1
|
Friedrich RP, Janko C, Unterweger H, Lyer S, Alexiou C. SPIONs and magnetic hybrid materials: Synthesis, toxicology and biomedical applications. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2019-0093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
In the past decades, a wide variety of different superparamagnetic iron oxide nanoparticles (SPIONs) have been synthesized. Due to their unique properties, such as big surface-to-volume ratio, superparamagnetism and comparatively low toxicity, they are principally well suited for many different technical and biomedical applications. Meanwhile, there are a numerous synthesis methods for SPIONs, but high requirements for biocompatibility have so far delayed a successful translation into the clinic. Moreover, depending on the planned application, such as for imaging, magnetic drug targeting, hyperthermia or for hybrid materials intended for regenerative medicine, specific physicochemical and biological properties are inevitable. Since a summary of all existing SPION systems, their properties and application is far too extensive, this review reports on selected methods for SPION synthesis, their biocompatibility and biomedical applications.
Collapse
Affiliation(s)
- Ralf P. Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery , Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship Universitätsklinikum , Erlangen , Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery , Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship Universitätsklinikum , Erlangen , Germany
| | - Harald Unterweger
- Department of Otorhinolaryngology, Head and Neck Surgery , Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship Universitätsklinikum , Erlangen , Germany
| | - Stefan Lyer
- Department of Otorhinolaryngology, Head and Neck Surgery , Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship Universitätsklinikum , Erlangen , Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery , Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship Universitätsklinikum , Erlangen , Germany
| |
Collapse
|
2
|
Kohl Y, Hesler M, Drexel R, Kovar L, Dähnhardt-Pfeiffer S, Selzer D, Wagner S, Lehr T, von Briesen H, Meier F. Influence of Physicochemical Characteristics and Stability of Gold and Silver Nanoparticles on Biological Effects and Translocation across an Intestinal Barrier-A Case Study from In Vitro to In Silico. NANOMATERIALS 2021; 11:nano11061358. [PMID: 34063963 PMCID: PMC8224057 DOI: 10.3390/nano11061358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 11/27/2022]
Abstract
A better understanding of their interaction with cell-based tissue is a fundamental prerequisite towards the safe production and application of engineered nanomaterials. Quantitative experimental data on the correlation between physicochemical characteristics and the interaction and transport of engineered nanomaterials across biological barriers, in particular, is still scarce, thus hampering the development of effective predictive non-testing strategies. Against this background, the presented study investigated the translocation of gold and silver nanoparticles across the gastrointestinal barrier along with related biological effects using an in vitro 3D-triple co-culture cell model. Standardized in vitro assays and quantitative polymerase chain reaction showed no significant influence of the applied nanoparticles on both cell viability and generation of reactive oxygen species. Transmission electron microscopy indicated an intact cell barrier during the translocation study. Single particle ICP-MS revealed a time-dependent increase of translocated nanoparticles independent of their size, shape, surface charge, and stability in cell culture medium. This quantitative data provided the experimental basis for the successful mathematical description of the nanoparticle transport kinetics using a non-linear mixed effects modeling approach. The results of this study may serve as a basis for the development of predictive tools for improved risk assessment of engineered nanomaterials in the future.
Collapse
Affiliation(s)
- Yvonne Kohl
- Fraunhofer Institute for Biomedical Engineering IBMT, 66280 Sulzbach, Germany; (M.H.); (S.W.); (H.v.B.)
- Correspondence: (Y.K.); (F.M.); Tel.: +49-6897-9071-256 (Y.K.); +49-8191-985-6880 (F.M.)
| | - Michelle Hesler
- Fraunhofer Institute for Biomedical Engineering IBMT, 66280 Sulzbach, Germany; (M.H.); (S.W.); (H.v.B.)
| | - Roland Drexel
- Postnova Analytics GmbH, 86899 Landsberg am Lech, Germany;
| | - Lukas Kovar
- Department of Clinical Pharmacy, Saarland University, 66123 Saarbrücken, Germany; (L.K.); (D.S.); (T.L.)
| | | | - Dominik Selzer
- Department of Clinical Pharmacy, Saarland University, 66123 Saarbrücken, Germany; (L.K.); (D.S.); (T.L.)
| | - Sylvia Wagner
- Fraunhofer Institute for Biomedical Engineering IBMT, 66280 Sulzbach, Germany; (M.H.); (S.W.); (H.v.B.)
| | - Thorsten Lehr
- Department of Clinical Pharmacy, Saarland University, 66123 Saarbrücken, Germany; (L.K.); (D.S.); (T.L.)
| | - Hagen von Briesen
- Fraunhofer Institute for Biomedical Engineering IBMT, 66280 Sulzbach, Germany; (M.H.); (S.W.); (H.v.B.)
| | - Florian Meier
- Postnova Analytics GmbH, 86899 Landsberg am Lech, Germany;
- Correspondence: (Y.K.); (F.M.); Tel.: +49-6897-9071-256 (Y.K.); +49-8191-985-6880 (F.M.)
