1
|
Han M, Zhu H, Chen X, Luo X. 6-O-endosulfatases in tumor metastasis: heparan sulfate proteoglycans modification and potential therapeutic targets. Am J Cancer Res 2024; 14:897-916. [PMID: 38455409 PMCID: PMC10915330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Metastasis is the leading cause of cancer-associated mortality. Although advances in the targeted treatment and immunotherapy have improved the management of some cancers, the prognosis of metastatic cancers remains unsatisfied. Therefore, the specific mechanisms in tumor metastasis need further investigation. 6-O-endosulfatases (SULFs), comprising sulfatase1 (SULF1) and sulfatase 2 (SULF2), play pivotal roles in the post-synthetic modifications of heparan sulfate proteoglycans (HSPGs). Consequently, these extracellular enzymes can regulate a variety of downstream pathways by modulating HSPGs function. During the past decades, researchers have detected the expression of SULF1 and SULF2 in most cancers and revealed their roles in tumor progression and metastasis. Herein we reviewed the metastasis steps which SULFs participated in, elucidated the specific roles and mechanisms of SULFs in metastasis process, and discussed the effects of SULFs in different types of cancers. Moreover, we summarized the role of targeting SULFs in combination therapy to treat metastatic cancers, which provided some novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Mengzhen Han
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary DiseasesWuhan 430030, Hubei, China
| | - He Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary DiseasesWuhan 430030, Hubei, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary DiseasesWuhan 430030, Hubei, China
| | - Xin Luo
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary DiseasesWuhan 430030, Hubei, China
| |
Collapse
|
2
|
Wang X, Song R, Li X, He K, Ma L, Li Y. Bioinformatics analysis of the genes associated with co-occurrence of heart failure and lung cancer. Exp Biol Med (Maywood) 2023; 248:843-857. [PMID: 37073135 PMCID: PMC10484198 DOI: 10.1177/15353702231162081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/03/2023] [Indexed: 04/20/2023] Open
Abstract
Deaths of non-cardiac causes in patients with heart failure (HF) are on the rise, including lung cancer (LC). However, the common mechanisms behind the two diseases need to be further explored. This study aimed to improve understanding on the co-occurrence of LC and HF. In this study, gene expression profiles of HF (GSE57338) and LC (GSE151101) were comprehensively analyzed using the Gene Expression Omnibus database. Functional annotation, protein-protein interaction network, hub gene identification, and co-expression analysis were proceeded when the co-differentially expressed genes in HF and LC were identified. Among 44 common differentially expressed genes, 17 hub genes were identified to be associated with the co-occurrence of LC and HF; the hub genes were verified in 2 other data sets. Nine genes, including ALOX5, FPR1, ADAMTS15, ALOX5AP, ANPEP, SULF1, C1orf162, VSIG4, and LYVE1 were selected after screening. Functional analysis was performed with particular emphasis on extracellular matrix organization and regulation of leukocyte activation. Our findings suggest that disorders of the immune system could cause the co-occurrence of HF and LC. They also suggest that abnormal activation of extracellular matrix organization, inflammatory response, and other immune signaling pathways are essential in disorders of the immune system. The validated genes provide new perspectives on the common underlying pathophysiology of HF and LC, and may aid further investigation in this field.
Collapse
Affiliation(s)
- Xiaoying Wang
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rui Song
- Xuhui District Center for Disease Prevention and Control, Shanghai 200237, China
| | - Xin Li
- Cardiovascular Medicine Department, East Hospital Affiliated to Tongji University, Shanghai 200120, China
| | - Kai He
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linlin Ma
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Yanfei Li
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
3
|
Mouhoubi N, Bamba-Funck J, Sutton A, Blaise L, Seror O, Ganne-Carrié N, Ziol M, N’Kontchou G, Charnaux N, Nahon P, Nault JC, Guyot E. Sulfatase 2 Along with Syndecan 1 and Glypican 3 Serum Levels are Associated with a Prognostic Value in Patients with Alcoholic Cirrhosis-Related Advanced Hepatocellular Carcinoma. J Hepatocell Carcinoma 2022; 9:1369-1383. [PMID: 36597436 PMCID: PMC9805748 DOI: 10.2147/jhc.s382226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/07/2022] [Indexed: 12/29/2022] Open
Abstract
Purpose Sulfatase 2 (SULF2) is an enzyme related to heparan sulfate modifications. Its expression, as for some heparan sulfate proteoglycans expression, has been linked to hepatocellular carcinoma (HCC) at mRNA level and immunohistochemistry staining on biopsy samples. This study aims to evaluate the prognostic value of serum levels of SULF2 in patients with alcoholic cirrhosis with or without HCC. Patients and Methods Two hundred and eighty-seven patients with alcoholic cirrhosis were enrolled in this study: 164 without HCC, 57 with early HCC, and 66 with advanced HCC at inclusion. We analyzed the association between SULF2 serum levels and prognosis using Kaplan-Meier method and univariate and multivariate analysis using a Cox model. Results Child-Pugh C Patients have higher serum levels of SULF2 than Child-Pugh A patients. Serum levels of SULF2 were also higher in patients with advanced HCC compared with the other groups. In patients with advanced HCC, high serum levels of SULF2 were associated with less favorable overall survival. Combination of SULF2 with Glypican 3 (GPC3) and Syndecan 1 (SDC1) serum levels enhanced the ability to discriminate worst prognostic in advanced HCC. Conclusion SULF2 along with GPC3 and SDC1 serum levels have been shown to be associated with a prognostic value in advanced HCC.
Collapse
Affiliation(s)
- Nesrine Mouhoubi
- Université Sorbonne Paris Nord, Laboratory for VascularTranslational Science, LVTS, INSERM, UMR 1148, Bobigny, F- 93000, France
| | - Jessica Bamba-Funck
- Université Sorbonne Paris Nord, Laboratory for VascularTranslational Science, LVTS, INSERM, UMR 1148, Bobigny, F- 93000, France,Service de biochimie, Hôpital Avicenne, hôpitaux universitaires Paris-Seine-Saint-Denis, Assistance publique Hôpitaux de Paris, Bobigny, F-93000, France
| | - Angela Sutton
- Université Sorbonne Paris Nord, Laboratory for VascularTranslational Science, LVTS, INSERM, UMR 1148, Bobigny, F- 93000, France,Service de biochimie, Hôpital Avicenne, hôpitaux universitaires Paris-Seine-Saint-Denis, Assistance publique Hôpitaux de Paris, Bobigny, F-93000, France
| | - Lorraine Blaise
- Service d’hépatologie, Hôpital Avicenne, AP-HP, hôpitaux universitaires Paris-Seine-Saint-Denis, Assistance publique Hôpitaux de Paris, Bondy, F-93143, France
| | - Olivier Seror
- Service de radiologie, Hôpital Avicenne, hôpitaux universitaires Paris-Seine-Saint-Denis, Assistance publique Hôpitaux de Paris, Bobigny, F-93000, France
| | - Nathalie Ganne-Carrié
- Service d’hépatologie, Hôpital Avicenne, AP-HP, hôpitaux universitaires Paris-Seine-Saint-Denis, Assistance publique Hôpitaux de Paris, Bondy, F-93143, France,Inserm, UMR 1162, Génomique fonctionnelle des tumeUrs solides, Paris, F-75010, France
| | - Marianne Ziol
- Centre de Ressources Biologiques BB-0033-00027, Hôpital Avicenne, hôpitaux universitaires Paris-Seine-Saint-Denis, Assistance publique Hôpitaux de Paris, Bobigny, F-93000, France,Service d’anatomie et cytologie pathologique, Hôpital Avicenne, hôpitaux universitaires Paris-Seine-Saint-Denis, Assistance publique Hôpitaux de Paris, Bobigny, F-93000, France
| | - Gisèle N’Kontchou
- Service d’hépatologie, Hôpital Avicenne, AP-HP, hôpitaux universitaires Paris-Seine-Saint-Denis, Assistance publique Hôpitaux de Paris, Bondy, F-93143, France
| | - Nathalie Charnaux
- Université Sorbonne Paris Nord, Laboratory for VascularTranslational Science, LVTS, INSERM, UMR 1148, Bobigny, F- 93000, France,Service de biochimie, Hôpital Avicenne, hôpitaux universitaires Paris-Seine-Saint-Denis, Assistance publique Hôpitaux de Paris, Bobigny, F-93000, France
| | - Pierre Nahon
- Service d’hépatologie, Hôpital Avicenne, AP-HP, hôpitaux universitaires Paris-Seine-Saint-Denis, Assistance publique Hôpitaux de Paris, Bondy, F-93143, France,Inserm, UMR 1162, Génomique fonctionnelle des tumeUrs solides, Paris, F-75010, France
| | - Jean-Charles Nault
- Service d’hépatologie, Hôpital Avicenne, AP-HP, hôpitaux universitaires Paris-Seine-Saint-Denis, Assistance publique Hôpitaux de Paris, Bondy, F-93143, France,Inserm, UMR 1162, Génomique fonctionnelle des tumeUrs solides, Paris, F-75010, France
| | - Erwan Guyot
- Université Sorbonne Paris Nord, Laboratory for VascularTranslational Science, LVTS, INSERM, UMR 1148, Bobigny, F- 93000, France,Service de biochimie, Hôpital Avicenne, hôpitaux universitaires Paris-Seine-Saint-Denis, Assistance publique Hôpitaux de Paris, Bobigny, F-93000, France,Correspondence: Erwan Guyot, Hôpitaux Universitaires Paris Seine-Saint-Denis, Laboratoire Biochimie-Pharmacologie et Biologie Moléculaire, 125 Rue de Stalingrad, Bobigny, 93000, France, Tel +33 1 48 95 56 29, Fax +33 1 48 95 56 27, Email
| |
Collapse
|
4
|
Critical Overview of Hepatic Factors That Link Non-Alcoholic Fatty Liver Disease and Acute Kidney Injury: Physiology and Therapeutic Implications. Int J Mol Sci 2022; 23:ijms232012464. [PMID: 36293317 PMCID: PMC9604121 DOI: 10.3390/ijms232012464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is defined as a combination of a group of progressive diseases, presenting different structural features of the liver at different stages of the disease. According to epidemiological surveys, as living standards improve, the global prevalence of NAFLD increases. Acute kidney injury (AKI) is a class of clinical conditions characterized by a rapid decline in kidney function. NAFLD and AKI, as major public health diseases with high prevalence and mortality, respectively, worldwide, place a heavy burden on societal healthcare systems. Clinical observations of patients with NAFLD with AKI suggest a possible association between the two diseases. However, little is known about the pathogenic mechanisms linking NAFLD and AKI, and the combination of the diseases is poorly treated. Previous studies have revealed that liver-derived factors are transported to distal organs via circulation, such as the kidney, where they elicit specific effects. Of note, while NAFLD affects the expression of many hepatic factors, studies on the mechanisms whereby NAFLD mediates the generation of hepatic factors that lead to AKI are lacking. Considering the unique positioning of hepatic factors in coordinating systemic energy metabolism and maintaining energy homeostasis, we hypothesize that the effects of NAFLD are not only limited to the structural and functional changes in the liver but may also involve the entire body via the hepatic factors, e.g., playing an important role in the development of AKI. This raises the question of whether analogs of beneficial hepatic factors or inhibitors of detrimental hepatic factors could be used as a treatment for NAFLD-mediated and hepatic factor-driven AKI or other metabolic disorders. Accordingly, in this review, we describe the systemic effects of several types of hepatic factors, with a particular focus on the possible link between hepatic factors whose expression is altered under NAFLD and AKI. We also summarize the role of some key hepatic factors in metabolic control mechanisms and discuss their possible use as a preventive treatment for the progression of metabolic diseases.
