1
|
Yang S, Zhang F, Li Q, Li Q. Niacin promotes the efflux of lysosomal cholesterol from macrophages via the CD38/NAADP signaling pathway. Exp Biol Med (Maywood) 2022; 247:1047-1054. [PMID: 35369785 DOI: 10.1177/15353702221084632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The accumulation of free cholesterol in macrophage lysosomes significantly enhances atherogenesis. Our recent study demonstrated that the cluster of differentiation 38 (CD38)/nicotinic acid adenine dinucleotide phosphate (NAADP)/Ca2+ signaling pathway plays a critical role in the efflux of lysosomal free cholesterol from macrophages in atherosclerosis. Niacin, known as nicotinic acid, is one of the oldest lipid-lowering medications showing unique anti-atherosclerotic activity. However, it is unknown whether this anti-atherosclerosis activity is associated with the efflux of lysosomal compartmentalized cholesterol in macrophages. In this study, we investigated the anti-atherosclerotic effects of niacin on the reduction of lysosomal free cholesterol via CD38/NAADP signaling in macrophages derived from low-density lipoprotein receptor (LDLr−/−) mice. Fluorescent filipin and Nile red labeling coupled with confocal microscopy demonstrated that niacin reduced free cholesterol accumulation in lysosomes in a concentration-dependent manner. Transmission electron microscopy also showed that niacin markedly decreased cholesterol crystal formation in lysosomes in oxidized LDL-containing LDLr−/− bone marrow–derived macrophages. Enzyme-linked immunosorbent assays showed that niacin increased NAADP production in a concentration-dependent manner, which was inhibited by small interfering RNA interference of CD38. Therefore, niacin may promote the efflux of lysosomal cholesterol from macrophages via the CD38/NAADP signaling pathway.
Collapse
Affiliation(s)
- Shenghua Yang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Fan Zhang
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23284-2512, USA
| | - Quanwen Li
- Department of Cardiology, The Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Quanzhong Li
- Department of Cardiology, Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| |
Collapse
|
2
|
Ferchaud-Roucher V, Croyal M, Moyon T, Zair Y, Krempf M, Ouguerram K. Plasma Lipidome Analysis by Liquid Chromatography-High Resolution Mass Spectrometry and Ion Mobility of Hypertriglyceridemic Patients on Extended-Release Nicotinic Acid: a Pilot Study. Cardiovasc Drugs Ther 2017; 31:269-279. [DOI: 10.1007/s10557-017-6737-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
3
|
Kumar JS, Subramanian VS, Kapadia R, Kashyap ML, Said HM. Mammalian colonocytes possess a carrier-mediated mechanism for uptake of vitamin B3 (niacin): studies utilizing human and mouse colonic preparations. Am J Physiol Gastrointest Liver Physiol 2013; 305:G207-13. [PMID: 23744738 PMCID: PMC3742858 DOI: 10.1152/ajpgi.00148.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Niacin (vitamin B3; nicotinic acid) plays an important role in maintaining redox state of cells and is obtained from endogenous and exogenous sources. The latter source has generally been assumed to be the dietary niacin, but another exogenous source that has been ignored is the niacin that is produced by the normal microflora of the large intestine. For this source of niacin to be bioavailable, it needs to be absorbed, but little is known about the ability of the large intestine to absorb niacin and the mechanism involved. Here we addressed these issues using the nontransformed human colonic epithelial NCM460 cells, native human colonic apical membrane vesicles (AMV) isolated from organ donors, and mouse colonic loops in vivo as models. Uptake of ³H-nicotinic acid by NCM460 cells was: 1) acidic pH (but not Na⁺) dependent; 2) saturable (apparent Km = 2.5 ± 0.8 μM); 3) inhibited by unlabeled nicotinic acid, nicotinamide, and probenecid; 4) neither affected by other bacterially produced monocarboxylates, monocarboxylate transport inhibitor, or by substrates of the human organic anion transporter-10; 5) affected by modulators of the intracellular protein tyrosine kinase- and Ca²⁺-calmodulin-regulatory pathways; and 6) adaptively regulated by extracellular nicotinate level. Uptake of nicotinic acid by human colonic AMV in vitro and by mouse colonic loops in vivo was also carrier mediated. These findings report, for the first time, that mammalian colonocytes possess a high-affinity carrier-mediated mechanism for nicotinate uptake and show that the process is affected by intracellular and extracellular factors.
