1
|
Hemmati S, Keshavarz-Fathi M, Razi S, Rezaei N. Gene Therapy and Genetic Vaccines. CANCER IMMUNOLOGY 2021:129-142. [DOI: 10.1007/978-3-030-50287-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Chasov V, Mirgayazova R, Zmievskaya E, Khadiullina R, Valiullina A, Stephenson Clarke J, Rizvanov A, Baud MGJ, Bulatov E. Key Players in the Mutant p53 Team: Small Molecules, Gene Editing, Immunotherapy. Front Oncol 2020; 10:1460. [PMID: 32974171 PMCID: PMC7461930 DOI: 10.3389/fonc.2020.01460] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/09/2020] [Indexed: 12/15/2022] Open
Abstract
The transcription factor p53 is a key tumor suppressor that is inactivated in almost all cancers due to either point mutations in the TP53 gene or overexpression of its negative regulators. The p53 protein is known as the “cellular gatekeeper” for its roles in facilitating DNA repair, cell cycle arrest or apoptosis upon DNA damage. Most p53 mutations are missense and result in either structural destabilization of the protein, causing its partial unfolding and deactivation under physiological conditions, or impairment of its DNA-binding properties. Tumor cells with p53 mutations are generally more immunogenic due to “hot spot” neoantigens that instigate the immune system response. In this review, we discuss the key therapeutic strategies targeting mutant p53 tumors, including classical approaches based on small molecule intervention and emerging technologies such as gene editing and T cell immunotherapy.
Collapse
Affiliation(s)
- Vitaly Chasov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Regina Mirgayazova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Ekaterina Zmievskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Raniya Khadiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Aygul Valiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | | | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Matthias G J Baud
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Murray KS, Spaliviero M, Tonorezos ES, Lacouture ME, Tap WD, Oeffinger KC, Vargas HA, Eastham JA. Li-Fraumeni Syndrome-related Malignancies Involving the Genitourinary Tract: Review of a Single-institution Experience. Urology 2018; 119:55-61. [PMID: 29935265 DOI: 10.1016/j.urology.2018.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/03/2018] [Accepted: 06/05/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To report a case of pelvic angiosarcoma in a 27-year-old man with Li-Fraumeni Syndrome (LFS) and evaluate the presentation and timeline of genitourinary (GU) tract involvement in LFS patients. METHODS We retrospectively identified 39 LFS patients treated at our institution between 2000 and 2014; 7 (18%) had experienced a GU malignancy or an LFS-related malignancy involving the GU tract. Clinical characteristics, including dates of onset of first GU tract malignancies; pathologic findings; multimodal management; and familial history of LFS were reviewed. RESULTS Median age at first malignancy was 14.0 years (interquartile range [IQR] 5.5-24.0). There was a slight male predominance (4 of 7). Median time between first malignancy and the malignancy involving the GU tract was 10.1 years (IQR 8.0-19.5). Six of the 7 patients (86%) had a form of sarcoma involving the GU tract; 1 developed adrenocortical carcinoma. The cancer pedigree of all patients showed LFS-associated malignancies in family members. Multimodal management included surgical resection in 6 patients with adjuvant chemotherapy or radiotherapy in 1 patient each. One patient received chemotherapy only. Following diagnosis of malignancy involving the GU tract, 5 of the 7 patients developed additional primary malignancies. At a median follow-up of 4.7 years (IQR 3.0-12.1), 2 patients are alive, 3 died of disease, and 1 died of unknown cause. One patient was lost at follow-up. CONCLUSION Continued follow-up of LFS cancer patients aimed at the determination of optimal screening, management, and surveillance protocols is recommended and may result in longer survival expectations.
Collapse
Affiliation(s)
- Katie S Murray
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Surgery, Division of Urology, University of Missouri, Columbia, MO.