Collapse
|
5
|
Guizhen Z, Guanchang J, Liwen L, Huifen W, Zhigang R, Ranran S, Zujiang Y. The tumor microenvironment of hepatocellular carcinoma and its targeting strategy by CAR-T cell immunotherapy. Front Endocrinol (Lausanne) 2022; 13:918869. [PMID: 36093115 PMCID: PMC9452721 DOI: 10.3389/fendo.2022.918869] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/05/2022] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the major subtype of liver cancer, which ranks sixth in cancer incidence and third in mortality. Although great strides have been made in novel therapy for HCC, such as immunotherapy, the prognosis remains less than satisfactory. Increasing evidence demonstrates that the tumor immune microenvironment (TME) exerts a significant role in the evolution of HCC and has a non-negligible impact on the efficacy of HCC treatment. In the past two decades, the success in hematological malignancies made by chimeric antigen receptor-modified T (CAR-T) cell therapy leveraging it holds great promise for cancer treatment. However, in the face of a hostile TME in solid tumors like HCC, the efficacy of CAR-T cells will be greatly compromised. Here, we provide an overview of TME features in HCC, discuss recent advances and challenges of CAR-T immunotherapy in HCC.
Collapse
Affiliation(s)
- Zhang Guizhen
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Presion Medicine Cencter Gene Hospital of Henan Province, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ji Guanchang
- Department of Urology People’s Hospital of Puyang, Puyang, China
| | - Liu Liwen
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Presion Medicine Cencter Gene Hospital of Henan Province, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wang Huifen
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Presion Medicine Cencter Gene Hospital of Henan Province, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ren Zhigang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sun Ranran
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Zujiang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Presion Medicine Cencter Gene Hospital of Henan Province, Zhengzhou, China
| |
Collapse
|
6
|
Sulfatase-2 Regulates Liver Fibrosis through the TGF-β Signaling Pathway. Cancers (Basel) 2021; 13:cancers13215279. [PMID: 34771445 PMCID: PMC8582359 DOI: 10.3390/cancers13215279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/07/2021] [Accepted: 09/26/2021] [Indexed: 02/05/2023] Open
Abstract
Transforming growth factor-β (TGF-β) activates hepatic stellate cells (HSCs), which drive liver fibrosis via the production and deposition of extracellular matrix (ECM). We aimed to elucidate the mechanistic role of sulfatase-2 (SULF2) in liver fibrosis. To this end, we induced liver fibrosis in wild-type (WT) and SULF2 knockout (Sulf2-KO) mice (6-8 weeks-old) via bile duct ligation (BDL), intraperitoneal injection of carbon tetrachloride (CCl4) or thioacetamide (TAA). The levels of fibrosis in the liver sections were assessed via Sirius red and Masson's trichrome staining, immunohistochemistry and immunoblotting for α-smooth muscle actin (α-SMA) and hydroxyproline. To evaluate the interaction between TGF-β and SULF2, we transfected human HSCs with scrambled control shRNA and shRNA constructs targeting SULF2 and measured α-SMA expression following treatment with TGF-β1 ligand. We show here that knockout of SULF2 significantly decreases collagen content, as well as bands of bridging fibrosis, as demonstrated by Sirius red, Masson's trichrome and α-SMA staining after BDL, CCl4 and TAA injection in Sulf2-KO versus WT mice. In all three models of liver fibrosis, we observed significantly lower levels of hydroxyproline in the Sulf2-KO mice compared to the WT mice. HSCs with reduced levels of SULF2 failed to significantly express α-SMA and collagen type I following treatment with TGF-β1. Furthermore, SULF2 co-localizes with TGFBR3 and the in vitro knockdown of SULF2 in HSCs decreases the release of TGF-β1 from TGFBR3. Together, these data suggest that SULF2 regulates liver fibrosis via the TGF-β signaling pathway. Pharmacologic inhibition of SULF2 may represent a novel therapeutic approach to improve liver fibrosis.
Collapse
|
7
|
Alshehri MA, Alshehri MM, Albalawi NN, Al-Ghamdi MA, Al-Gayyar MMH. Heparan sulfate proteoglycans and their modification as promising anticancer targets in hepatocellular carcinoma. Oncol Lett 2021; 21:173. [PMID: 33552290 PMCID: PMC7798035 DOI: 10.3892/ol.2021.12434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common types of primary liver cancer. Despite advancements in the treatment strategies of HCC, there is an urgent requirement to identify and develop novel therapeutic drugs that do not lead to resistance. These novel agents should have the potential to influence the primary mechanisms participating in the pathogenesis of HCC. Heparan sulfate proteoglycans (HSPGs) are major elements of the extracellular matrix that perform structural and signaling functions. HSPGs protect against invasion of tumor cells by preventing cell infiltration and intercellular adhesion. Several enzymes, such as heparanase, matrix metalloproteinase-9 and sulfatase-2, have been reported to affect HSPGs, leading to their degradation and thus enhancing tumor invasion. In addition, some compounds that are produced from the degradation of HSPGs, including glypican-3 and syndecan-1, enhance tumor progression. Thus, the identification of enzymes that affect HSPGs or their degradation products in HCC may lead to the development of novel therapeutic targets. The present review discusses the main enzymes and compounds associated with HSPGs, and their involvement with the pathogenicity of HCC.
Collapse
Affiliation(s)
- Mohammed A Alshehri
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Moath M Alshehri
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Naif N Albalawi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Moshari A Al-Ghamdi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohammed M H Al-Gayyar
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia.,Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
8
|
Shih TC, Wang L, Wang HC, Wan YJY. Glypican-3: A molecular marker for the detection and treatment of hepatocellular carcinoma ☆. LIVER RESEARCH 2020; 4:168-172. [PMID: 33384879 PMCID: PMC7771890 DOI: 10.1016/j.livres.2020.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor with a fairly poor prognosis (5-year survival of less than 50%). Using sorafenib, the only food and drug administration (FDA)-approved drug, HCC cannot be effectively treated; it can only be controlled at most for a couple of months. There is a great need to develop efficacious treatment against this debilitating disease. Glypican-3 (GPC3), a member of the glypican family that attaches to the cell surface by a glycosylphosphatidylinositol anchor, is overexpressed in HCC cases and is elevated in the serum of a large proportion of patients with HCC. GPC3 expression contributes to HCC growth and metastasis. Furthermore, several different types of antibodies targeting GPC3 have been developed. The aim of this review is to summarize the current literatures on the GPC3 expression in human HCC, molecular mechanisms of GPC3 regulation and antibodies targeting GPC3.
Collapse
Affiliation(s)
- Tsung-Chieh Shih
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, USA
| | - Lijun Wang
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA, USA
| | - Hsiao-Chi Wang
- Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA, USA,Corresponding author. Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA, USA. (Y.-J.Y. Wan)
| |
Collapse
|
9
|
Kim TH, Banini BA, Asumda FZ, Campbell NA, Hu C, Moser CD, Shire AM, Han S, Ma C, Krishnan A, Mounajjed T, White TA, Gores GJ, LeBrasseur NK, Charlton MR, Roberts LR. Knockout of sulfatase 2 is associated with decreased steatohepatitis and fibrosis in a mouse model of nonalcoholic fatty liver disease. Am J Physiol Gastrointest Liver Physiol 2020; 319:G333-G344. [PMID: 32683952 PMCID: PMC7509257 DOI: 10.1152/ajpgi.00150.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sulfatase 2 (SULF2) is a heparan sulfate editing enzyme that regulates the milieu of growth factors and cytokines involved in a variety of cellular processes. We used a murine model of diet-induced steatohepatitis to assess the effect of SULF2 downregulation on the development of nonalcoholic steatohepatitis (NASH) and liver fibrosis. Wild-type B6;129 mice (WT) and Sulf2-knockout B6;129P2-SULF2Gt(PST111)Byg mice (Sulf2-KO) were fed a fast-food diet (FFD) rich in saturated fats, cholesterol, and fructose or a standard chow diet (SC) ad libitum for 9 mo. WT mice on FFD showed a threefold increase in hepatic Sulf2 mRNA expression, and a 2.2-fold increase in hepatic SULF2 protein expression compared with WT mice on SC. Knockout of Sulf2 led to a significant decrease in diet-mediated weight gain and dyslipidemia compared with WT mice on FFD. Knockout of Sulf2 also abrogated diet-induced steatohepatitis and hepatic fibrosis compared with WT mice on FFD. Furthermore, expression levels of the profibrogenic receptors TGFβR2 and PDGFRβ were significantly decreased in Sulf2-KO mice compared with WT mice on FFD. Together, our data suggest that knockout of Sulf2 significantly downregulates dyslipidemia, steatohepatitis, and hepatic fibrosis in a diet-induced mouse model of NAFLD, suggesting that targeting of SULF2 signaling may be a potential therapeutic mechanism in NASH.NEW & NOTEWORTHY We report for the first time that in wild-type (WT) mice, fast-food diet (FFD) induced a threefold increase in hepatic Sulf2 mRNA and a 2.2-fold increase in sulfatase 2 (SULF2) protein expression compared with WT mice on standard chow diet (SC). We showed that knockout of SULF2 ameliorates FFD-induced obesity, hyperlipidemia, steatohepatitis, and fibrosis. These data, along with work from other laboratories, suggest that SULF2 may be critical to the ability of the liver to progress to nonalcoholic steatohepatitis and fibrosis in conditions of overnutrition.
Collapse
Affiliation(s)
- Tae Hyo Kim
- 1Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, and Mayo Clinic Cancer Center, Rochester, Minnesota,2Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju, South Korea
| | - Bubu A. Banini
- 1Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, and Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Faizal Z. Asumda
- 3Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Nellie A. Campbell
- 1Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, and Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Chunling Hu
- 1Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, and Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Catherine D. Moser
- 1Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, and Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Abdirashid M. Shire
- 1Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, and Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Shaoshan Han
- 1Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, and Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Chenchao Ma
- 1Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, and Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Anuradha Krishnan
- 1Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, and Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Taofic Mounajjed
- 4Division of Anatomic Pathology, Mayo Clinic College of Medicine and Science, and Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Thomas A. White
- 5Robert & Arlene Kogod Center on Aging, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Gregory J. Gores
- 1Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, and Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Nathan K. LeBrasseur
- 4Division of Anatomic Pathology, Mayo Clinic College of Medicine and Science, and Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Michael R. Charlton
- 1Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, and Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Lewis Rowland Roberts
- 1Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, and Mayo Clinic Cancer Center, Rochester, Minnesota
| |
Collapse
|
10
|
Carr RM, Romecin Duran PA, Tolosa EJ, Ma C, Oseini AM, Moser CD, Banini BA, Huang J, Asumda F, Dhanasekaran R, Graham RP, Toruner MD, Safgren SL, Almada LL, Wang S, Patnaik MM, Roberts LR, Fernandez-Zapico ME. The extracellular sulfatase SULF2 promotes liver tumorigenesis by stimulating assembly of a promoter-looping GLI1-STAT3 transcriptional complex. J Biol Chem 2020; 295:2698-2712. [PMID: 31988246 DOI: 10.1074/jbc.ra119.011146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/11/2020] [Indexed: 12/15/2022] Open
Abstract
The expression of the extracellular sulfatase SULF2 has been associated with increased hepatocellular carcinoma (HCC) growth and poor patient survival. However, the molecular mechanisms underlying SULF2-associated tumor growth remain unclear. To address this gap, here we developed a transgenic mouse overexpressing Sulf2 in hepatocytes under the control of the transthyretin promoter. In this model, Sulf2 overexpression potentiated diethylnitrosamine-induced HCC. Further analysis indicated that the transcription factor GLI family zinc finger 1 (GLI1) mediates Sulf2 expression during HCC development. A cross of the Sulf2-overexpressing with Gli1-knockout mice revealed that Gli1 inactivation impairs SULF2-induced HCC. Transcriptomic analysis revealed that Sulf2 overexpression is associated with signal transducer and activator of transcription 3 (STAT3)-specific gene signatures. Interestingly, the Gli1 knockout abrogated SULF2-mediated induction of several STAT3 target genes, including suppressor of cytokine signaling 2/3 (Socs2/3); Pim-1 proto-oncogene, Ser/Thr kinase (Pim1); and Fms-related tyrosine kinase 4 (Flt4). Human orthologs were similarly regulated by SULF2, dependent on intact GLI1 and STAT3 functions in HCC cells. SULF2 overexpression promoted a GLI1-STAT3 interaction and increased GLI1 and STAT3 enrichment at the promoters of their target genes. Interestingly, the SULF2 overexpression resulted in GLI1 enrichment at select STAT3 consensus sites, and vice versa. siRNA-mediated STAT3 or GLI1 knockdown reduced promoter binding of GLI1 and STAT3, respectively. Finally, chromatin-capture PCR confirmed long-range co-regulation of SOCS2 and FLT3 through changes in promoter conformation. These findings define a mechanism whereby SULF2 drives HCC by stimulating formation of a GLI1-STAT3 transcriptional complex.
