1
|
Halim-Fikri H, Zulkipli NN, Alauddin H, Bento C, Lederer CW, Kountouris P, Kleanthous M, Hernaningsih Y, Thong MK, Mahmood MH, Mohd Yasin N, Esa E, Elion J, Coviello D, Raja-Sabudin RZA, El-Kamah G, Burn J, Mohd Yusoff N, Ramesar R, Zilfalil BA. Global Globin Network and adopting genomic variant database requirements for thalassemia. Database (Oxford) 2024; 2024:baae080. [PMID: 39231257 PMCID: PMC11373567 DOI: 10.1093/database/baae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 07/24/2024] [Accepted: 08/02/2024] [Indexed: 09/06/2024]
Abstract
Thalassemia is one of the most prevalent monogenic disorders in low- and middle-income countries (LMICs). There are an estimated 270 million carriers of hemoglobinopathies (abnormal hemoglobins and/or thalassemia) worldwide, necessitating global methods and solutions for effective and optimal therapy. LMICs are disproportionately impacted by thalassemia, and due to disparities in genomics awareness and diagnostic resources, certain LMICs lag behind high-income countries (HICs). This spurred the establishment of the Global Globin Network (GGN) in 2015 at UNESCO, Paris, as a project-wide endeavor within the Human Variome Project (HVP). Primarily aimed at enhancing thalassemia clinical services, research, and genomic diagnostic capabilities with a focus on LMIC needs, GGN aims to foster data collection in a shared database by all affected nations, thus improving data sharing and thalassemia management. In this paper, we propose a minimum requirement for establishing a genomic database in thalassemia based on the HVP database guidelines. We suggest using an existing platform recommended by HVP, the Leiden Open Variation Database (LOVD) (https://www.lovd.nl/). Adoption of our proposed criteria will assist in improving or supplementing the existing databases, allowing for better-quality services for individuals with thalassemia. Database URL: https://www.lovd.nl/.
Collapse
Grants
- 305.PPSP.6114202 the International Collaboration Fund (IFC), Ministry of Science, Technology and Innovation (MOSTI), Malaysia
- EXCELLENCE/1216/92, EXCELLENCE/1216/256 the European Regional Development Fund and the Republic of Cyprus through the Research and Innovation Foundation
- 304.PPSP.6150166.K151 Ministry of International Trade and Industry (MITI), Malaysia
- COST Action CA22119 (HELIOS) COST (European Cooperation in Science and Technology)
- 305.PPSP.6114202 the International Collaboration Fund (IFC), Ministry of Science, Technology and Innovation (MOSTI), Malaysia
- EXCELLENCE/1216/92, EXCELLENCE/1216/256 the European Regional Development Fund and the Republic of Cyprus through the Research and Innovation Foundation
- 304.PPSP.6150166.K151 Ministry of International Trade and Industry (MITI), Malaysia
- COST Action CA22119 (HELIOS) COST (European Cooperation in Science and Technology)
Collapse
Affiliation(s)
- Hashim Halim-Fikri
- School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Jalan Raja Perempuan Zainab II, Kubang Kerian, Kelantan 16150, Malaysia
| | - Ninie Nadia Zulkipli
- School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Jalan Raja Perempuan Zainab II, Kubang Kerian, Kelantan 16150, Malaysia
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Gong Badak Campus, Kuala Nerus, Terengganu 21300, Malaysia
| | - Hafiza Alauddin
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Celeste Bento
- Department of Hematology, Hospital Pediátrico de Coimbra, Avenida Afonso Romão, Coimbra 3000-602, Portugal
| | - Carsten W Lederer
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, Ayios Dometios, Nicosia 2371, Cyprus
| | - Petros Kountouris
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, Ayios Dometios, Nicosia 2371, Cyprus
| | - Marina Kleanthous
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, Ayios Dometios, Nicosia 2371, Cyprus
| | - Yetti Hernaningsih
- Department of Clinical Pathology, Faculty of Medicine Universitas Airlangga, Dr. Soetomo Academic General Hospital, Surabaya, East Java 60132, Indonesia
| | - Meow-Keong Thong
- Department of Paediatrics, Faculty of Medicine, Universiti Malaya, Lembah Pantai, Kuala Lumpur 50603, Malaysia
| | - Muhammad Hamdi Mahmood
- Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak 94300, Malaysia
| | - Norafiza Mohd Yasin
- Haematology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, No. 1, Jalan Setia Murni U13/52, Seksyen U13, Bandar Setia Alam, Shah Alam, Selangor Darul Ehsan 40170, Malaysia
| | - Ezalia Esa
- Haematology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, No. 1, Jalan Setia Murni U13/52, Seksyen U13, Bandar Setia Alam, Shah Alam, Selangor Darul Ehsan 40170, Malaysia
| | - Jacques Elion
- Medical School, Université Paris Diderot, Paris 75018, France
| | - Domenico Coviello
- Laboratorio di Genetica Umana, IRCCS Istituto Giannina Gaslini, Largo Gerolamo Gaslini 5, Genova 16147, Italy
| | - Raja-Zahratul-Azma Raja-Sabudin
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Ghada El-Kamah
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo 12622, Egypt
| | - John Burn
- Translational and Clinical Research Institute, Newcastle University, International Centre for Life, Times Square, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Narazah Mohd Yusoff
- Molecular Genetics Section, Clinical Diagnostic Laboratory, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Pulau Pinang 13200, Malaysia
| | - Raj Ramesar
- Division of Human Genetics, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
| | - Bin Alwi Zilfalil
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Jalan Raja Perempuan Zainab II, Kubang Kerian, Kelantan 16150, Malaysia
| |
Collapse
|
2
|
Abstract
β-thalassemia is caused by mutations in the β-globin gene which diminishes or abolishes β-globin chain production. This reduction causes an imbalance of the α/β-globin chain ratio and contributes to the pathogenesis of the disease. Several approaches to reduce the imbalance of the α/β ratio using several nucleic acid-based technologies such as RNAi, lentiviral mediated gene therapy, splice switching oligonucleotides (SSOs) and gene editing technology have been investigated extensively. These approaches aim to reduce excess free α-globin, either by reducing the α-globin chain, restoring β-globin expression and reactivating γ-globin expression, leading a reduced disease severity, treatment necessity, treatment interval, and disease complications, thus, increasing the life quality of the patients and alleviating economic burden. Therefore, nucleic acid-based therapy might become a potential targeted therapy for β-thalassemia.
Collapse
Affiliation(s)
- Annette d'Arqom
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Pharmacology and Therapy, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|