| | - Massimiliano Spaliviero
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY; Stony Brook Medicine, SUNY at Stony Brook, Stony Brook, NY
| | - Emily S Tonorezos
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medical College, New York, NY
| | - Mario E Lacouture
- Dermatology Service, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - William D Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kevin C Oeffinger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY; Duke Cancer Institute, Durham, NC
| | | | - James A Eastham
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medical College, New York, NY
| |
Collapse
|
4
|
Zhang H, Wang Y, Bai Y, Shao Y, Bai J, Ma Z, Liu Q, Wu S. Recombinant adeno-associated virus expressing a p53-derived apoptotic peptide (37AA) inhibits HCC cells growth in vitro and in vivo. Oncotarget 2017; 8:16801-16810. [PMID: 28187431 PMCID: PMC5370002 DOI: 10.18632/oncotarget.15160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 01/24/2017] [Indexed: 01/27/2023] Open
Abstract
Recent studies have confirmed that a p53-derived apoptotic peptide (37AA) could act as a tumor suppressor inducing apoptosis in multiple tumor cells through derepressing p73. However, the tumor suppressive effects of recombinant adeno-associated virus (rAAV) expressing 37AA on HCC cells are still unknown. In this study, we successfully constructed a recombinant rAAV expressing 37AA. In vitro and in vivo assays showed that transfection of NT4-37AA/rAAV in HCC cells strongly suppressed cell proliferation, induced apoptosis, and up-regulated the cellular expression of p73. NT4-37AA/rAAV transfection markedly slowed Huh-7 xenografted tumor growth in murine. Pretreatment of HCC cells with p73 siRNA abrogated these effects of NT4-37AA/rAAV. Furthermore, we found that expression of p73 was upregulated and the formation of P73/iASSP complex was prevented when 37AA was introduced into HCC cells. Taken together, these results indicate that introduction of 37AA into HCC cells with a rAAV vector may lead to the development of broadly applicable agents for the treatment of HCC, and the mechanism may, at least in part, be associated with the upregulation of p73 expression and reduced level of P73/iASSP complex.
Collapse
Affiliation(s)
- Hongyong Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yufeng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yanxia Bai
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yuan Shao
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jigang Bai
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zhenhua Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shengli Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
5
|
Pirollo KF, Nemunaitis J, Leung PK, Nunan R, Adams J, Chang EH. Safety and Efficacy in Advanced Solid Tumors of a Targeted Nanocomplex Carrying the p53 Gene Used in Combination with Docetaxel: A Phase 1b Study. Mol Ther 2016; 24:1697-706. [PMID: 27357628 DOI: 10.1038/mt.2016.135] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/21/2016] [Indexed: 01/10/2023] Open
Abstract
Loss of p53 suppressor function, through mutations or inactivation of the p53 pathway, occurs in most human cancers. SGT-53 is a liposomal nanocomplex designed for systemic, tumor-targeting delivery of the wt p53 gene. In this nanodelivery system, an anti-transferrin receptor single-chain antibody fragment serves as the targeting moiety. In an initial phase 1 trial in patients with advanced solid tumors, SGT-53 demonstrated tumor-specific targeting, was shown to be well tolerated, and was associated with an antitumor effect in several patients. Our preclinical studies have also demonstrated enhanced antitumor activity with the combination of SGT-53 and docetaxel. Thus, this dose-escalation trial was undertaken to assess the combination of SGT-53 and docetaxel for safety and potential efficacy in 14 advanced cancer patients. Results reveal that the combination of SGT-53 (maximum dose, 3.6 mg DNA/infusion) and docetaxel (75 mg/m(2)/infusion) was well tolerated. Moreover, clinical activity involving 12 evaluable patients was observed. Three of these patients achieved RECIST-verified partial responses with tumor reductions of -47%, -51%, and -79%. Two others had stable disease with significant shrinkage (-25% and -16%). These results support phase 2 testing of SGT-53 in combination with docetaxel.