Collapse
Affiliation(s)
- Ryan M Carr
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota 55902
| | | | - Ezequiel J Tolosa
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota 55902
| | - Chenchao Ma
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55902
| | - Abdul M Oseini
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55902
| | - Catherine D Moser
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55902
| | - Bubu A Banini
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55902
| | - Jianbo Huang
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55902
| | - Faizal Asumda
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55902
| | - Renumathy Dhanasekaran
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55902
| | - Rondell P Graham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55902
| | - Merih D Toruner
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota 55902
| | - Stephanie L Safgren
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota 55902
| | - Luciana L Almada
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota 55902
| | - Shaoqing Wang
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55902
| | - Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55902.
| | | |
Collapse
|
11
|
Ouyang Q, Liu Y, Tan J, Li J, Yang D, Zeng F, Huang W, Kong Y, Liu Z, Zhou H, Liu Y. Loss of ZNF587B and SULF1 contributed to cisplatin resistance in ovarian cancer cell lines based on Genome-scale CRISPR/Cas9 screening. Am J Cancer Res 2019; 9:988-998. [PMID: 31218106 PMCID: PMC6556596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023] Open
Abstract
Ovarian cancer is one of the most lethal malignancies of the female reproductive system. Platinum-resistance is the major obstacle in the successful treatment of ovarian cancer. Previous studies largely failed to identify the key genes associated with platinum-resistance by using candidate genes testing, bioinformatic analysis and GWAS method. The aim of the study was to utilize the whole human Genome-scale CRISPR-Cas9 knockout (GeCKO) library to screen for novel genes involved in cisplatin resistance in ovarian cancer cell lines. The GeCKO library targeted 19052 genes with 122417 unique guide sequences. Six candidate genes had been screened out including one previously validated gene SULF1 and five novel genes ZNF587B, TADA1, SEMA4G, POTEC and USP17L20. After validated by CCK-8 and RT-PCR analysis, two genes (ZNF587B and SULF1) were discovered to be involved in cisplatin resistance. ZNF587B may serve as a new biomarker for predicting cisplatin resistance.
Collapse
Affiliation(s)
- Qianying Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University87 Xiangya Road, Changsha 410008, Hunan, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics110 Xiangya Road, Changsha 410078, Hunan, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education110 Xiangya Road, Changsha 410078, Hunan, P. R. China
- National Clinical Research Center for Geriatric Disorders87 Xiangya Road, Changsha 410008, Hunan, P. R. China
| | - Yujie Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University87 Xiangya Road, Changsha 410008, Hunan, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics110 Xiangya Road, Changsha 410078, Hunan, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education110 Xiangya Road, Changsha 410078, Hunan, P. R. China
- National Clinical Research Center for Geriatric Disorders87 Xiangya Road, Changsha 410008, Hunan, P. R. China
| | - Jieqiong Tan
- Center for Medical Genetics and School of Life Science, Central South UniversityChangsha 410008, Hunan, P. R. China
| | - Jie Li
- Center for Medical Genetics and School of Life Science, Central South UniversityChangsha 410008, Hunan, P. R. China
| | - Dawei Yang
- Center for Medical Genetics and School of Life Science, Central South UniversityChangsha 410008, Hunan, P. R. China
| | - Feiyue Zeng
- Department of Radiology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
| | - Weihua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University87 Xiangya Road, Changsha 410008, Hunan, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics110 Xiangya Road, Changsha 410078, Hunan, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education110 Xiangya Road, Changsha 410078, Hunan, P. R. China
- National Clinical Research Center for Geriatric Disorders87 Xiangya Road, Changsha 410008, Hunan, P. R. China
| | - Yi Kong
- Hunan Provincial Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School of Central South UniversityChangsha 410013, Hunan, P. R. China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University87 Xiangya Road, Changsha 410008, Hunan, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics110 Xiangya Road, Changsha 410078, Hunan, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education110 Xiangya Road, Changsha 410078, Hunan, P. R. China
- National Clinical Research Center for Geriatric Disorders87 Xiangya Road, Changsha 410008, Hunan, P. R. China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University87 Xiangya Road, Changsha 410008, Hunan, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics110 Xiangya Road, Changsha 410078, Hunan, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education110 Xiangya Road, Changsha 410078, Hunan, P. R. China
- National Clinical Research Center for Geriatric Disorders87 Xiangya Road, Changsha 410008, Hunan, P. R. China
| | - Yingzi Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University87 Xiangya Road, Changsha 410008, Hunan, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics110 Xiangya Road, Changsha 410078, Hunan, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education110 Xiangya Road, Changsha 410078, Hunan, P. R. China
- National Clinical Research Center for Geriatric Disorders87 Xiangya Road, Changsha 410008, Hunan, P. R. China
| |
Collapse
|
12
|
Jung CH, Ho JN, Park JK, Kim EM, Hwang SG, Um HD. Involvement of SULF2 in y-irradiation-induced invasion and resistance of cancer cells by inducing IL-6 expression. Oncotarget 2017; 7:16090-103. [PMID: 26895473 PMCID: PMC4941299 DOI: 10.18632/oncotarget.7449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/05/2016] [Indexed: 11/25/2022] Open
Abstract
Cancer cells that survive radiotherapy often display enhanced invasiveness and resistance to death stimuli. Previous findings have suggested that ionizing radiation (IR) induces such undesirable effects by stimulating the STAT3/Bcl-XL pathway. To identify novel cellular components that mediate these actions of IR, we irradiated lung cancer cells with sublethal doses of y-rays and screened for the induction of IR-responsive genes by microarray analysis. The genes encoding 2 extracellular proteins, SULF2 and IL-6, were found to be upregulated, and these results were confirmed by polymerase chain reactions and western blot analyses. Because the IR-mediated induction of SULF2 was a novel finding, we also confirmed the phenomenon in vivo using xenograft tumors in mice. Analyses of signaling processes revealed that IR induced SULF2 expression via p53, which then promoted IL-6 expression by stabilizing β-catenin, followed by stimulation of the STAT3/Bcl-XL pathway. Consistently, both SULF2 and IL-6 mediated IR-induced invasion and resistance to death stimuli. To investigate whether SULF2 contributes to IR-induced tumor metastasis, we irradiated tumors in mice with sublethal doses of IR. This treatment promoted the entry of tumor cells into the blood stream (intravasation), which was abolished by downregulating SULF2 expression in tumor cells. These results demonstrated that SULF2 can mediate the detrimental effects of IR in vivo. Therefore, SULF2 may be potentially used as a therapeutic and diagnostic target to predict and overcome the malignant effects of IR, particularly in tumors expressing p53 wild-type.
Collapse
Affiliation(s)
- Chan-Hun Jung
- Division of Radiation Cancer Biology, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea
| | - Jin-Nyoung Ho
- Division of Radiation Cancer Biology, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea.,Present address: Biomedical Research Institute, Department of Urology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea
| | - Jong Kuk Park
- Division of Radiation Cancer Biology, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea
| | - Eun Mi Kim
- Division of Radiation Cancer Biology, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea
| | - Sang-Gu Hwang
- Division of Radiation Cancer Biology, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea
| | - Hong-Duck Um
- Division of Radiation Cancer Biology, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea
| |
Collapse
|
13
|
Roberts RO, Kang YN, Hu C, Moser CD, Wang S, Moore MJ, Graham RP, Lai JP, Petersen RC, Roberts LR. Decreased Expression of Sulfatase 2 in the Brains of Alzheimer's Disease Patients: Implications for Regulation of Neuronal Cell Signaling. J Alzheimers Dis Rep 2017; 1:115-124. [PMID: 30035253 PMCID: PMC6052874 DOI: 10.3233/adr-170028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Background: The human sulfatase 1 (SULF1) and sulfatase 2 (SULF2) genes modulate cell signaling and homeostasis in many tissues. Gene expression analyses have implicated SULF2 in disease pathogenesis, including Alzheimer’s disease (AD), but changes in brain SULF2 expression have not been directly established. Objective: To investigate the expression of SULF1 and SULF2 in brain tissues from AD cases and cognitively normal controls. Methods: Autopsy tissue from AD cases (n = 20) and age-and gender-matched cognitively normal controls (n = 20) were identified from the Mayo Clinic Alzheimer’s Disease Patient Registry neuropathology database. Tissue slides were stained for SULF1 and SULF2 protein expression in the hippocampus and frontal lobe and an expression score computed from the proportion of cells stained and the intensity of staining (range 0 [no expression] to 9 [marked expression]). Results: SULF2 expression was reduced in AD cases. Compared to cognitively normal controls, SULF2 expression in AD cases was significantly decreased in the hippocampal Cornu Ammonis (CA) (mean score of 6.5 in cases versus 8.3 in controls; p = 0.003), in the gray matter of the parahippocampal gyrus (5.6 in cases versus 7.6 in controls; p = 0.003), and in the frontal lobe gray matter (5.4 in cases versus 7.4 in controls; p = 0.002). There was no difference in SULF1 expression in the hippocampus or frontal lobe of AD cases and controls. As expected there were no differences in SULF1 or SULF2 expression in white matter in AD cases compared to cognitively normal controls. Conclusion: Decreased SULF2 in specific regions of the brain occurs in AD.