| |
Collapse
|
3
|
Milyaeva OY. Dynamic Surface Properties of Solutions of Bovine Serum Albumin Complexes with Silica Nanoparticles. COLLOID JOURNAL 2020. [DOI: 10.1134/s1061933x20050117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Zhao L, Zhao L, Li H, Sun P, Wu J, Li K, Hu S, Wang X, Pu Q. Facile Evaluation of Nanoparticle-Protein Interaction Based on Charge Neutralization with Pulsed Streaming Potential Measurement. Anal Chem 2019; 91:15670-15677. [PMID: 31710814 DOI: 10.1021/acs.analchem.9b03778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Exploration of simple and universal methods to quantitatively measure nanoparticle (NP)-protein interaction is of great importance. In this work, pulsed streaming potential (SP) measurement has been used to evaluate the interaction between NPs and proteins within microchannels. Graphene oxide (GO) and SiO2 NPs were selected to represent two kinds of NPs. Lysozyme and common blood proteins, including albumin V, γ-globulins, and fibrinogen, were used as model proteins. The linear relationship between the initial adsorption rate (S = dEr/dt) and the concentration of proteins was observed. Combined with the Hill equation, the microscopic dissociation constant (KD) and the Hill coefficient (n) between NPs and proteins were calculated based on the relationship between S and the concentration of each protein. The concentration of free proteins which have not interacted with the NPs in the NPs-protein mixture could also be measured. The influence of pH, conductivity, and ionic strengths of the incubation buffer on the interaction between GO and lysozyme was evaluated based on the constant KD. The interaction intensity between NPs and proteins was defined as charge neutralization efficiency QC, which could be calculated from the value of S. It takes only 150 s to get the whole set of data under the optimized experiment parameters. The measurement solely depends on the surface charge, no intrinsic fluorescence is required for either the NPs or the proteins, and no labeling or immobilization process is involved as well.
Collapse
Affiliation(s)
- Lei Zhao
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering , Beijing University of Technology , Beijing , 100124 , P. R. China.,State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry , Lanzhou University , Lanzhou , Gansu 730000 , P. R. China
| | - Lizhi Zhao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry , Lanzhou University , Lanzhou , Gansu 730000 , P. R. China
| | - Hongli Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry , Lanzhou University , Lanzhou , Gansu 730000 , P. R. China
| | - Ping Sun
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry , Lanzhou University , Lanzhou , Gansu 730000 , P. R. China
| | - Jing Wu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry , Lanzhou University , Lanzhou , Gansu 730000 , P. R. China
| | - Ke Li
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering , Beijing University of Technology , Beijing , 100124 , P. R. China
| | - Siqi Hu
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering , Beijing University of Technology , Beijing , 100124 , P. R. China
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering , Beijing University of Technology , Beijing , 100124 , P. R. China
| | - Qiaosheng Pu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry , Lanzhou University , Lanzhou , Gansu 730000 , P. R. China
| |
Collapse
|
5
|
Rezaei G, Daghighi SM, Haririan I, Yousefi I, Raoufi M, Rezaee F, Dinarvand R. Protein corona variation in nanoparticles revisited: A dynamic grouping strategy. Colloids Surf B Biointerfaces 2019; 179:505-516. [PMID: 31009853 DOI: 10.1016/j.colsurfb.2019.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 12/27/2022]
Abstract
Bio-nano interface investigation models are mainly based on the type of proteins present on corona, bio-nano interaction responses and the evaluation of final outcomes. Due to the extensive diversity in correlative models for investigation of nanoparticles biological responses, a comprehensive model considering different aspects of bio-nano interface from nanoparticles properties to protein corona fingerprints appeared to be essential and cannot be ignored. In order to minimize divergence in studies in the era of bio-nano interface and protein corona with following therapeutic implications, a useful investigation model on the basis of RADAR concept is suggested. The contents of RADAR concept consist of five modules: 1- Reshape of our strategy for synthesis of nanoparticles (NPs), 2- Application of NPs selected based on human fluid, 3- Delivery strategy of NPs selected based on target tissue, 4- Analysis of proteins present on corona using correct procedures and 5- Risk assessment and risk reduction upon the collection and analysis of results to increase drug delivery efficiency and drug efficacy. RADAR grouping strategy for revisiting protein corona phenomenon as a key of success will be discussed with respect to the current state of knowledge.
Collapse
Affiliation(s)
- Ghassem Rezaei
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Seyed Mojtaba Daghighi
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Ismael Haririan
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Medical Biomaterials Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Iman Yousefi
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, Canada
| | - Mohammad Raoufi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Farhad Rezaee
- Department of Gastroenterology-Hepatology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Cantarutti C, Bertoncin P, Posocco P, Hunashal Y, Giorgetti S, Bellotti V, Fogolari F, Esposito G. The interaction of β2-microglobulin with gold nanoparticles: impact of coating, charge and size. J Mater Chem B 2018; 6:5964-5974. [PMID: 32254716 DOI: 10.1039/c8tb01129j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gold nanoparticles (AuNPs) have been proved to be ideal scaffolds to build nanodevices whose performance can be tuned by changing their coating.