Collapse
Affiliation(s)
- Kathleen F Pirollo
- Department of Oncology, Experimental Therapeutics Division, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - John Nemunaitis
- Mary Crowley Cancer Research Centers, Dallas, Texas, USA.,Gradalis, Dallas, Texas, USA.,Texas Oncology PA, Dallas, Texas, USA.,Medical City Dallas Hospital, Dallas, Texas, USA
| | - Po Ki Leung
- SynerGene Therapeutics, Potomac, Maryland, USA
| | - Robert Nunan
- Mary Crowley Cancer Research Centers, Dallas, Texas, USA
| | - Jana Adams
- Mary Crowley Cancer Research Centers, Dallas, Texas, USA
| | - Esther H Chang
- Department of Oncology, Experimental Therapeutics Division, Georgetown University Medical Center, Washington, District of Columbia, USA.,SynerGene Therapeutics, Potomac, Maryland, USA
| |
Collapse
|
6
|
Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 2014; 66:2-25. [PMID: 24270007 PMCID: PMC4219254 DOI: 10.1016/j.addr.2013.11.009] [Citation(s) in RCA: 1964] [Impact Index Per Article: 178.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/23/2013] [Accepted: 11/13/2013] [Indexed: 12/17/2022]
Abstract
Cancer nanotherapeutics are progressing at a steady rate; research and development in the field has experienced an exponential growth since early 2000's. The path to the commercialization of oncology drugs is long and carries significant risk; however, there is considerable excitement that nanoparticle technologies may contribute to the success of cancer drug development. The pace at which pharmaceutical companies have formed partnerships to use proprietary nanoparticle technologies has considerably accelerated. It is now recognized that by enhancing the efficacy and/or tolerability of new drug candidates, nanotechnology can meaningfully contribute to create differentiated products and improve clinical outcome. This review describes the lessons learned since the commercialization of the first-generation nanomedicines including DOXIL® and Abraxane®. It explores our current understanding of targeted and non-targeted nanoparticles that are under various stages of development, including BIND-014 and MM-398. It highlights the opportunities and challenges faced by nanomedicines in contemporary oncology, where personalized medicine is increasingly the mainstay of cancer therapy. We revisit the fundamental concepts of enhanced permeability and retention effect (EPR) and explore the mechanisms proposed to enhance preferential "retention" in the tumor, whether using active targeting of nanoparticles, binding of drugs to their tumoral targets or the presence of tumor associated macrophages. The overall objective of this review is to enhance our understanding in the design and development of therapeutic nanoparticles for treatment of cancers.
Collapse
Affiliation(s)
- Nicolas Bertrand
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jun Wu
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Xiaoyang Xu
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Nazila Kamaly
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Omid C Farokhzad
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA.
| |
Collapse
|
7
|
Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors. Mol Ther 2013; 21:1096-103. [PMID: 23609015 DOI: 10.1038/mt.2013.32] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Selective delivery of therapeutic molecules to primary and metastatic tumors is optimal for effective cancer therapy. A liposomal nanodelivery complex (scL) for systemic, tumor-targeting delivery of anticancer therapeutics has been developed. scL employs an anti-transferrin receptor (TfR), scFv as the targeting molecule. Loss of p53 suppressor function, through mutations or inactivation of the p53 pathway, is present in most human cancers. Rather than being transiently permissive for tumor initiation, persistence of p53 dysfunction is a continuing requirement for maintaining tumor growth. Herein, we report results of a first-in-man Phase I clinical trial of restoration of the normal human tumor suppressor gene p53 using the scL nanocomplex (SGT-53). Minimal side effects were observed in this trial in patients with advanced solid tumors. Furthermore, the majority of patients demonstrated stable disease. One patient with adenoid cystic carcinoma had his status changed from unresectable to resectable after one treatment cycle. More significantly, we observed an accumulation of the transgene in metastatic tumors, but not in normal skin tissue, in a dose-related manner. These results show not only that systemically delivered SGT-53 is well tolerated and exhibits anticancer activity, but also supply evidence of targeted tumor delivery of SGT-53 to metastatic lesions.
Collapse
|
8
|
Hsu JL, Chao CH, Xie X, Hung MC. Advances in Liposome-Based Targeted Gene Therapy of Cancer. RECENT ADVANCES IN CANCER RESEARCH AND THERAPY 2012:113-133. [DOI: 10.1016/b978-0-12-397833-2.00005-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Heidel JD, Davis ME. Clinical developments in nanotechnology for cancer therapy. Pharm Res 2010; 28:187-99. [PMID: 20549313 DOI: 10.1007/s11095-010-0178-7] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 05/19/2010] [Indexed: 11/26/2022]
Abstract
Nanoparticle approaches to drug delivery for cancer offer exciting and potentially "game-changing" ways to improve patient care and quality of life in numerous ways, such as reducing off-target toxicities by more selectively directing drug molecules to intracellular targets of cancer cells. Here, we focus on technologies being investigated clinically and discuss numerous types of therapeutic molecules that have been incorporated within nanostructured entities such as nanoparticles. The impacts of nanostructured therapeutics on efficacy and safety, including parameters like pharmacokinetics and biodistribution, are described for several drug molecules. Additionally, we discuss recent advances in the understanding of ligand-based targeting of nanoparticles, such as on receptor avidity and selectivity.
Collapse
|
10
|
Tarahovsky YS. Cell transfection by DNA-lipid complexes — Lipoplexes. BIOCHEMISTRY (MOSCOW) 2010; 74:1293-304. [DOI: 10.1134/s0006297909120013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Current World Literature. Curr Opin Oncol 2010; 22:70-5. [DOI: 10.1097/cco.0b013e328334b4d9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|