Collapse
Affiliation(s)
- Rosebud O Roberts
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA.,Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Yoo Na Kang
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.,Department of Pathology, Keimyung University, Daegu, South Korea
| | - Chunling Hu
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Catherine D Moser
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Shaoqing Wang
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Michael J Moore
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Rondell P Graham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Jin-Ping Lai
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Ronald C Petersen
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA.,Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
14
|
Zhou F, Shang W, Yu X, Tian J. Glypican-3: A promising biomarker for hepatocellular carcinoma diagnosis and treatment. Med Res Rev 2017. [PMID: 28621802 DOI: 10.1002/med.21455] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Liver cancer is the second leading cause of cancer-related deaths, and hepatocellular carcinoma (HCC) is the most common type. Therefore, molecular targets are urgently required for the early detection of HCC and the development of novel therapeutic approaches. Glypican-3 (GPC3), an oncofetal proteoglycan anchored to the cell membrane, is normally detected in the fetal liver but not in the healthy adult liver. However, in HCC patients, GPC3 is overexpressed at both the gene and protein levels, and its expression predicts a poor prognosis. Mechanistic studies have revealed that GPC3 functions in HCC progression by binding to molecules such as Wnt signaling proteins and growth factors. Moreover, GPC3 has been used as a target for molecular imaging and therapeutic intervention in HCC. To date, GPC3-targeted magnetic resonance imaging, positron emission tomography, and near-infrared imaging have been investigated for early HCC detection, and various immunotherapeutic protocols targeting GPC3 have been developed, including the use of humanized anti-GPC3 cytotoxic antibodies, treatment with peptide/DNA vaccines, immunotoxin therapies, and genetic therapies. In this review, we summarize the current knowledge regarding the structure, function, and biology of GPC3 with a focus on its clinical potential as a diagnostic molecule and a therapeutic target in HCC immunotherapy.
Collapse
Affiliation(s)
- Fubo Zhou
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, 100853, China
| | - Wenting Shang
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaoling Yu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
15
|
Pascale RM, Calvisi DF, Feo F. Sulfatase 1: a new Jekyll and Hyde in hepatocellular carcinoma? Transl Gastroenterol Hepatol 2016; 1:43. [PMID: 28138610 DOI: 10.21037/tgh.2016.05.04] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 04/18/2016] [Indexed: 12/31/2022] Open
Affiliation(s)
- Rosa M Pascale
- Division of Experimental Pathology and Oncology, Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Diego F Calvisi
- Division of Experimental Pathology and Oncology, Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Francesco Feo
- Division of Experimental Pathology and Oncology, Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| |
Collapse
|
16
|
Graham K, Murphy JI, Dhoot GK. SULF1/SULF2 reactivation during liver damage and tumour growth. Histochem Cell Biol 2016; 146:85-97. [PMID: 27013228 DOI: 10.1007/s00418-016-1425-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2016] [Indexed: 12/29/2022]
Abstract
Both SULF1 and SULF2 enzymes are undetectable in normal adult liver tissue despite their high level expression during foetal development. Most hepatocellular carcinomas unlike the normal adult liver, however, express variable levels of these enzymes with a small proportion not expressing either SULF1 or SULF2. SULF1 expression, however, is not restricted to only foetal and tumour tissues but is also abundant in liver tissues undergoing injury-induced tissue regeneration as we observed during fatty liver degeneration, chronic hepatitis and cirrhosis. Unlike SULF1, the level of SULF2 activation during injury-induced regeneration, however, is much lower when compared to foetal or tumour growth. Although a small fraction of liver tumours and some liver tumour cell lines can grow in the absence of Sulf1 and/or Sulf2, the in vitro overexpression of these genes further confirms their growth-promoting effect while transient reduction in their levels by neutralisation antibodies reduces growth. Hedgehog signalling appeared to regulate the growth of both Hep3B and PRF5 cell lines since cyclopamine demonstrated a marked inhibitory effect while sonic hedgehog (SHH) overexpression promoted growth. All Sulf isoforms promoted SHH-induced growth although the level of increase in PRF5 cell line was higher with both Sulf2 variants than Sulf1. In addition to promoting growth, the Sulf variants, particularly the shorter Sulf2 variant, markedly promoted PRF5 cell migration in a scratch assay. The SULF1/SULF2 activation thus does not only promote regulated foetal growth and injury-induced liver regeneration but also dysregulated tumour growth.
Collapse
Affiliation(s)
- Kurtis Graham
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
| | - Joshua I Murphy
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
| | - Gurtej K Dhoot
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK.
| |
Collapse
|
17
|
Gnoni A, Santini D, Scartozzi M, Russo A, Licchetta A, Palmieri V, Lupo L, Faloppi L, Palasciano G, Memeo V, Angarano G, Brunetti O, Guarini A, Pisconti S, Lorusso V, Silvestris N. Hepatocellular carcinoma treatment over sorafenib: epigenetics, microRNAs and microenvironment. Is there a light at the end of the tunnel? Expert Opin Ther Targets 2015. [PMID: 26212068 DOI: 10.1517/14728222.2015.1071354] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Sorafenib is currently the only approved therapy in hepatocellular carcinoma (HCC). Alternative first- and second-line treatments are a significant unmet medical need, and several biologic agents have been tested in recent years, with poor results. Therefore, angiogenic pathways and the cytokine cascade remain possible targets in HCC. Recent studies suggest a role of epigenetic processes, associated with the initiation and development of HCC. In this field, DNA methylation, micro-RNAs (miRNAs) and tumor microenvironment cells became a possible new target for HCC treatment. AREAS COVERED This review explains the possible role of DNA methylation and histone deacetylase inhibitors as predictive biomarkers and target therapy, the extensive world of the promising miRNA blockade strategy, and the recent strong evidence of correlation between HCC tumors and peritumoral stroma cells. The literature and preclinic/clinic data were obtained through an electronic search. EXPERT OPINION Future research should aim to understand how best to identify patient groups that would benefit most from the prescribed therapy. To overcome the 'therapeutic stranding' of HCC, a possible way out from the current therapeutic tunnel might be to evaluate the major epigenetic and genetic processes involved in HCC carcinogenesis, not underestimating the tumor microenvironment and its 'actors' (angiogenesis, immune system, platelets). We are only at the start of a long journey towards the elucidation of HCC molecular pathways as therapeutic targets. Yet, currently this path appears to be the only one to cast some light at the end of the tunnel.
Collapse
Affiliation(s)
- Antonio Gnoni
- a 1 Hospital of Taranto, Medical Oncology Unit , Taranto, Italy
| | - Daniele Santini
- b 2 University Campus Biomedico, Medical Oncology Unit , Rome, Italy
| | - Mario Scartozzi
- c 3 University of Cagliari, Medical Oncology Unit , Cagliari, Italy
| | - Antonio Russo
- d 4 University of Palermo, Medical Oncology Unit , Palermo, Italy
| | | | - Vincenzo Palmieri
- e 5 University of Bari, Department of Biomedical Sciences and Human Oncology, Clinica Medica "A. Murri" , Bari, Italy
| | - Luigi Lupo
- f 6 University of Bari, Institute of General Surgery and Liver Transplantation, Department of Emergency and Organ Transplantation , Bari, Italy
| | - Luca Faloppi
- g 7 Polytechnic University of the Marche, Medical Oncology Unit , Ancona, Italy
| | - Giuseppe Palasciano
- e 5 University of Bari, Department of Biomedical Sciences and Human Oncology, Clinica Medica "A. Murri" , Bari, Italy
| | - Vincenzo Memeo
- f 6 University of Bari, Institute of General Surgery and Liver Transplantation, Department of Emergency and Organ Transplantation , Bari, Italy
| | | | - Oronzo Brunetti
- i 9 National Cancer Research Centre "Giovanni Paolo II", Medical Oncology Unit , Viale Orazio Flacco, 65, 70124 Bari, Italy +39 080 555 5419 ; +39 080 555 5419 ;
| | - Attilio Guarini
- j 10 National Cancer Research Centre "Giovanni Paolo II", Medical Ematology Unit , Bari, Italy
| | | | - Vito Lorusso
- i 9 National Cancer Research Centre "Giovanni Paolo II", Medical Oncology Unit , Viale Orazio Flacco, 65, 70124 Bari, Italy +39 080 555 5419 ; +39 080 555 5419 ;
| | - Nicola Silvestris
- i 9 National Cancer Research Centre "Giovanni Paolo II", Medical Oncology Unit , Viale Orazio Flacco, 65, 70124 Bari, Italy +39 080 555 5419 ; +39 080 555 5419 ;
| |
Collapse
|
18
|
Elewa MAF, Al-Gayyar MM, Schaalan MF, Abd El Galil KH, Ebrahim MA, El-Shishtawy MM. Hepatoprotective and anti-tumor effects of targeting MMP-9 in hepatocellular carcinoma and its relation to vascular invasion markers. Clin Exp Metastasis 2015; 32:479-93. [PMID: 25999065 DOI: 10.1007/s10585-015-9721-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 04/27/2015] [Indexed: 12/21/2022]
Abstract
The current study aims to evaluate the hepatoprotective and antitumor efficacy of doxycycline, as an matrix metalloproteases-9 (MMP-9) inhibitor, in an in vivo model of hepatocellular carcinoma (HCC). HCC was induced experimentally by thiocetamide (200 mg/kg) in rats that were treated with doxycycline (5 mg/kg for 16 weeks). Tumor severity was evaluated by measuring α-fetoprotein (AFP) levels, histopathologically by investigating liver sections stained with hematoxylin/eosin and assessing the survival rate. Liver homogenates were used for the measurements of MMP-9, fascin and hepatic heparan sulfate proteoglycan (HSPG) levels. Oxidative stress markers [malonaldehyde (MDA) and glutathione] as well as fibroblast growth factor-2 (FGF-2) gene expression were also among the assessed indicators. HCC in human and animal samples showed significant elevation in the levels of MMP-9 (231.7, 90 %), fascin (33.17, 140 %), as well as FGF-2 gene expression (342 % in animal samples; all respectively), associated with a significant decrease in hepatic HSPG level. Treatment of rats with doxycycline increased the animal survival rate (90 %) and decreased serum AFP level. Moreover, doxycycline ameliorated fibrosis and the induced massive hepatic tissue breakdown. It also restored the integrity of hepatic HSPGs and showed a magnificent inhibitory effect of tumor invasion cascade by significantly reducing the activities of MMP-9 (42 %) and fascin (50 %), as well as reducing the gene expression of FGF-2 (85.7 %). Furthermore, the antioxidant impact of doxycycline was evidenced by the significant elevation in glutathione level and depressing MDA level. To this end, doxycycline, proved promising hepatoprotective and antitumor activity and opens, thereby, a new horizon against vascular migration ability of the tumor cells.
Collapse
Affiliation(s)
- Mohammed A F Elewa
- Dept. of Pharmacy Practice and Clinical Pharmacy, Faculty of Pharmacy, Misr International University, 28km Cairo-Ismailia Road, Cairo, 18111, Egypt,
| | | | | | | | | | | |
Collapse
|
19
|
Shire A, Lomberk G, Lai JP, Zou H, Tsuchiya N, Aderca I, Moser CD, Gulaid KH, Oseini A, Hu C, Warsame O, Jenkins RB, Roberts LR. Restoration of epigenetically silenced SULF1 expression by 5-aza-2-deoxycytidine sensitizes hepatocellular carcinoma cells to chemotherapy-induced apoptosis. ACTA ACUST UNITED AC 2015; 3:1-18. [PMID: 26236329 PMCID: PMC4520440 DOI: 10.1159/000375461] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is the second most frequent cause of cancer death worldwide. Sulfatase 1 (SULF1) functions as a tumor suppressor in HCC cell lines in vitro but also has an oncogenic effect in some HCCs in vivo. Aim The purpose of this study was to examine the mechanisms regulating SULF1 and its function in HCC. Methods First, SULF1 mRNA and protein expression were examined. Second, we examined SULF1 gene copy numbers in HCC cells. Third, we assessed whether DNA methylation or methylation and/or acetylation of histone marks on the promoter regulate SULF1 expression. Finally, we examined the effect of 5-aza-2′-deoxycytidine (5-Aza-dC) on sulfatase activity and drug-induced apoptosis. Results SULF1 mRNA was downregulated in nine of eleven HCC cell lines, but only in six of ten primary tumors. SULF1 mRNA correlated with protein expression. Gene copy number assessment by fluorescence in situ hybridization showed intact SULF1 alleles in low-SULF1-expressing cell lines. CpG island methylation in the SULF1 promoter and two downstream CpG islands did not show an inverse correlation between DNA methylation and SULF1 expression. However, chromatin immunoprecipitation showed that the SULF1 promoter acquires a silenced chromatin state in low-SULF1-expressing cells through an increase in di/trimethyl-K9H3 and trimethyl-K27H3 and a concomitant loss of activating acetyl K9, K14H3 marks. 5-Aza-dC restored SULF1 mRNA expression in SULF1-negative cell lines, with an associated increase in sulfatase activity and sensitization of HCC cells to cisplatin-induced apoptosis. Conclusion SULF1 gene silencing in HCC occurs through histone modifications on the SULF1 promoter. Restoration of SULF1 mRNA expression by 5-Aza-dC sensitized HCC cells to drug-induced apoptosis.