Collapse
Affiliation(s)
| | - Paolo Bertoncin
- Dipartimento di Scienze della Vita
- Università di Trieste
- 34128 Trieste
- Italy
| | - Paola Posocco
- Dipartimento di Ingegneria ed Architettura
- Università di Trieste
- 34127 Trieste
- Italy
| | | | - Sofia Giorgetti
- Dipartimento di Medicina Molecolare
- Università di Pavia
- 27100 Pavia
- Italy
| | - Vittorio Bellotti
- Dipartimento di Medicina Molecolare
- Università di Pavia
- 27100 Pavia
- Italy
- Division of Medicine
| | | | | |
Collapse
|
7
|
Dror Y, Sorkin R, Brand G, Boubriak O, Urban J, Klein J. The effect of the serum corona on interactions between a single nano-object and a living cell. Sci Rep 2017; 7:45758. [PMID: 28383528 PMCID: PMC5382918 DOI: 10.1038/srep45758] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/06/2017] [Indexed: 12/20/2022] Open
Abstract
Nanoparticles (NPs) which enter physiological fluids are rapidly coated by proteins, forming a so-called corona which may strongly modify their interaction with tissues and cells relative to the bare NPs. In this work the interactions between a living cell and a nano-object, and in particular the effect on this of the adsorption of serum proteins, are directly examined by measuring the forces arising as an Atomic Force Microscope tip (diameter 20 nm) - simulating a nano-object - approaches and contacts a cell. We find that the presence of a serum protein corona on the tip strongly modifies the interaction as indicated by pronounced increase in the indentation, hysteresis and work of adhesion compared to a bare tip. Classically one expects an AFM tip interacting with a cell surface to be repelled due to cell elastic distortion, offset by tip-cell adhesion, and indeed such a model fits the bare-tip/cell interaction, in agreement with earlier work. However, the force plots obtained with serum-modified tips are very different, indicating that the cell is much more compliant to the approaching tip. The insights obtained in this work may promote better design of NPs for drug delivery and other nano-medical applications.
Collapse
Affiliation(s)
- Yael Dror
- Materials and Interfaces Department, Weizmann Institute of Science, Rehovot 76100, Israel.,Department of Physical and Theoretical Chemistry, Oxford University, Oxford OX1 3QZ, United Kingdom
| | - Raya Sorkin
- Materials and Interfaces Department, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Guy Brand
- Materials and Interfaces Department, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Olga Boubriak
- University Laboratory of Physiology, Oxford University, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Jill Urban
- University Laboratory of Physiology, Oxford University, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Jacob Klein
- Materials and Interfaces Department, Weizmann Institute of Science, Rehovot 76100, Israel.,Department of Physical and Theoretical Chemistry, Oxford University, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
8
|
Shahabadi N, Maghsudi M, Nemati L. Design of green magneto-fluorescent γ-Fe2O3-methyldopa conjugate nanocrystal as a targeted probe for monitoring of esterase activity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 149:215-23. [DOI: 10.1016/j.jphotobiol.2015.05.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/05/2015] [Accepted: 05/24/2015] [Indexed: 11/26/2022]
|
9
|
Song ZM, Chen N, Liu JH, Tang H, Deng X, Xi WS, Han K, Cao A, Liu Y, Wang H. Biological effect of food additive titanium dioxide nanoparticles on intestine: anin vitrostudy. J Appl Toxicol 2015; 35:1169-78. [DOI: 10.1002/jat.3171] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 03/30/2015] [Accepted: 04/10/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Zheng-Mei Song
- Institute of Nanochemistry and Nanobiology; Shanghai University; Shanghai China
| | - Ni Chen
- Institute of Nanochemistry and Nanobiology; Shanghai University; Shanghai China
| | - Jia-Hui Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering; Peking University; Beijing China
| | - Huan Tang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering; Peking University; Beijing China
| | - Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology; Shanghai University; Shanghai China
| | - Wen-Song Xi
- Institute of Nanochemistry and Nanobiology; Shanghai University; Shanghai China
| | - Kai Han
- Institute of Nanochemistry and Nanobiology; Shanghai University; Shanghai China
| | - Aoneng Cao
- Institute of Nanochemistry and Nanobiology; Shanghai University; Shanghai China
| | - Yuanfang Liu
- Institute of Nanochemistry and Nanobiology; Shanghai University; Shanghai China
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering; Peking University; Beijing China
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology; Shanghai University; Shanghai China
| |
Collapse
|
10
|
Abdelhamid HN, Wu HF. Proteomics analysis of the mode of antibacterial action of nanoparticles and their interactions with proteins. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2014.09.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Peng Q, Wei XQ, Yang Q, Zhang S, Zhang T, Shao XR, Cai XX, Zhang ZR, Lin YF. Enhanced biostability of nanoparticle-based drug delivery systems by albumin corona. Nanomedicine (Lond) 2015; 10:205-14. [PMID: 25600966 DOI: 10.2217/nnm.14.86] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aims: The long-term efficacy of nanoparticles is limited by their rapid metabolism in tissues. In this work, we aim to enhance nanoparticle biostability by preforming a bovine serum albumin (BSA) corona. Materials & methods: A BSA corona was formed by incubating poly-3-hydroxybutyrate-co-3-hydroxyhexanoate nanoparticles with BSA solution and confirmed by SDS-PAGE and x-ray photoelectron spectroscopy. The impacts of the BSA corona on the drug release, biostability and biodistribution of nanoparticles were investigated. Results: In the presence of the BSA corona, the drug release (coumarin-6 was used as the model drug) of nanoparticles was significantly slower and their stability in liver homogenate and in organs was enhanced. Conclusion: Preformation of a BSA corona may be a promising approach for enhancing drug biostability and for developing long-acting nanoparticle formulations. Original submitted 25 February 2014; Revised submitted 10 April 2014
Collapse
Affiliation(s)
