Bhanuprakash V, Indrani BK, Hosamani M, Balamurugan V, Singh RK. Bluetongue vaccines: the past, present and future.
Expert Rev Vaccines 2009;
8:191-204. [PMID:
19196199 DOI:
10.1586/14760584.8.2.191]
[Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bluetongue (BT) is a noncontagious and arboviral disease of both domestic and wild ruminants. The disease is enzootic in areas where reservoirs (cattle and wild ruminants) and vectors exist for the BT virus (BTV). A total of 24 BTV serotypes have been recognized worldwide. The major control measures include restriction of animal movement, vector control applying insecticides, slaughter of infected animals and vaccination. Prophylactic immunization of sheep against BT is the most practical and effective control measure to combat BT infection. At present, attenuated vaccines are used in the Republic of South Africa, the USA and other countries. However, EU countries were using attenuated vaccines, only recently shifting to inactivated vaccines owing to their safety and efficacy. In India, inactivated vaccines are in experimental stages and are expected to be on the market shortly. Inactivated vaccines generate serotype-specific long-lasting protective immunity after two injections, and may help in controlling epidemics. Differentiating infected from vaccinated animals (DIVA) is theoretically possible with inactivated vaccines but has not yet been developed, whereas the attenuated live vaccines are not candidates for DIVA. Attenuated live vaccines are efficacious but safety issues are of great concern. New-generation vaccines (subunit, virus-like particles, core-like particles and vectored) can be employed for DIVA. Recombinant vaccines, which generate cross-protection against multiple BTV serotypes, have great potential in BT vaccine regimens. Furthermore, new-generation vaccines are safe and efficacious experimentally, but large-scale field trials are warranted. Alternative areas, such as antivirals, siRNA, interferon and nanotechnology, may be of future use in the control of BT. We give an overview of BT vaccines, starting from conventional to recent developments, and their feasibility in controlling BT infection.
Collapse