Collapse
Affiliation(s)
- Abdirashid Shire
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN, 55905 USA
| | - Gwen Lomberk
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN, 55905 USA
| | - Jin-Ping Lai
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN, 55905 USA
| | - Hongzhi Zou
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN 55905 USA
| | - Norihiko Tsuchiya
- Department of Urology, Akita University School of Medicine, Akita 010-8543 Japan
| | - Ileana Aderca
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN, 55905 USA
| | - Catherine D Moser
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN, 55905 USA
| | - Kadra H Gulaid
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN, 55905 USA
| | - Abdul Oseini
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN, 55905 USA
| | - Chunling Hu
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN, 55905 USA
| | - Omar Warsame
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN, 55905 USA
| | - Robert B Jenkins
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology College of Medicine, Mayo Clinic, Rochester, MN 55905 USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN, 55905 USA
| |
Collapse
|
20
|
Dhanasekaran R, Nakamura I, Hu C, Chen G, Oseini AM, Seven ES, Miamen AG, Moser CD, Zhou W, van Kuppevelt TH, van Deursen J, Mounajjed T, Fernandez-Zapico ME, Roberts LR. Activation of the transforming growth factor-β/SMAD transcriptional pathway underlies a novel tumor-promoting role of sulfatase 1 in hepatocellular carcinoma. Hepatology 2015; 61:1269-83. [PMID: 25503294 PMCID: PMC4376661 DOI: 10.1002/hep.27658] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 12/06/2014] [Indexed: 01/13/2023]
Abstract
UNLABELLED In vitro studies have proposed a tumor suppressor role for sulfatase 1 (SULF1) in hepatocellular carcinoma (HCC); however, high expression in human HCC has been associated with poor prognosis. The reason underlying this paradoxical observation remains to be explored. Using a transgenic (Tg) mouse model overexpressing Sulf1 (Sulf1-Tg), we assessed the effects of SULF1 on the diethylnitrosamine model of liver carcinogenesis. Sulf1-Tg mice show a higher incidence of large and multifocal tumors with diethylnitrosamine injection compared to wild-type mice. Lung metastases were found in 75% of Sulf1-Tg mice but not in wild-type mice. Immunohistochemistry, immunoblotting, and reporter assays all show a significant activation of the transforming growth factor-β (TGF-β)/SMAD transcriptional pathway by SULF1 both in vitro and in vivo. This effect of SULF1 on the TGF-β/SMAD pathway is functional; overexpression of SULF1 promotes TGF-β-induced gene expression and epithelial-mesenchymal transition and enhances cell migration/invasiveness. Mechanistic analyses demonstrate that inactivating mutation of the catalytic site of SULF1 impairs the above actions of SULF1 and diminishes the release of TGF-β from the cell surface. We also show that SULF1 expression decreases the interaction between TGF-β1 and its heparan sulfate proteoglycan sequestration receptor, TGFβR3. Finally, using gene expression from human HCCs, we show that patients with high SULF1 expression have poorer recurrence-free survival (hazard ratio 4.1, 95% confidence interval 1.9-8.3; P = 0.002) compared to patients with low SULF1. We also found strong correlations of SULF1 expression with TGF-β expression and with several TGF-β-related epithelial-mesenchymal transition genes in human HCC. CONCLUSION Our study proposes a novel role of SULF1 in HCC tumor progression through augmentation of the TGF-β pathway, thus defining SULF1 as a potential biomarker for tumor progression and a novel target for drug development for HCC.
Collapse
Affiliation(s)
| | - Ikuo Nakamura
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905
| | - Chunling Hu
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905
| | - Gang Chen
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905,Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Abdul M. Oseini
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905
| | - Elif Sezin Seven
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905
| | - Alexander G Miamen
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905
| | - Catherine D Moser
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905
| | - Wei Zhou
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905
| | | | - Jan van Deursen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905
| | - Taofic Mounajjed
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905
| | - Martin E. Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota 55905
| | - Lewis R. Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905
| |
Collapse
|
21
|
Heindryckx F, Gerwins P. Targeting the tumor stroma in hepatocellular carcinoma. World J Hepatol 2015; 7:165-176. [PMID: 25729472 PMCID: PMC4342599 DOI: 10.4254/wjh.v7.i2.165] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/30/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and deadly cancers worldwide. In ninety percent of the cases it develops as a result of chronic liver damage and it is thus a typical inflammation-related cancer characterized by the close relation between the tumor microenvironment and tumor cells. The stromal environment consists out of several cell types, including hepatic stellate cells, macrophages and endothelial cells. They are not just active bystanders in the pathogenesis of HCC, but play an important and active role in tumor initiation, progression and metastasis. Furthermore, the tumor itself influences these cells to create a background that is beneficial for sustaining tumor growth. One of the key players is the hepatic stellate cell, which is activated during liver damage and differentiates towards a myofibroblast-like cell. Activated stellate cells are responsible for the deposition of extracellular matrix, increase the production of angiogenic factors and stimulate the recruitment of macrophages. The increase of angiogenic factors (which are secreted by macrophages, tumor cells and activated stellate cells) will induce the formation of new blood vessels, thereby supplying the tumor with more oxygen and nutrients, thus supporting tumor growth and offering a passageway in the circulatory system. In addition, the secretion of chemokines by the tumor cells leads to the recruitment of tumor associated macrophages. These tumor associated macrophages are key actors of cancer-related inflammation, being the main type of inflammatory cells infiltrating the tumor environment and exerting a tumor promoting effect by secreting growth factors, stimulating angiogenesis and influencing the activation of stellate cells. This complex interplay between the several cell types involved in liver cancer emphasizes the need for targeting the tumor stroma in HCC patients.
Collapse
|
22
|
Huang Y, Mao Y, Buczek-Thomas JA, Nugent MA, Zaia J. Oligosaccharide substrate preferences of human extracellular sulfatase Sulf2 using liquid chromatography-mass spectrometry based glycomics approaches. PLoS One 2014; 9:e105143. [PMID: 25127119 PMCID: PMC4134258 DOI: 10.1371/journal.pone.0105143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 07/09/2014] [Indexed: 12/25/2022] Open
Abstract
Sulfs are extracellular endosulfatases that selectively remove the 6-O-sulfate groups from cell surface heparan sulfate (HS) chain. By altering the sulfation at these particular sites, Sulfs function to remodel HS chains. As a result of the remodeling activity, HSulf2 regulates a multitude of cell-signaling events that depend on interactions between proteins and HS. Previous efforts to characterize the substrate specificity of human Sulfs (HSulfs) focused on the analysis of HS disaccharides and synthetic repeating units. In this study, we characterized the substrate preferences of human HSulf2 using HS oligosaccharides with various lengths and sulfation degrees from several naturally occurring HS sources by applying liquid chromatography mass spectrometry based glycomics methods. The results showed that HSulf2 preferentially digests highly sulfated HS oligosaccharides with zero acetyl groups and this preference is length dependent. In terms of length of oligosaccharides, HSulf2 digestion induced more sulfation decrease on DP6 (DP: degree of polymerization) compared to DP2, DP4 and DP8. In addition, the HSulf2 preferentially digests the oligosaccharide domain located at the non-reducing end (NRE) of the HS and heparin chain. In addition, the HSulf2 digestion products were altered only for specific isomers. HSulf2 treated NRE oligosaccharides also showed greater decrease in cell proliferation than those from internal domains of the HS chain. After further chromatographic separation, we identified the three most preferred unsaturated hexasaccharide for HSulf2.
Collapse
Affiliation(s)
- Yu Huang
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Yang Mao
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Jo Ann Buczek-Thomas
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Matthew A. Nugent
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Joseph Zaia
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
23
|
Heparan sulfate signaling in cancer. Trends Biochem Sci 2014; 39:277-88. [PMID: 24755488 DOI: 10.1016/j.tibs.2014.03.001] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/05/2014] [Accepted: 03/07/2014] [Indexed: 01/03/2023]
Abstract
Heparan sulfate (HS) is a biopolymer consisting of variably sulfated repeating disaccharide units. The anticoagulant heparin is a highly sulfated intracellular variant of HS. HS has demonstrated roles in embryonic development, homeostasis, and human disease via non-covalent interactions with numerous cellular proteins, including growth factors and their receptors. HS can function as a co-receptor by enhancing receptor-complex formation. In other contexts, HS disrupts signaling complexes or serves as a ligand sink. The effects of HS on growth factor signaling are tightly regulated by the actions of sulfyltransferases, sulfatases, and heparanases. HS has important emerging roles in oncogenesis, and heparin derivatives represent potential therapeutic strategies for human cancers. Here we review recent insights into HS signaling in tumor proliferation, angiogenesis, metastasis, and differentiation. A cancer-specific understanding of HS signaling could uncover potential therapeutic targets in this highly actionable signaling network.
Collapse
|
24
|
Suhovskih AV, Tsidulko AY, Kutsenko OS, Kovner AV, Aidagulova SV, Ernberg I, Grigorieva EV. Transcriptional Activity of Heparan Sulfate Biosynthetic Machinery is Specifically Impaired in Benign Prostate Hyperplasia and Prostate Cancer. Front Oncol 2014; 4:79. [PMID: 24782989 PMCID: PMC3995048 DOI: 10.3389/fonc.2014.00079] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/31/2014] [Indexed: 11/15/2022] Open
Abstract
Heparan sulfates (HSs) are key components of mammalian cells surface and extracellular matrix. Structure and composition of HS, generated by HS-biosynthetic system through non-template-driven process, are significantly altered in cancer tissues. The aim of this study was to investigate the involvement of HS-metabolic machinery in prostate carcinogenesis. Transcriptional patterns of HS-metabolic enzymes (EXT1, EXT2, NDST1, NDST2, GLCE, 3OST1/HS3ST1, SULF1, SULF2, HPSE) were determined in normal, benign, and cancer human prostate tissues and cell lines (PNT2, LNCaP, PC3, DU145). Stability of the HS-metabolic system patterns under the pressure of external or internal stimuli was studied. Overall impairment of transcriptional activity of HS-metabolic machinery was detected in benign prostate hyperplasia, while both significant decrease in the transcriptional activity and changes in the expression patterns of HS metabolism-involved genes were observed in prostate tumors. Prostate cancer cell lines possessed specific transcriptional patterns of HS metabolism-involved genes; however, expression activity of the system was similar to that of normal prostate PNT2 cells. HS-metabolic system was able to dynamically react to different external or internal stimuli in a cell type-dependent manner. LNCaP cells were sensitive to the external stimuli (5-aza-deoxycytidin or Trichostatin A treatments; co-cultivation with human fibroblasts), whereas PC3 cells almost did not respond to the treatments. Ectopic GLCE over-expression resulted in transcriptional activation of HS-biosynthetic machinery in both cell lines, suggesting an existence of a self-regulating mechanism for the coordinated transcription of HS metabolism-involved genes. Taken together, these findings demonstrate impairment of HS-metabolic system in prostate tumors in vivo but not in prostate cancer cells in vitro, and suggest that as a potential microenvironmental biomarker for prostate cancer diagnostics and treatment.