- Qiang Peng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xue-Qin Wei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qin Yang
- Key Laboratory of Drug Targeting & Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shu Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ting Zhang
- Key Laboratory of Drug Targeting & Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiao-Ru Shao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiao-Xiao Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhi-Rong Zhang
- Key Laboratory of Drug Targeting & Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yun-Feng Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Pyrgiotakis G, Blattmann CO, Demokritou P. Real-Time Nanoparticle-Cell Interactions in Physiological Media by Atomic Force Microscopy. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2014; 2:1681-1690. [PMID: 25068097 PMCID: PMC4105194 DOI: 10.1021/sc500152g] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/08/2014] [Indexed: 05/27/2023]
Abstract
Particle-cell interactions in physiological media are important in determining the fate and transport of nanoparticles and biological responses to them. In this work, these interactions are assessed in real time using a novel atomic force microscopy (AFM) based platform. Industry-relevant CeO2 and Fe2O3 engineered nanoparticles (ENPs) of two primary particle sizes were synthesized by the flame spray pyrolysis (FSP) based Harvard Versatile Engineering Nanomaterials Generation System (Harvard VENGES) and used in this study. The ENPs were attached on AFM tips, and the atomic force between the tip and lung epithelia cells (A549), adhered on a substrate, was measured in biological media, with and without the presence of serum proteins. Two metrics were used to assess the nanoparticle cell: the detachment force required to separate the ENP from the cell and the number of bonds formed between the cell and the ENPs. The results indicate that these atomic level ENP-cell interaction forces strongly depend on the physiological media. The presence of serum proteins reduced both the detachment force and the number of bonds by approximately 50% indicating the important role of the protein corona on the particle cell interactions. Additionally, it was shown that particle to cell interactions were size and material dependent.
Collapse
Affiliation(s)
- Georgios Pyrgiotakis
- Center for Nanotechnology and Nanotoxicology at Harvard School of Public Health, Harvard University , 665 Huntington Avenue, 02115 Boston, Massachusetts United States
| | - Christoph O Blattmann
- Center for Nanotechnology and Nanotoxicology at Harvard School of Public Health, Harvard University , 665 Huntington Avenue, 02115 Boston, Massachusetts United States
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology at Harvard School of Public Health, Harvard University , 665 Huntington Avenue, 02115 Boston, Massachusetts United States
| |
Collapse
|
13
|
Bogart LK, Pourroy G, Murphy CJ, Puntes V, Pellegrino T, Rosenblum D, Peer D, Lévy R. Nanoparticles for imaging, sensing, and therapeutic intervention. ACS NANO 2014; 8:3107-22. [PMID: 24641589 PMCID: PMC4123720 DOI: 10.1021/nn500962q] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Indexed: 05/18/2023]
Abstract
Nanoparticles have the potential to contribute to new modalities in molecular imaging and sensing as well as in therapeutic interventions. In this Nano Focus article, we identify some of the current challenges and knowledge gaps that need to be confronted to accelerate the developments of various applications. Using specific examples, we journey from the characterization of these complex hybrid nanomaterials; continue with surface design and (bio)physicochemical properties, their fate in biological media and cells, and their potential for cancer treatment; and finally reflect on the role of animal models to predict their behavior in humans.
Collapse
Affiliation(s)
- Lara K. Bogart
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, Merseyside L69 3BX, United Kingdom
| | - Genevieve Pourroy
- Institut de Physique et Chimie des Matériaux de Strasbourg IPCMS, UMR 7504 CNRS-Université de Strasbourg, 23 rue du Loess BP 43, 67034 Strasbourg cedex 2, France
| | - Catherine J. Murphy
- Department of Chemistry, University of Illinois at Urbana—Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Victor Puntes
- Insitut Català de Nanociencia I Nanotecnologia, campus UAB (CERCA-CSIC-ICREA), 08193 Barcelona, Spain
| | - Teresa Pellegrino
- Nanochemistry, Instituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Daniel Rosenblum
- Laboratory of NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Department of Materials Science and Engineering, Faculty of Engineering, and Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dan Peer
- Laboratory of NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Department of Materials Science and Engineering, Faculty of Engineering, and Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Raphaël Lévy
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, Merseyside L69 3BX, United Kingdom
| |
Collapse
|
14
|
Zinc Oxide Nanoparticles Modulates the Production of β-Glucosidase and Protects its Functional State Under Alcoholic Condition in Saccharomyces cerevisiae. Appl Biochem Biotechnol 2014; 173:155-66. [DOI: 10.1007/s12010-014-0825-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 02/19/2014] [Indexed: 10/25/2022]
|
15
|
Prakash YS, Matalon S. Nanoparticles and the lung: friend or foe? Am J Physiol Lung Cell Mol Physiol 2014; 306:L393-6. [DOI: 10.1152/ajplung.00013.2014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nanomedicine is a rapidly evolving field with high potential for developing novel research, diagnosis, and/or therapeutic approaches for lung diseases. However, for engineered nanomaterials to reach their true potential, there are still a number of unanswered questions regarding nanomaterial vs. tissue properties that dictate lung cellular uptake, distribution, and intracellular effects, and particle vs. tissue factors that determine toxicity vs. beneficial effects in the lung. Some of these key questions are highlighted in this Perspectives. Addressing these important issues will help improve nanoparticle design and enhance enthusiasm for more widespread use of nanotechnology in pulmonary medicine.