Collapse
Affiliation(s)
- Jeyan S. Kumar
- 1Departments of Medicine, Physiology and Biophysics, University of California, Irvine; ,2Department of Medical Research, Veterans Affairs Medical Center, Long Beach, California
| | - Veedamali S. Subramanian
- 1Departments of Medicine, Physiology and Biophysics, University of California, Irvine; ,2Department of Medical Research, Veterans Affairs Medical Center, Long Beach, California
| | - Rubina Kapadia
- 1Departments of Medicine, Physiology and Biophysics, University of California, Irvine; ,2Department of Medical Research, Veterans Affairs Medical Center, Long Beach, California
| | - Moti L. Kashyap
- 2Department of Medical Research, Veterans Affairs Medical Center, Long Beach, California
| | - Hamid M. Said
- 1Departments of Medicine, Physiology and Biophysics, University of California, Irvine; ,2Department of Medical Research, Veterans Affairs Medical Center, Long Beach, California
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW This review focuses on the current understanding of the physiological mechanisms of action of niacin on lipid metabolism and atherosclerosis. RECENT FINDINGS Emerging findings indicate that niacin decreases hepatic triglyceride synthesis and subsequent VLDL/LDL secretion by directly and noncompetitively inhibiting hepatocyte diacylglycerol acyltransferase 2. Recent studies in mice lacking niacin receptor GPR109A and human clinical trials with GPR109A agonists disproved the long believed hypothesis of adipocyte triglyceride lipolysis as the mechanism for niacin's effect on serum lipids. Niacin, through inhibiting hepatocyte surface expression of β-chain ATP synthase, inhibits the removal of HDL-apolipoprotein (apo) AI resulting in increased apoAI-containing HDL particles. Additional recent findings suggest that niacin by increasing hepatic ATP-binding cassette transporter A1-mediated apoAI lipidation increases HDL biogenesis, thus stabilizing circulation of newly secreted apoAI. New concepts have also emerged on lipid-independent actions of niacin on vascular endothelial oxidative and inflammatory events, myeloperoxidase release from neutrophils and its impact on HDL function, and GPR109A-mediated macrophage inflammatory events involved in atherosclerosis. SUMMARY Recent advances have provided physiological mechanisms of action of niacin on lipid metabolism and atherosclerosis. Better understanding of niacin's actions on multiple tissues and targets may be helpful in designing combination therapy and new treatment strategies for atherosclerosis.
Collapse
MESH Headings
- Animals
- Apolipoprotein A-I/genetics
- Apolipoprotein A-I/metabolism
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Cholesterol, HDL/agonists
- Cholesterol, HDL/metabolism
- Cholesterol, LDL/antagonists & inhibitors
- Cholesterol, LDL/metabolism
- Cholesterol, VLDL/antagonists & inhibitors
- Cholesterol, VLDL/metabolism
- Diacylglycerol O-Acyltransferase/genetics
- Diacylglycerol O-Acyltransferase/metabolism
- Gene Expression Regulation/drug effects
- Humans
- Hypolipidemic Agents/therapeutic use
- Lipid Metabolism/drug effects
- Mice
- Mitochondrial Proton-Translocating ATPases/genetics
- Mitochondrial Proton-Translocating ATPases/metabolism
- Niacin/therapeutic use
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Nicotinic/genetics
- Receptors, Nicotinic/metabolism
- Triglycerides/antagonists & inhibitors
- Triglycerides/biosynthesis
Collapse
Affiliation(s)
- Vaijinath S Kamanna
- Atherosclerosis Research Center, Department of Veterans Affairs Healthcare System, Long Beach, California 90822, USA.