Collapse
Affiliation(s)
- Anastasia V Suhovskih
- Institute of Molecular Biology and Biophysics SD RAMS , Novosibirsk , Russia ; Novosibirsk State University , Novosibirsk , Russia
| | | | - Olesya S Kutsenko
- Institute of Molecular Biology and Biophysics SD RAMS , Novosibirsk , Russia
| | - Anna V Kovner
- Research Center of Clinical and Experimental Medicine SD RAMS , Novosibirsk , Russia
| | | | | | - Elvira V Grigorieva
- Institute of Molecular Biology and Biophysics SD RAMS , Novosibirsk , Russia ; MTC, Karolinska Institute , Stockholm , Sweden
| |
Collapse
|
25
|
Lu Y, Cheng Y, Yan W, Nardini C. Exploring the molecular causes of hepatitis B virus vaccination response: an approach with epigenomic and transcriptomic data. BMC Med Genomics 2014; 7:12. [PMID: 24612962 PMCID: PMC4008305 DOI: 10.1186/1755-8794-7-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 03/05/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Variable responses to the Hepatitis B Virus (HBV) vaccine have recently been reported as strongly dependent on genetic causes. Yet, the details on such mechanisms of action are still unknown. In parallel, altered DNA methylation states have been uncovered as important contributors to a variety of health conditions. However, methodologies for the analysis of such high-throughput data (epigenomic), especially from the computational point of view, still lack of a gold standard, mostly due to the intrinsic statistical distribution of methylomic data i.e. binomial rather than (pseudo-) normal, which characterizes the better known transcriptomic data.We present in this article our contribution to the challenge of epigenomic data analysis with application to the variable response to the Hepatitis B virus (HBV) vaccine and its most lethal degeneration: hepatocellular carcinoma (HCC). METHODS Twenty-five infants were recruited and classified as good and non-/low- responders according to serological test results. Whole genome DNA methylation states were profiled by Illumina HumanMethylation 450 K beadchips. Data were processed through quality and dispersion filtering and with differential methylation analysis based on a combination of average methylation differences and non-parametric statistical tests. Results were finally associated to already published transcriptomics and post-transcriptomics to gain further insight. RESULTS We highlight 2 relevant variations in poor-responders to HBV vaccination: the hypomethylation of RNF39 (Ring Finger Protein 39) and the complex biochemical alteration on SULF2 via hypermethylation, down-regulation and post-transcriptional control. CONCLUSIONS Our approach appears to cope with the new challenges implied by methylomic data distribution to warrant a robust ranking of candidates. In particular, being RNF39 within the Major Histocompatibility Complex (MHC) class I region, its altered methylation state fits with an altered immune reaction compatible with poor responsiveness to vaccination. Additionally, despite SULF2 having been indicated as a potential target for HCC therapy, we can recommend that non-responders to HBV vaccine who develop HCC are quickly directed to other therapies, as SULF2 appears to be already under multiple molecular controls in such patients. Future research in this direction is warranted.
Collapse
Affiliation(s)
| | | | - Weili Yan
- Group of Clinical Genomic Networks, Key Laboratory of Computational Biology, CAS-MPG, Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, PR China.
| | | |
Collapse
|
26
|
Zhu AX, Gold PJ, El-Khoueiry AB, Abrams TA, Morikawa H, Ohishi N, Ohtomo T, Philip PA. First-in-man phase I study of GC33, a novel recombinant humanized antibody against glypican-3, in patients with advanced hepatocellular carcinoma. Clin Cancer Res 2013; 19:920-8. [PMID: 23362325 DOI: 10.1158/1078-0432.ccr-12-2616] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE GC33 is a novel recombinant fully humanized monoclonal antibody that binds to human glypican-3 (GPC3). The antitumor activity of GC33 was shown in preclinical models of hepatocellular carcinoma (HCC). This first-in-man clinical trial was conducted to evaluate the safety, pharmacokinetic characteristics, and preliminary efficacy of GC33 in patients with advanced HCC. EXPERIMENTAL DESIGN Patients with measurable, histologically proven, advanced HCC were enrolled to a dose-escalation study of GC33 (2.5-20 mg/kg) given intravenously weekly. The primary endpoint was to determine the maximum tolerated dose of GC33 for further development. Pharmacokinetic characteristics were measured in serum samples. Immunohistochemistry was conducted on tumor biopsies to evaluate GPC3 expression. Tumor response was assessed every 8 weeks using Response Evaluation Criteria in Solid Tumors criteria. RESULTS Twenty patients were enrolled and treated with GC33. A maximum tolerated dose was not reached as there were no dose-limiting toxicities (DLT) up to the highest planned dose level. Common adverse events with all grades included fatigue (50%), constipation (35%), headache (35%), and hyponatremia (35%). The incidence of adverse events seemed not to be dose dependent. Trough serum concentrations at steady state were in excess of target concentration at doses of 5 mg/kg or greater. Median time to progression (TTP) was 26.0 weeks in the GPC3 high expression group and 7.1 weeks in the low expression group (P = 0.033). CONCLUSION This study shows that GC33 was well tolerated in advanced HCC and provides preliminary evidence that GPC3 expression in HCC may be associated with the clinical benefit to GC33 that warrants prospective evaluation.
Collapse
Affiliation(s)
- Andrew X Zhu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Gopal G, Shirley S, Raja UM, Rajkumar T. Endo-sulfatase Sulf-1 protein expression is down-regulated in gastric cancer. Asian Pac J Cancer Prev 2012; 13:641-6. [PMID: 22524839 DOI: 10.7314/apjcp.2012.13.2.641] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In our recent report on gene expression in gastric cancer we identified the endo-sulfatase Sulf-1 gene to be up-regulated in gastric tumors relative to apparently normal (AN), and paired normal (PN) gastric tissue samples. In the present report we investigate the protein expression levels of Sulf-1 gene in gastric tumors, AN and PN samples using tissue microarray (TMA) and immunohistochemistry. Expression data was collected from two sets of TMA's containing replicate sections of tissue samples. Scoring data from TMA set-1 revealed a significant difference in Sulf-1 immunoreactivity between tumors and "normals" (PN and AN) (p-value = 0.001928). Also, Sulf-1 expression in tumors was also significantly different from either PN (p-value = 0.019) or AN (p-value = 0.006) samples. Similar results were obtained from analysis of scoring data from the second set of arrays. Comparison of mRNA expression and protein expression in gastric tumor tissues revealed that in 6/20 (30%) tumor samples showed up-regulated protein expression concordant with over-expression of mRNA. However, a discord with mRNA being over-expressed relative to down regulated protein expression was observed in majority 14/20 (70%) of tumor samples. Our study indicates down regulation of Sulf-1 protein expression in gastric tumors relative to PN and AN samples which is discordant with mRNA over-expression seen in tumors.
Collapse
Affiliation(s)
- Gopisetty Gopal
- Department of Molecular Oncology, Cancer Institute (WIA), Chennai, India
| | | | | | | |
Collapse
|
28
|
Mammalian Sulf1 RNA alternative splicing and its significance to tumour growth regulation. Tumour Biol 2012; 33:1669-80. [DOI: 10.1007/s13277-012-0423-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/16/2012] [Indexed: 10/28/2022] Open
|
29
|
Li J, Mo ML, Chen Z, Yang J, Li QS, Wang DJ, Zhang H, Ye YJ, Li HL, Zhang F, Zhou HM. HSulf-1 inhibits cell proliferation and invasion in human gastric cancer. Cancer Sci 2011; 102:1815-21. [PMID: 21722266 PMCID: PMC11158923 DOI: 10.1111/j.1349-7006.2011.02024.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The HSulf-1 gene encodes an extracellular 6-O-endosulfatase and regulates the sulfation status of heparan sulfate proteoglycans (HSPG). We have demonstrated that promoter hypermethylation is correlated with the HSulf-1 silencing in gastric cancer. To investigate the functional importance of HSulf-1 silencing in gastric cancer, we restored HSulf-1 expression in the gastric cancer cell line MKN28, which lacks endogenous HSulf-1. Following restoration of expression, HSulf-1 inhibited cell proliferation, motility, and invasion in vitro, as well as significantly suppressing the MKN28 xenograft model (P < 0.05). No noticeable changes in proliferation and motility were observed following restoration of HSulf-1 in another gastric cancer cell line, namely AGS cells. Interestingly, in MKN28 cells, which have been reported to be dependent on extracellular Wnt signaling, we found that HSulf-1 inhibited the transcriptional activity of the Wnt ⁄ β-catenin pathway and downregulated its targeted genes. Conversely, in AGS cells, in the constitutive Wnt ⁄ β-catenin pathway is active, HSulf-1 had no effect on the activity of the Wnt ⁄ β-catenin pathway. Furthermore, transfection of Wnt3a cDNA or β-catenin shRNA resulted in rescue or enhancement, respectively, of the effects of HSulf-1 in MKN28 cells. Furthermore, HSPG epitope analysis confirmed that HSulf-1 affected the structure of heparan sulfate on the cell surface. Together, the results of the present study suggest that extracellular HSulf-1 may function as a negative regulator of proliferation and invasion in gastric cancer by suppressing Wnt ⁄ β-catenin signaling at the cell surface.
Collapse
Affiliation(s)
- Jie Li
- School of Life Sciences, Tsinghua University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ma HY, Zhang F, Li J, Mo ML, Chen Z, Liu L, Zhou HM, Sheng Q. HSulf-1 suppresses cell growth and down-regulates Hedgehog signaling in human gastric cancer cells. Oncol Lett 2011; 2:1291-1295. [PMID: 22848304 DOI: 10.3892/ol.2011.407] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 08/12/2011] [Indexed: 01/03/2023] Open
Abstract
Gastric cancer is the second most lethal cancer worldwide. Despite the current surgical and adjuvant therapies, 5-year survival remains less than 20-25% in the US, Europe and China. Therefore, there is an urgent need to identify new therapeutic targets for treating this malignant disease. Accumulating evidence has supported that aberrant activation of the Hedgehog signaling pathway plays a crucial role in tumorigenesis and progression of gastric cancer. Human sulfatase-1 (HSulf-1) is a recently identified enzyme that desulfates cell surface heparan sulfate proteoglycans (HSPGs), which is critical for Hedgehog signal transduction under a highly sulfated state. HSulf-1 has recently emerged as a tumor suppressor gene in certain types of cancer, including ovarian, breast, myeloma and hepatocellular carcinoma; however, its role in gastric cancer remains to be elucidated. Therefore, we established HSulf-1-expressing monoclonal MKN28 gastric cancer cells to investigate its function in gastric cancer. Expression of HSulf-1 significantly suppressed cellular proliferation and growth in MKN28 gastric cancer cells. Notably, HSulf-1 inhibits Gli-mediated transcription and down-regulates the expression of Hedgehog target genes, including GLI1, PTCH1/2, HHIP, CCND1, C-MYC and BCL-2. Collectively, the study provides evidence that HSulf-1 may function as a tumor suppressor in gastric cancer. It suppresses gastric cancer cell proliferation, possibly through abrogating the Hedgehog signaling pathway. The study provides new mechanistic insight into HSulf-1- mediated tumor suppression, and supports the use of HSulf-1 as a potential new therapeutic target in treating gastric cancer.