Collapse
Affiliation(s)
- Y. S. Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; and
| | - Sadis Matalon
- Department of Anesthesiology, University of Alabama Birmingham, Birmingham, Alabama
| |
Collapse
|
16
|
Izak-Nau E, Voetz M, Eiden S, Duschl A, Puntes VF. Altered characteristics of silica nanoparticles in bovine and human serum: the importance of nanomaterial characterization prior to its toxicological evaluation. Part Fibre Toxicol 2013; 10:56. [PMID: 24206572 PMCID: PMC3829099 DOI: 10.1186/1743-8977-10-56] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 11/01/2013] [Indexed: 11/10/2022] Open
Abstract
Background Many toxicological studies on silica nanoparticles (NPs) have been reported, however, the literature often shows various conclusions concerning the same material. This is mainly due to a lack of sufficient NPs characterization as synthesized as well as in operando. Many characteristics of NPs may be affected by the chemistry of their surroundings and the presence of inorganic and biological moieties. Consequently, understanding the behavior of NPs at the time of toxicological assay may play a crucial role in the interpretation of its results. The present study examines changes in properties of differently functionalized fluorescent 50 nm silica NPs in a variety of environments and assesses their ability to absorb proteins from cell culture medium containing either bovine or human serum. Methods The colloidal stability depending on surface functionalization of NPs, their concentration and time of exposure was investigated in water, standard biological buffers, and cell culture media by dynamic light scattering (DLS), zeta potential measurements and transmission electron microscopy (TEM). Interactions of the particles with biological media were investigated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) in bovine and human serum, and extracted proteins were assessed using matrix-assisted laser desorption/ionization-time of flight technique (MALDI-TOF). Results It was recognized that all of the studied silica NPs tended to agglomerate after relatively short time in buffers and biological media. The agglomeration depended not only on the NPs functionalization but also on their concentration and the incubation time. Agglomeration was much diminished in a medium containing serum. The protein corona formation depended on time and functionalization of NP, and varied significantly in different types of serum. Conclusions Surface charge, ionic strength and biological molecules alter the properties of silica NPs and potentially affect their biological effects. The NPs surface in bovine serum and in human serum varies significantly, and it changes with incubation time. Consequently, the human serum, rather than the animal serum, should be used while conducting in vitro or in vivo studies concerning humans. Moreover, there is a need to pre-incubate NPs in the serum to control the composition of the bio-nano-composite that would be present in the human body.
Collapse
|
17
|
Leite-Silva VR, Lamer ML, Sanchez WY, Liu DC, Sanchez WH, Morrow I, Martin D, Silva HD, Prow TW, Grice JE, Roberts MS. The effect of formulation on the penetration of coated and uncoated zinc oxide nanoparticles into the viable epidermis of human skin in vivo. Eur J Pharm Biopharm 2013; 84:297-308. [DOI: 10.1016/j.ejpb.2013.01.020] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 01/09/2013] [Accepted: 01/29/2013] [Indexed: 02/04/2023]
|
18
|
|
19
|
Bergin IL, Witzmann FA. Nanoparticle toxicity by the gastrointestinal route: evidence and knowledge gaps. INTERNATIONAL JOURNAL OF BIOMEDICAL NANOSCIENCE AND NANOTECHNOLOGY 2013; 3:10.1504/IJBNN.2013.054515. [PMID: 24228068 PMCID: PMC3822607 DOI: 10.1504/ijbnn.2013.054515] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The increasing interest in nanoparticles for advanced technologies, consumer products, and biomedical applications has led to great excitement about potential benefits but also concern over the potential for adverse human health effects. The gastrointestinal tract represents a likely route of entry for many nanomaterials, both directly through intentional ingestion or indirectly via nanoparticle dissolution from food containers or by secondary ingestion of inhaled particles. Additionally, increased utilisation of nanoparticles may lead to increased environmental contamination and unintentional ingestion via water, food animals, or fish. The gastrointestinal tract is a site of complex, symbiotic interactions between host cells and the resident microbiome. Accordingly, evaluation of nanoparticles must take into consideration not only absorption and extraintestinal organ accumulation but also the potential for altered gut microbes and the effects of this perturbation on the host. The existing literature was evaluated for evidence of toxicity based on these considerations. Focus was placed on three categories of nanomaterials: nanometals and metal oxides, carbon-based nanoparticles, and polymer/dendrimers with emphasis on those particles of greatest relevance to gastrointestinal exposures.