| | | | | |
Collapse
|
5
|
MacKay D, Hathcock J, Guarneri E. Niacin: chemical forms, bioavailability, and health effects. Nutr Rev 2012; 70:357-66. [DOI: 10.1111/j.1753-4887.2012.00479.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
6
|
|
7
|
Thakkar RB, Kashyap ML, Lewin AJ, Krause SL, Jiang P, Padley RJ. Acetylsalicylic acid reduces niacin extended-release-induced flushing in patients with dyslipidemia. Am J Cardiovasc Drugs 2009; 9:69-79. [PMID: 19331435 DOI: 10.1007/bf03256578] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Niacin extended-release (NER) is safe and effective for treatment of dyslipidemia. However, some patients discontinue NER treatment because of flushing, the most common adverse event associated with niacin therapy. OBJECTIVE To evaluate the effect of daily oral acetylsalicylic acid (ASA) on NER-induced flushing in patients with dyslipidemia. METHODS A randomized, double-blind, placebo-controlled, multicenter, 5-week study was conducted (ClinicalTrials.gov identifier: NCT00626392). Patients (n = 277) were randomly assigned to one of six treatment arms and received a 1-week run-in with ASA 325 mg or placebo followed by 4 weeks of ASA 325 mg or placebo 30 minutes before NER at a starting dose of 500 mg or 1000 mg; all patients were titrated to NER 2000 mg at week 3. The primary endpoint was the maximum severity of flushing events during week 1. RESULTS In week 1, ASA run-in, ASA pretreatment, and a lower starting dosage of NER (500 mg/day) resulted in reductions in mean maximum severity of flushing; 48% fewer patients who received ASA experienced flushing episodes of moderate or greater intensity relative to placebo (absolute rates 15% vs 29%; p = 0.01). Over 4 weeks, ASA reduced the number of flushing episodes/patient/week by 42% relative to placebo. The discontinuation rate due to flushing was lower in the ASA group compared with placebo (1.8% vs 9.4%; p = 0.007). Overall safety was not different between groups. CONCLUSION These data suggest that a clinically meaningful reduction in the severity and incidence of NER-induced flushing may be achieved with ASA use.
Collapse
|
8
|
BEPPU F, NIWANO Y, KYAN R, YASURA K, TAMAKI M, NISHINO M, MIDORIKAWA Y, HAMADA H. Hypolipidemic Effects of Ethanol Extracts of Citrus depressa and Annona atemoya, Typical Plant Foodstuffs in Okinawa, Japan on KKAy Mice Fed with Moderately High Fat Diet. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2009. [DOI: 10.3136/fstr.15.553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
|
10
|
|
11
|
Abstract
Nicotinic acid (niacin) has long been used for the treatment of lipid disorders and cardiovascular disease. Niacin favorably affects apolipoprotein (apo) B-containing lipoproteins (eg, very-low-density lipoprotein [VLDL], low-density lipoprotein [LDL], lipoprotein[a]) and increases apo A-I-containing lipoproteins (high-density lipoprotein [HDL]). Recently, new discoveries have enlarged our understanding of the mechanism of action of niacin and challenged older concepts. There are new data on (1) how niacin affects triglycerides (TGs) and apo B-containing lipoprotein metabolism in the liver, (2) how it affects apo A-I and HDL metabolism, (3) how it affects vascular anti-inflammatory events, (4) a specific niacin receptor in adipocytes and immune cells, (5) how niacin causes flushing, and (6) the characterization of a niacin transport system in liver and intestinal cells. New findings indicate that niacin directly and noncompetitively inhibits hepatocyte diacylglycerol acyltransferase-2, a key enzyme for TG synthesis. The inhibition of TG synthesis by niacin results in accelerated intracellular hepatic apo B degradation and the decreased secretion of VLDL and LDL particles. Previous kinetic studies in humans and recent in vitro cell culture findings indicate that niacin retards mainly the hepatic catabolism of apo A-I (vs apo A-II) but not scavenger receptor BI-mediated cholesterol esters. Decreased HDL-apo A-I catabolism by niacin explains the increases in HDL half-life and concentrations of lipoprotein A-I HDL subfractions, which augment reverse cholesterol transport. Initial data suggest that niacin, by inhibiting the hepatocyte surface expression of beta-chain adenosine triphosphate synthase (a recently reported HDL-apo A-I holoparticle receptor), inhibits the removal of HDL-apo A-I. Recent studies indicate that niacin increases vascular endothelial cell redox state, resulting in the inhibition of oxidative stress and vascular inflammatory genes, key cytokines involved in atherosclerosis. The niacin flush results from the stimulation of prostaglandins D(2) and E(2) by subcutaneous Langerhans cells via the G protein-coupled receptor 109A niacin receptor. Although decreased free fatty acid mobilization from adipose tissue via the G protein-coupled receptor 109A niacin receptor has been a widely suggested mechanism of niacin to decrease TGs, physiologically and clinically, this pathway may be only a minor factor in explaining the lipid effects of niacin.