Collapse
Affiliation(s)
- Hui-Yan Ma
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Ji W, Yang J, Wang D, Cao L, Tan W, Qian H, Sun B, Qian Q, Yin Z, Wu M, Su C. hSulf-1 gene exhibits anticancer efficacy through negatively regulating VEGFR-2 signaling in human cancers. PLoS One 2011; 6:e23274. [PMID: 21853101 PMCID: PMC3154391 DOI: 10.1371/journal.pone.0023274] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 07/11/2011] [Indexed: 01/07/2023] Open
Abstract
Background Human sulfatase 1 (hSulf-1) is a heparin-degrading endosulfatase that desulfates cell surface heparan sulfate proteoglycans (HSPGs) in extracellular matrix and negatively modulates heparin-binding growth factor and cytokine signaling in cell proliferation. But hSulf-1 function is more complicated, and its molecular mechanism has not been well known. Principal Findings To further investigate the functions of hSulf-1 gene in regulating the vascular endothelial growth factor receptor (VEGFR) signaling, a series of vectors expressing hSulf-1, hSulf-1 small hairpin RNA (shRNA) and VEGFR-2 shRNA were generated. hSulf-1 re-expression could downregualte the VEGFR-2 phosphorylation and inhibit cancer cell proliferation both in ovarian and hepatocellular cancer cell lines. Knockdown of hSulf-1 expression by hSulf-1 shRNA enhanced the recovery of high levels of phosphorylated VEGFR-2, and knockdown of VEGFR-2 expression by VEGFR-2 shRNA inhibited the proliferation activity of cancer cells in vitro to some extent. In human cancer xenografts in nude mice, tumor growth was inhibited markedly after injections of adenovirus expressing hSulf-1, with the tumor inhibition rates of 46.19% and 49.56% in ovarian and hepatocellular tumor models, respectively. hSulf-1 expression significantly reduced tumor microvessel density. Conclusions The results demonstrated that hSulf-1 re-expression both in ovarian and hepatocellular cancer cells induces antitumor efficacy by attenuating the phosphorylation of VEGFR-2 and suppressing angiogenesis. Therefore, hSulf-1-mediated antiproliferation and antiangiogenesis could be a reasonable approach for cancer therapy.
Collapse
Affiliation(s)
- Weidan Ji
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & Institute, The Second Military Medical University, Shanghai, China
- Laboratory of Medical Genetics, Medical College of Soochow University, Suzhou, China
| | - Jiahe Yang
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & Institute, The Second Military Medical University, Shanghai, China
| | - Duanming Wang
- College of Animal Science and Technology, Shihezi University, Xinjiang, China
| | - Lu Cao
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & Institute, The Second Military Medical University, Shanghai, China
| | - Weifeng Tan
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & Institute, The Second Military Medical University, Shanghai, China
| | - Haihua Qian
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & Institute, The Second Military Medical University, Shanghai, China
| | - Bin Sun
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & Institute, The Second Military Medical University, Shanghai, China
| | - Qijun Qian
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & Institute, The Second Military Medical University, Shanghai, China
| | - Zhengfeng Yin
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & Institute, The Second Military Medical University, Shanghai, China
| | - Mengchao Wu
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & Institute, The Second Military Medical University, Shanghai, China
| | - Changqing Su
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & Institute, The Second Military Medical University, Shanghai, China
- Laboratory of Medical Genetics, Medical College of Soochow University, Suzhou, China
- * E-mail:
| |
Collapse
|
32
|
Bret C, Moreaux J, Schved JF, Hose D, Klein B. SULFs in human neoplasia: implication as progression and prognosis factors. J Transl Med 2011; 9:72. [PMID: 21599997 PMCID: PMC3224561 DOI: 10.1186/1479-5876-9-72] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 05/21/2011] [Indexed: 01/05/2023] Open
Abstract
Background The sulfation pattern of heparan sulfate chains influences signaling events mediated by heparan sulfate proteoglycans located on cell surface. SULF1 and SULF2 are two endosulfatases able to cleave specific 6-O sulfate groups within the heparan chains. Their action can modulate signaling processes, many of which with key relevance for cancer development and expansion. SULF1 has been associated with tumor suppressor effects in various models of cancer, whereas SULF2 dysregulation was in relation with protumorigenic actions. However, other observations argue for contradictory effects of these sulfatases in cancer, suggesting the complexity of their action in the tumor microenvironment. Methods We compared the expression of the genes encoding SULF1, SULF2 and heparan sulfate proteoglycans in a large panel of cancer samples to their normal tissue counterparts using publicly available gene expression data, including the data obtained from two cohorts of newly-diagnosed multiple myeloma patients, the Oncomine Cancer Microarray database, the Amazonia data base and the ITTACA database. We also analysed prognosis data in relation with these databases. Results We demonstrated that SULF2 expression in primary multiple myeloma cells was associated with a poor prognosis in two independent large cohorts of patients. It remained an independent predictor when considered together with conventional multiple myeloma prognosis factors. Besides, we observed an over-representation of SULF2 gene expression in skin cancer, colorectal carcinoma, testicular teratoma and liver cancer compared to their normal tissue counterpart. We found that SULF2 was significantly over-expressed in high grade uveal melanoma compared to low grade and in patients presenting colorectal carcinoma compared to benign colon adenoma. We observed that, in addition to previous observations, SULF1 gene expression was increased in T prolymphocytic leukemia, acute myeloid leukemia and in renal carcinoma compared to corresponding normal tissues. Furthermore, we found that high SULF1 expression was associated with a poor prognosis in lung adenocarcinoma. Finally, SULF1 and SULF2 were simultaneously overexpressed in 6 cancer types: brain, breast, head and neck, renal, skin and testicular cancers. Conclusions SULF1 and SULF2 are overexpressed in various human cancer types and can be associated to progression and prognosis. Targeting SULF1 and/or SULF2 could be interesting strategies to develop novel cancer therapies.
Collapse
Affiliation(s)
- Caroline Bret
- INSERM U847, Institut de Recherche en Biothérapie, CHRU de Montpellier, France
| | | | | | | | | |
Collapse
|
33
|
Han CH, Huang YJ, Lu KH, Liu Z, Mills GB, Wei Q, Wang LE. Polymorphisms in the SULF1 gene are associated with early age of onset and survival of ovarian cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2011; 30:5. [PMID: 21214932 PMCID: PMC3025876 DOI: 10.1186/1756-9966-30-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 01/07/2011] [Indexed: 02/03/2023]
Abstract
BACKGROUND SULF1 (sulfatase 1) selectively removes the 6-O-sulphate group from heparan sulfate, changing the binding sites for extracellular growth factors. SULF1 expression has been reported to be decreased in various cancers, including ovarian cancer. We hypothesized that single nucleotide polymorphisms (SNPs) of SULF1 would impact clinicopathologic characteristics. METHODS We genotyped five common (minor allele frequency>0.05) regulatory SNPs with predicted functionalities (rs2623047 G>A, rs13264163 A>G, rs6990375 G>A, rs3802278 G>A, and rs3087714 C>T) in 168 patients with primary epithelial ovarian cancer, using the polymerase chain reaction-restriction fragment length polymorphism method. RESULTS We found that rs2623047 G>A was significantly associated with an early age of onset of ovarian cancer in the G allele dose-response manner (P = 0.027; Ptrend = 0.007) and that rs2623047 GG/GA genotypes were associated with longer progression-free survival; rs6990375 G>A was also associated with the early age of onset in the A allele dose-response manner (P = 0.013; Ptrend= 0.009). The significant differences in age of disease onset persisted among carriers of haplotypes of rs2623047 and rs6990375 (P = 0.014; Ptrend = 0.004). In luciferase reporter gene assays, rs2623047 G allele showed a slightly higher promoter activity than the A allele in the SKOV3 tumorigenic cell line. CONCLUSIONS These findings suggest that genetic variations in SULF1 may play a role in ovarian cancer onset and prognosis. Further studies with large sample sizes and of the mechanistic relevance of SULF1 SNPs are warranted.
Collapse
Affiliation(s)
- Chan H Han
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Yu-Jing Huang
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Karen H Lu
- Department of Gynecologic Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhensheng Liu
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Qingyi Wei
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Li-E Wang
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
34
|
Schelwies M, Brinson D, Otsuki S, Hong YH, Lotz MK, Wong CH, Hanson SR. Glucosamine-6-sulfamate analogues of heparan sulfate as inhibitors of endosulfatases. Chembiochem 2010; 11:2393-7. [PMID: 20973023 PMCID: PMC3086843 DOI: 10.1002/cbic.201000401] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Indexed: 01/13/2023]
Abstract
Keeping Sulfate. The extracellular endosulfatases, which modulate signalling pathways by removing sulfate groups from heparan, can be inhibited by replacing the 6-sulfate destined for cleavage with an inhibitory sulfamate motif, as demonstrated by simple glucosamine-6-sulfamate analogs of heparan sulfate.
Collapse
Affiliation(s)
- Mathias Schelwies
- Dr. M. Schelwies, Prof. Dr. C.-H. Wong, Dr. S. R. Hanson Department of Chemistry and Skaggs Institute for Chemical Biology The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Diana Brinson
- D. Brinson, Dr. Y.-H. Hong, Dr. S. Otsuki, Prof. Dr. M. K. Lotz, Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Shuhei Otsuki
- D. Brinson, Dr. Y.-H. Hong, Dr. S. Otsuki, Prof. Dr. M. K. Lotz, Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Young-Hoon Hong
- D. Brinson, Dr. Y.-H. Hong, Dr. S. Otsuki, Prof. Dr. M. K. Lotz, Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Martin K. Lotz
- D. Brinson, Dr. Y.-H. Hong, Dr. S. Otsuki, Prof. Dr. M. K. Lotz, Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Chi-Huey Wong
- Dr. M. Schelwies, Prof. Dr. C.-H. Wong, Dr. S. R. Hanson Department of Chemistry and Skaggs Institute for Chemical Biology The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Sarah R. Hanson
- Dr. M. Schelwies, Prof. Dr. C.-H. Wong, Dr. S. R. Hanson Department of Chemistry and Skaggs Institute for Chemical Biology The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA)
| |
Collapse
|
35
|
Lai JP, Oseini AM, Moser CD, Yu C, Elsawa SF, Hu C, Nakamura I, Han T, Aderca I, Isomoto H, Garrity-Park MM, Shire AM, Li J, Sanderson SO, Adjei AA, Fernandez-Zapico ME, Roberts LR. The oncogenic effect of sulfatase 2 in human hepatocellular carcinoma is mediated in part by glypican 3-dependent Wnt activation. Hepatology 2010; 52:1680-9. [PMID: 20725905 PMCID: PMC2967616 DOI: 10.1002/hep.23848] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
UNLABELLED Heparan sulfate proteoglycans (HSPGs) act as coreceptors or storage sites for growth factors and cytokines such as fibroblast growth factor and Wnts. Glypican 3 (GPC3) is the most highly expressed HSPG in hepatocellular carcinoma (HCC). Sulfatase 2 (SULF2), an enzyme with 6-O-desulfatase activity on HSPGs, is up-regulated in 60% of primary HCCs and is associated with a worse prognosis. We have previously shown that the oncogenic effect of SULF2 in HCC may be mediated in part through up-regulation of GPC3. Here we demonstrate that GPC3 stimulates the Wnt/β-catenin pathway and mediates the oncogenic function of SULF2 in HCC. Wnt signaling in vitro and in vivo was assessed in SULF2-negative Hep3B HCC cells transfected with SULF2 and in SULF2-expressing Huh7 cells transfected with short hairpin RNA targeting SULF2. The interaction between GPC3, SULF2, and Wnt3a was assessed by coimmunoprecipitation and flow cytometry. β-catenin-dependent transcriptional activity was assessed with the TOPFLASH (T cell factor reporter plasmid) luciferase assay. In HCC cells, SULF2 increased cell surface GPC3 and Wnt3a expression, stabilized β-catenin, and activated T cell factor transcription factor activity and expression of the Wnt/β-catenin target gene cyclin D1. Opposite effects were observed in SULF2-knockdown models. In vivo, nude mouse xenografts established from SULF2-transfected Hep3B cells showed enhanced GPC3, Wnt3a, and β-catenin levels. CONCLUSION Together, these findings identify a novel mechanism mediating the oncogenic function of SULF2 in HCC that includes GPC3-mediated activation of Wnt signaling via the Wnt3a/glycogen synthase kinase 3 beta axis.