Collapse
Affiliation(s)
- Ingrid L. Bergin
- Unit for Laboratory Animal Medicine, University of Michigan, 1150 W. Medical Center Dr, 018 ARF, Ann Arbor, MI 48197, USA,
| | - Frank A. Witzmann
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 1345 West 16th Street, Indianapolis IN 46202, USA
| |
Collapse
|
20
|
Monopoli MP, Aberg C, Salvati A, Dawson KA. Biomolecular coronas provide the biological identity of nanosized materials. NATURE NANOTECHNOLOGY 2012; 7:779-86. [PMID: 23212421 DOI: 10.1038/nnano.2012.207] [Citation(s) in RCA: 1893] [Impact Index Per Article: 145.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 10/14/2012] [Indexed: 05/18/2023]
Abstract
The search for understanding the interactions of nanosized materials with living organisms is leading to the rapid development of key applications, including improved drug delivery by targeting nanoparticles, and resolution of the potential threat of nanotechnological devices to organisms and the environment. Unless they are specifically designed to avoid it, nanoparticles in contact with biological fluids are rapidly covered by a selected group of biomolecules to form a corona that interacts with biological systems. Here we review the basic concept of the nanoparticle corona and its structure and composition, and highlight how the properties of the corona may be linked to its biological impacts. We conclude with a critical assessment of the key problems that need to be resolved in the near future.
Collapse
Affiliation(s)
- Marco P Monopoli
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, Belfield, Dublin 4, Ireland
| | | | | | | |
Collapse
|
21
|
Casals E, Puntes VF. Inorganic nanoparticle biomolecular corona: formation, evolution and biological impact. Nanomedicine (Lond) 2012; 7:1917-30. [DOI: 10.2217/nnm.12.169] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Physicochemical changes to inorganic nanoparticles (NPs) in biological environments determine their impact. Blood, lymph, mucus, complete cell culture media and other biological fluids contain a large amount and variety of different molecules. NPs dispersed in these fluids are sensitive to such environments. One of the most significant alterations is the formation of the NP–protein corona (PC) as a result of the adsorption of proteins onto the inorganic surface. This process is currently gaining attention in the field of inorganic NPs since this spontaneous coating gives a biological identity to the composite NP–PC and determines the interactions between the NP and the host in living systems. Therefore, knowledge of NP–PC formation is crucial for understanding the evolution, biodistribution and reactivity of NPs inside organisms and, therefore, for the safe design of engineered NPs.
Collapse
Affiliation(s)
- Eudald Casals
- CIN2 (ICN-CSIC), Catalan Institute of Nanotechnology & Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Edifici Q, 08193 Bellaterra, Barcelona, Spain
| | - Víctor F Puntes
- Institut Català de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
22
|
Podila R, Brown JM. Toxicity of engineered nanomaterials: a physicochemical perspective. J Biochem Mol Toxicol 2012; 27:50-5. [PMID: 23129019 DOI: 10.1002/jbt.21442] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/14/2012] [Accepted: 09/08/2012] [Indexed: 12/12/2022]
Abstract
The global market for nanomaterial-based products is forecasted to reach 100 billion dollars per annum for 2011-2015. Extensive manufacturing and the use of engineered nanomaterials have raised concerns regarding their impact on biological response in living organisms and the environment at large. The fundamental properties of nanomaterials exhibit a complex dependence upon several factors such as their morphology, size, defects, and chemical stability. Therefore, it is exceedingly difficult to correlate their biological response with their intricate physicochemical properties. For example, varying toxic response may ensue due to different methods of nanomaterial preparation, dissimilar impurities, and defects. In this review, we surveyed the existing literature on the dependence of cytotoxicity on physicochemical properties. We found that ENM size, shape, defect density, physicochemical stability, and surface modification to be the main causes that elicit altered physiological response or cytotoxicity.
Collapse
Affiliation(s)
- Ramakrishna Podila
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | | |
Collapse
|
23
|
Biocompatibility of mannan nanogel—safe interaction with plasma proteins. Biochim Biophys Acta Gen Subj 2012; 1820:1043-51. [DOI: 10.1016/j.bbagen.2012.04.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 11/19/2022]
|
24
|
Reed RB, Ladner DA, Higgins CP, Westerhoff P, Ranville JF. Solubility of nano-zinc oxide in environmentally and biologically important matrices. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:93-9. [PMID: 21994124 PMCID: PMC4713012 DOI: 10.1002/etc.708] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Increasing manufacture and use of engineered nanoparticles is leading to a greater probability for release of engineered nanoparticles into the environment and exposure to organisms. In particular, zinc oxide (ZnO) is toxic, although it is unclear whether this toxicity is due to the zinc oxide nanoparticles, dissolution to Zn(2+) , or some combination thereof. The goal of this study was to determine the relative solubilities of both commercially available and in-house synthesized ZnO in matrices used for environmental fate and transport or biological toxicity studies. Dissolution of ZnO was observed in nanopure water (7.18-7.40 mg/L dissolved Zn, as measured by filtration) and Roswell Park Memorial Institute medium (RPMI-1640) (∼5 mg/L), but much more dissolution was observed in Dulbecco's modified Eagle's medium, in which the dissolved Zn concentration exceeded 34 mg/L. Moderately hard water exhibited low Zn solubility, likely because of precipitation of a Zn carbonate solid phase. Precipitation of a Zn-containing solid phase in RPMI also appeared to limit Zn solubility. Equilibrium conditions with respect to ZnO solubility were not apparent in these matrices, even after more than 1,000 h of dissolution. These results suggest that solution chemistry exerts a strong influence on ZnO dissolution and can result in limits on Zn solubility from precipitation of less soluble solid phases.