Collapse
|
12
|
Abstract
Nicotinic acid (niacin) favorably affects very-low-density lipoprotein (VLDL), low-density lipoprotein (LDL), and lipoprotein (a) (LP[a]) and increases high-density lipoprotein (HDL). Emerging data indicates vascular anti-inflammatory properties to additionally account for niacin's proven effects in cardiovascular disease. Recent evidence indicates that niacin acts on GPR109A and GPR109B (HM74A and HM74, respectively), receptors expressed in adipocytes and immune cells. In adipocytes, GPR109A activation reduces triglyceride (TG) lipolysis, resulting in decreased free fatty acid (FFA) mobilization to the liver. In humans, this mechanism has yet to be confirmed because the plasma FFA decrease is transient and is followed by a rebound increase in FFA levels. New evidence indicates niacin directly inhibits diacylglycerol acyltransferase 2 (DGAT2) isolated from human hepatocytes, resulting in accelerated hepatic apolipoprotein (apo)B degradation and decreased apoB secretion, thus explaining reductions in VLDL and LDL. This raises important questions as to whether stimulation of GPR109A in adipocytes or inhibition of DGAT2 in liver by niacin best explain the reduction in VLDL and LDL in dyslipidemic patients. Kinetic and in vitro studies indicate that niacin retards the hepatic catabolism of apoA-I but not liver scavenger receptor B1-mediated cholesterol esters, suggesting that niacin inhibits hepatic holoparticle HDL removal. Indeed, recent preliminary evidence suggests that niacin decreases surface expression of hepatic beta-chain of adenosine triphosphate synthase, which has been implicated in apoA-I/HDL holoparticle catabolism. GPR109A-mediated production of prostaglandin D2 in macrophages and Langerhan cells causes skin capillary vasodilation and explains, in part, niacin's effect on flushing. Development of niacin receptor agonists would, theoretically, result in adipocyte TG accumulation (and clinical adiposity) and increased flushing. This raises questions about niacin receptor agonists as therapeutic agents. Several niacin receptor agonists have been developed and patented, but their clinical effects have not been described. Future research is needed to determine whether niacin receptor agonists will demonstrate all the beneficial properties of nicotinic acid on atherosclerosis and without significant adverse effects.
Collapse
|
13
|
Said HM, Nabokina SM, Balamurugan K, Mohammed ZM, Urbina C, Kashyap ML. Mechanism of nicotinic acid transport in human liver cells: experiments with HepG2 cells and primary hepatocytes. Am J Physiol Cell Physiol 2007; 293:C1773-8. [PMID: 17928533 DOI: 10.1152/ajpcell.00409.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study reports on the functional expression of a specific, high-affinity carrier-mediated mechanism for the transport of niacin (nicotinic acid) in human liver cells. Both human-derived liver HepG2 cells and human primary hepatocytes were used as models in these investigations. The initial rate of transport of nicotinic acid into HepG2 cells was found to be acidic pH, temperature, and energy dependent; it was, however, Na(+) independent in nature. Evidence for the existence of a carrier-mediated system that is specific for [(3)H]nicotinic acid transport was found and included the following: 1) saturability as a function of concentration with an apparent K(m) of 0.73 +/- 0.16 microM and V(max) of 25.02 +/- 1.45 pmol.mg protein(-1).3 min(-1), 2) cis-inhibition by unlabeled nicotinic acid and nicotinamide but not by unrelated organic anions (lactate, acetate, butyrate, succinate, citrate, and valproate), and 3) trans-stimulation of [(3)H]nicotinic acid efflux by unlabeled nicotinic acid. Transport of the vitamin into human primary hepatocytes occurs similarly via an acidic pH-dependent and specific carrier-mediated process. Inhibitors of the Ca(2+)-calmodulin-mediated pathway (but not modulators of the PKC-, PKA-, and protein tyrosine kinase-mediated pathways) inhibited nicotinic acid transport into both HepG2 cells and human primary hepatocytes. Maintenance of HepG2 cells (for 48 h) in growth medium oversupplemented with nicotinic acid (or nicotinamide) did not affect the subsequent transport of [(3)H]nicotinic acid into HepG2 cells. These results show, for the first time, the existence of a specific and regulated membrane carrier-mediated system for nicotinic acid transport in human liver cells.
Collapse
Affiliation(s)
- Hamid M Said
- Veterans Affairs Medical Center, Long Beach, CA 90822, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Fletcher GF, Bufalino V, Costa F, Goldstein LB, Jones D, Smaha L, Smith SC, Stone N. Efficacy of drug therapy in the secondary prevention of cardiovascular disease and stroke. Am J Cardiol 2007; 99:1E-35E. [PMID: 17378996 DOI: 10.1016/j.amjcard.2007.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Gerald F Fletcher
- Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, Florida 32224, USA.
| | | | | | | | | | | | | | | |
Collapse
|