family enzyme that is implicated in translesion DNA synthesis (TLS) but whose cellular functions remain uncertain. To test the hypothesis that pol iota performs TLS in cells, we compared UV-induced mutagenesis in primary fibroblasts derived from wild-type mice to mice lacking functional pol eta, pol iota, or both. A deficiency in mouse DNA polymerase eta (pol eta) enhanced UV-induced Hprt mutant frequencies. This enhanced UV-induced mutagenesis and UV-induced mutagenesis in wild-type cells were strongly diminished in cells deficient in pol iota, indicating that pol iota participates in the bypass of UV photoproducts in cells. Moreover, a clear strand bias among UV-induced base substitutions was observed in wild-type cells that was diminished in pol eta- and pol iota-deficient mouse cells and abolished in cells deficient in both enzymes. These data suggest that these enzymes bypass UV photoproducts in an asymmetric manner. To determine whether pol iota status affects cancer susceptibility, we compared the UV-induced skin cancer susceptibility of wild-type mice to mice lacking functional pol eta, pol iota, or both. Although pol iota deficiency alone had no effect, UV-induced skin tumors in pol eta-deficient mice developed 4 weeks earlier in mice concomitantly deficient in pol iota. Collectively, these data reveal functions for pol iota in bypassing UV photoproducts and in delaying the onset of UV-induced skin cancer.
Collapse
Affiliation(s)
- Chad A. Dumstorf
- *Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202-1786
| | - Alan B. Clark
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, and
| | - Qingcong Lin
- Harvard Medical School–Partners Healthcare Center for Genetics and Genomics and Harvard Medical School, Boston, MA 02115
| | - Grace E. Kissling
- Biostatistics Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709; and
| | - Tao Yuan
- Harvard Medical School–Partners Healthcare Center for Genetics and Genomics and Harvard Medical School, Boston, MA 02115
| | - Raju Kucherlapati
- Harvard Medical School–Partners Healthcare Center for Genetics and Genomics and Harvard Medical School, Boston, MA 02115
| | - W. Glenn McGregor
- *Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202-1786
| | - Thomas A. Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|