Collapse
Affiliation(s)
- Robert B. Reed
- Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, Colorado, USA
| | - David A. Ladner
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, South Carolina, USA
| | - Christopher P. Higgins
- Division of Environmental Science and Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
| | - James F. Ranville
- Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, Colorado, USA
- Corresponding Author: James F. Ranville, Colorado School of Mines, Department of Chemistry and Geochemistry, 1500 Illinois St., Golden, CO 80401, Phone: (303) 273-3004, Fax: (303) 273-3629,
| |
Collapse
|
25
|
In vitro toxicity of serum protein-adsorbed citrate-reduced gold nanoparticles in human lung adenocarcinoma cells. Toxicol In Vitro 2011; 26:229-37. [PMID: 22178767 DOI: 10.1016/j.tiv.2011.11.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 11/11/2011] [Accepted: 11/28/2011] [Indexed: 01/06/2023]
Abstract
We examined the cytotoxicity effect of the serum protein coated gold nanoparticles (AuNPs) in the A549 cells. Negatively charged AuNPs were prepared by chemical reduction using citrate. The dimension and surface charge of AuNPs were characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), and zeta potential measurements. The AuNPs modified by the citrate anion were presumed to adsorb the serum proteins as indicated from the visible absorption spectroscopy, DLS, and quartz crystal microbalance (QCM) data. The QCM results indicated that among the constituents, fetal bovine serum (FBS) should be the major adsorbate species on the AuNPs incubated in the RPMI medium. The internalization of AuNPs into the A549 cells was also monitored using TEM and dark-field microscopy (DFM). Both methylthiazol tetrazolium (MTT) and lactate dehydrogenase (LDH) assays revealed that AuNPs were toxic as determined by their half-maximal inhibitory concentration. A flow cytometric and real-time PCR analysis of apoptotic genes along with the ATP depletion measurements suggested that AuNPs induce cell damages through extrinsic and intrinsic apoptotic pathways.
Collapse
|
26
|
Hsu CK, Liao MH, Tai YT, Liu SH, Ou KL, Fang HW, Lee IJ, Chen RM. Nanoparticles prepared from the water extract of Gusuibu (Drynaria fortunei J. Sm.) protects osteoblasts against insults and promotes cell maturation. Int J Nanomedicine 2011; 6:1405-13. [PMID: 21796243 PMCID: PMC3141868 DOI: 10.2147/ijn.s20473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Our previous study showed that Gusuibu (Drynaria fortunei J. Sm.) can stimulate osteoblast maturation. This study was further designed to evaluate the effects of nanoparticles prepared from the water extract of Gusuibu (WEG) on osteoblast survival and maturation. Primary osteoblasts were exposed to 1, 10, 100, and 1000 μg/mL nanoparticles of WEG (nWEG) for 24, 48, and 72 hours did not affect morphologies, viability, or apoptosis of osteoblasts. In comparison, treatment of osteoblasts with 1000 μg/mL WEG for 72 hours decreased cell viability and induced DNA fragmentation and cell apoptosis. nWEG had better antioxidant bioactivity in protecting osteoblasts from oxidative and nitrosative stress-induced apoptosis than WEG. In addition, nWEG stimulated greater osteoblast maturation than did WEG. Therefore, this study shows that WEG nanoparticles are safer to primary osteoblasts than are normal-sized products, and may promote better bone healing by protecting osteoblasts from apoptotic insults, and by promoting osteogenic maturation.
Collapse
Affiliation(s)
- Chung-King Hsu
- Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Park J, Park JH, Ock KS, Ganbold EO, Song NW, Cho K, Lee SY, Joo SW. Preferential adsorption of fetal bovine serum on bare and aromatic thiol-functionalized gold surfaces in cell culture media. J Colloid Interface Sci 2011; 363:105-13. [PMID: 21840532 DOI: 10.1016/j.jcis.2011.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/05/2011] [Accepted: 07/06/2011] [Indexed: 01/26/2023]
Abstract
Intracellular uptake of serum-coated gold nanoparticles (AuNPs) in a single mammalian cell was examined in order to investigate the interactions of cell culture media and aromatic thiol-functionalized gold surfaces using micro-spectroscopic tools. The AuNPs modified by the aromatic thiols of para-aminobenzenethiol (ABT), para-hydroxy benzenethiol (HBT), and para-carboxylic benzenethiol (CBT, para-mercaptobenzoic acid) bearing NH(2), OH, and COOH surface functional groups are presumed to adsorb the serum proteins as indicated from the compiled quartz crystal microbalance (QCM) data. The QCM results indicate that among the constituents, fetal bovine serum (FBS) should be the major adsorbate species on AuNPs incubated in Roswell Park Memorial Institute (RPMI) medium. The functionalized AuNPs were found to be internalized as an aggregation state in mammalian cells as evidenced by transmission electron microscopy (TEM) images. We monitored such cellular uptake behaviors of aromatic thiol-modified AuNPs using dark-field microscopy (DFM)-guided confocal surface-enhanced Raman scattering techniques in order to identify the three-dimensional localization inside the single cell. We found that the uptake amounts of ABT, HBT, and CBT were similar by counting up to 70 particles inside the cells incubated in the solution mixture of the aromatic thiol and 1,4-phenylenediisocyanide (PDIC) as a reference. This result indicates for the short aromatic thiol compounds, the AuNPs should enter the cell after the serum-coating regardless of the surface functional groups. Considering that the aromatic thiols have little effect on the serum coating, the DFM/SERS method is an effective tool for monitoring the localization of AuNPs inside a single cell.