Collapse
Affiliation(s)
- Jin-Ping Lai
- Miles and Shirley Fiterman Center for Digestive Diseases, College of Medicine, Mayo Clinic, Mayo Clinic Cancer Center, Rochester, MN 55905, USA
| | - Abdul M Oseini
- Miles and Shirley Fiterman Center for Digestive Diseases, College of Medicine, Mayo Clinic, Mayo Clinic Cancer Center, Rochester, MN 55905, USA
| | - Catherine D Moser
- Miles and Shirley Fiterman Center for Digestive Diseases, College of Medicine, Mayo Clinic, Mayo Clinic Cancer Center, Rochester, MN 55905, USA
| | - Chunrong Yu
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Sherine F Elsawa
- Schulze Center for Novel Therapeutics, Mayo Clinic Cancer Center, Rochester, MN 55905, USA
| | - Chunling Hu
- Miles and Shirley Fiterman Center for Digestive Diseases, College of Medicine, Mayo Clinic, Mayo Clinic Cancer Center, Rochester, MN 55905, USA
| | - Ikuo Nakamura
- Miles and Shirley Fiterman Center for Digestive Diseases, College of Medicine, Mayo Clinic, Mayo Clinic Cancer Center, Rochester, MN 55905, USA
| | - Tao Han
- Miles and Shirley Fiterman Center for Digestive Diseases, College of Medicine, Mayo Clinic, Mayo Clinic Cancer Center, Rochester, MN 55905, USA
| | - Ileana Aderca
- Miles and Shirley Fiterman Center for Digestive Diseases, College of Medicine, Mayo Clinic, Mayo Clinic Cancer Center, Rochester, MN 55905, USA
| | - Hajime Isomoto
- Miles and Shirley Fiterman Center for Digestive Diseases, College of Medicine, Mayo Clinic, Mayo Clinic Cancer Center, Rochester, MN 55905, USA
| | - Megan M Garrity-Park
- Department of Laboratory Medicine and Pathology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Abdirashid M Shire
- Miles and Shirley Fiterman Center for Digestive Diseases, College of Medicine, Mayo Clinic, Mayo Clinic Cancer Center, Rochester, MN 55905, USA
| | - Jia Li
- Miles and Shirley Fiterman Center for Digestive Diseases, College of Medicine, Mayo Clinic, Mayo Clinic Cancer Center, Rochester, MN 55905, USA
| | - Schuyler O Sanderson
- Department of Laboratory Medicine and Pathology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Alex A Adjei
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Martin E Fernandez-Zapico
- Miles and Shirley Fiterman Center for Digestive Diseases, College of Medicine, Mayo Clinic, Mayo Clinic Cancer Center, Rochester, MN 55905, USA,Schulze Center for Novel Therapeutics, Mayo Clinic Cancer Center, Rochester, MN 55905, USA
| | - Lewis R Roberts
- Miles and Shirley Fiterman Center for Digestive Diseases, College of Medicine, Mayo Clinic, Mayo Clinic Cancer Center, Rochester, MN 55905, USA
| |
Collapse
|
36
|
Lai JP, Sandhu DS, Yu C, Moser CD, Hu C, Shire AM, Aderca I, Murphy LM, Adjei AA, Sanderson S, Roberts LR. Sulfatase 2 protects hepatocellular carcinoma cells against apoptosis induced by the PI3K inhibitor LY294002 and ERK and JNK kinase inhibitors. Liver Int 2010; 30:1522-8. [PMID: 21040406 PMCID: PMC3042145 DOI: 10.1111/j.1478-3231.2010.02336.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Sulfatase 2 (SULF2), an extracellular heparan sulphate 6-O-endosulphatase, has an oncogenic effect in hepatocellular carcinoma (HCC) that is partially mediated through glypican 3, which promotes heparin-binding growth factor signalling and HCC cell growth. SULF2 also increases phosphorylation of the anti-apoptotic Akt kinase substrate GSK3β and SULF2 expression is associated with a decreased apoptotic index in human HCCs. METHODS We investigated the functional and mechanistic effects of SULF2 on drug-induced apoptosis of HCC cells using immunohistochemistry, Western immunoblotting, gene transfection, real-time quantitative polymerase chain reaction, MTT and apoptosis assays and immunocytochemistry. RESULTS The increased expression of SULF2 in human HCCs was confirmed by immunohistochemistry and immunoblotting. Treatment with inhibitors of MEK, JNK and PI3 kinases decreased the viability of SULF2-negative Hep3B HCC cells and induced apoptotic caspase 3 and 7 activity, which was most strongly induced by the PI3K inhibitor LY294002. Forced expression of SULF2 in Hep3B cells significantly decreased activity of the apoptotic caspases 3 and 7 and induced resistance to LY294002-induced apoptosis. As expected, LY294002 inhibited activation of Akt kinase by PI3K. Conversely, knockdown of SULF2 using an shRNA construct targeting the SULF2 mRNA induced profound cell growth arrest and sensitized the endogenously SULF2-expressing HCC cell lines Huh7 and SNU182 to drug-induced apoptosis. The effects of knockdown of SULF2 on HCC cells were mediated by decreased Akt phosphorylation, downregulation of cyclin D1 and the anti-apoptotic molecule Bcl-2, and upregulation of the pro-apoptotic molecule BAD. CONCLUSION The prosurvival, anti-apoptotic effect of SULF2 in HCC is mediated through activation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Jin-Ping Lai
- Miles and Shirley Fiterman Center for Digestive Diseases, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN, USA
| | - Dalbir S. Sandhu
- Miles and Shirley Fiterman Center for Digestive Diseases, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN, USA
| | - Chunrong Yu
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Catherine D. Moser
- Miles and Shirley Fiterman Center for Digestive Diseases, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN, USA
| | - Chunling Hu
- Miles and Shirley Fiterman Center for Digestive Diseases, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN, USA
| | - Abdirashid M. Shire
- Miles and Shirley Fiterman Center for Digestive Diseases, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN, USA
| | - Ileana Aderca
- Miles and Shirley Fiterman Center for Digestive Diseases, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN, USA
| | - Linda M. Murphy
- Department of Laboratory Medicine and Pathology, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN, USA
| | - Alex A. Adjei
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Schuyler Sanderson
- Department of Laboratory Medicine and Pathology, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN, USA
| | - Lewis R. Roberts
- Miles and Shirley Fiterman Center for Digestive Diseases, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN, USA
| |
Collapse
|
37
|
Nasir O, Wang K, Föller M, Bhandaru M, Sandulache D, Artunc F, Ackermann TF, Ebrahim A, Palmada M, Klingel K, Saeed AM, Lang F. Downregulation of Angiogenin Transcript Levels and Inhibition of Colonic Carcinoma by Gum Arabic (Acacia senegal). Nutr Cancer 2010; 62:802-10. [DOI: 10.1080/01635581003605920] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Abstract
Virtually all metazoan cells contain at least one and usually several types of transmembrane proteoglycans. These are varied in protein structure and type of polysaccharide, but the total number of vertebrate genes encoding transmembrane proteoglycan core proteins is less than 10. Some core proteins, including those of the syndecans, always possess covalently coupled glycosaminoglycans; others do not. Syndecan has a long evolutionary history, as it is present in invertebrates, but many other transmembrane proteoglycans are vertebrate inventions. The variety of proteins and their glycosaminoglycan chains is matched by diverse functions. However, all assume roles as coreceptors, often working alongside high-affinity growth factor receptors or adhesion receptors such as integrins. Other common themes are an ability to signal through their cytoplasmic domains, often to the actin cytoskeleton, and linkage to PDZ protein networks. Many transmembrane proteoglycans associate on the cell surface with metzincin proteases and can be shed by them. Work with model systems in vivo and in vitro reveals roles in growth, adhesion, migration, and metabolism. Furthermore, a wide range of phenotypes for the core proteins has been obtained in mouse knockout experiments. Here some of the latest developments in the field are examined in hopes of stimulating further interest in this fascinating group of molecules.
Collapse
Affiliation(s)
- John R Couchman
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, 2200 Denmark.
| |
Collapse
|
39
|
Ratzka A, Mundlos S, Vortkamp A. Expression patterns of sulfatase genes in the developing mouse embryo. Dev Dyn 2010; 239:1779-88. [DOI: 10.1002/dvdy.22294] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
40
|
Tátrai P, Egedi K, Somorácz A, van Kuppevelt TH, Ten Dam G, Lyon M, Deakin JA, Kiss A, Schaff Z, Kovalszky I. Quantitative and qualitative alterations of heparan sulfate in fibrogenic liver diseases and hepatocellular cancer. J Histochem Cytochem 2010; 58:429-41. [PMID: 20124094 DOI: 10.1369/jhc.2010.955161] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Heparan sulfate (HS), due to its ability to interact with a multitude of HS-binding factors, is involved in a variety of physiological and pathological processes. Remarkably diverse fine structure of HS, shaped by non-exhaustive enzymatic modifications, influences the interaction of HS with its partners. Here we characterized the HS profile of normal human and rat liver, as well as alterations of HS related to liver fibrogenesis and carcinogenesis, by using sulfation-specific antibodies. The HS immunopattern was compared with the immunolocalization of selected HS proteoglycans. HS samples from normal liver and hepatocellular carcinoma (HCC) were subjected to disaccharide analysis. Expression changes of nine HS-modifying enzymes in human fibrogenic diseases and HCC were measured by quantitative RT-PCR. Increased abundance and altered immunolocalization of HS was paralleled by elevated mRNA levels of HS-modifying enzymes in the diseased liver. The strong immunoreactivity of the normal liver for 3-O-sulfated epitope further increased with disease, along with upregulation of 3-OST-1. Modest 6-O-undersulfation of HCC HS is probably explained by Sulf overexpression. Our results may prompt further investigation of the role of highly 3-O-sulfated and partially 6-O-desulfated HS in pathological processes such as hepatitis virus entry and aberrant growth factor signaling in fibrogenic liver diseases and HCC.
Collapse
Affiliation(s)
- Péter Tátrai
- Second Department of Pathology, Semmelweis University, 93 Ulloi út H-1091 Budapest, Hungary.
| | | | | | | | | | | | | | | | | | | |
Collapse
|