Collapse
Affiliation(s)
- Jin Park
- Department of Chemistry, Soongsil University, Seoul 156-743, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Lee SB. Nanotoxicology: toxicity and biological effects of nanoparticles for new evaluation standards. Nanomedicine (Lond) 2011; 6:759-61. [DOI: 10.2217/nnm.11.97] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Sang Bok Lee
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742, USA and Graduate School of Nanoscience & Technology (WCU), Korea Advanced Institute of Science & Technology (KAIST), Daejeon 305-701, Korea
| |
Collapse
|
29
|
Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S. Protein-nanoparticle interactions: opportunities and challenges. Chem Rev 2011; 111:5610-37. [PMID: 21688848 DOI: 10.1021/cr100440g] [Citation(s) in RCA: 1003] [Impact Index Per Article: 71.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes V. Time evolution of the nanoparticle protein corona. ACS NANO 2010; 4:3623-32. [PMID: 20553005 DOI: 10.1021/nn901372t] [Citation(s) in RCA: 836] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In this work, we explore the formation of the protein corona after exposure of metallic Au nanoparticles (NPs), with sizes ranging from 4 to 40 nm, to cell culture media containing 10% of fetal bovine serum. Under in vitro cell culture conditions, zeta potential measurements, UV-vis spectroscopy, dynamic light scattering and transmission electron microscope analysis were used to monitor the time evolution of the inorganic NP-protein corona formation and to characterize the stability of the NPs and their surface state at every stage of the experiment. As expected, the red-shift of the surface plasmon resonance peak, as well as the drop of surface charge and the increase of the hydrodynamic diameter indicated the conjugation of proteins to NPs. Remarkably, an evolution from a loosely attached toward an irreversible attached protein corona over time was observed. Mass spectrometry of the digested protein corona revealed albumin as the most abundant component which suggests an improved biocompatibility.
Collapse
Affiliation(s)
- Eudald Casals
- Institut Català de Nanotecnologia, Bellaterra, Barcelona, Spain
| | | | | | | | | |
Collapse
|
31
|
Faunce T, Watal A. Nanosilver and global public health: international regulatory issues. Nanomedicine (Lond) 2010; 5:617-32. [DOI: 10.2217/nnm.10.33] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Silver in nanoparticle form is used extensively worldwide in hospital and general practice settings, in dressings as a treatment for external wounds, burns and ulcers. Nanosilver is also an increasingly important coating over embedded medical devices, inhibiting the development of biofilm. Nanosilver disinfectant sprays and polymer coatings are being widely promoted as protective against viral infections. In addition, nanosilver is widely used for its antibacterial properties in food processing and packaging, as well as in consumer products used for domestic cleaning and clothing. This article argues that medical devices, therapeutic products, and domestic food and goods containing nanosilver, although offering therapeutic benefits, must be subject to precautionary regulation owing to associated public health and environmental risks, particularly from large volumes of nanosilver in waste water. The article first examines the use of nanosilver in a variety of contemporary medical and domestic products, the utilization of which may assist in resolving global public health problems, such as restricted access to safe food, water and medical care. It then discusses the mechanisms of toxicity for nanosilver, whether it should be classified as a new chemical entity for regulatory purposes and whether its increased usage poses significant environmental and public health risks. The article next critically analyses representative international regulatory regimes (the USA, EU, UK and Australia) for medical and domestic use of nanosilver. The conclusion includes a set of recommendations for improving international regulation of nanosilver.
Collapse
Affiliation(s)
- Thomas Faunce
- Australian Research Council, Future Fellow
- College of Law, Australian National University, Canberra, Australia
- Medical School, College of Medicine, Australian National University, Canberra, Australia
| | - Aparna Watal
- College of Law, Australian National University, Canberra, Australia
| |
Collapse
|
32
|
Pfaller T, Colognato R, Nelissen I, Favilli F, Casals E, Ooms D, Leppens H, Ponti J, Stritzinger R, Puntes V, Boraschi D, Duschl A, Oostingh GJ. The suitability of different cellularin vitroimmunotoxicity and genotoxicity methods for the analysis of nanoparticle-induced events. Nanotoxicology 2009; 4:52-72. [DOI: 10.3109/17435390903374001] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
33
|
Lynch I, Salvati A, Dawson KA. Protein-nanoparticle interactions: What does the cell see? NATURE NANOTECHNOLOGY 2009; 4:546-547. [PMID: 19734922 DOI: 10.1038/nnano.2009.248] [Citation(s) in RCA: 406] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Fluorescence correlation spectroscopy is used as a quantitative method to understand the binding and exchange behaviour of proteins on the surfaces of nanoparticles.
Collapse
|
34
|
Barbu E, Molnàr É, Tsibouklis J, Górecki DC. The potential for nanoparticle-based drug delivery to the brain: overcoming the blood–brain barrier. Expert Opin Drug Deliv 2009; 6:553-65. [DOI: 10.1517/17425240902939143] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|