1
|
Kim GL, Pyo SW, Yi H, Kim SH, Shin H, Yu MA, Hwang YR, Choi SY, Jeon JH, Jo SK, Rhie GE. Immunogenicity and Protective Efficacy of Recombinant Protective Antigen Anthrax Vaccine (GC1109) in A/J Mice Model. Vaccine 2023; 41:3106-3110. [PMID: 37055344 DOI: 10.1016/j.vaccine.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/10/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
A recombinant protective antigen anthrax vaccine (GC1109) is being developed as a new-generation vaccine by the Korea Disease Control and Prevention Agency. In accordance with the ongoing step 2 of phase II clinical trials, the immunogenicity and protective efficacy of the booster dose of GC1109 were evaluated in A/J mice after 3 serial vaccinations at 4-week intervals. The results indicated that the booster dose significantly increased the production of anti-protective antigen (PA) IgG and toxin-neutralizing antibody (TNA) compared with those of the group without booster. An enhanced protective effect of the booster dose was not observed because the TNA titers of the group without booster were high enough to confer protection against spore challenge. Additionally, the correlation between TNA titers and probability of survival was determined for calculating the threshold TNA titer levels associated with protection. The threshold 50 % neutralization factor (NF50) of TNA showing 70 % probability of protection was 0.21 in A/J mice with 1,200 LD50 Sterne spores challenge. These results indicate that GC1109 is a promising candidate as a new-generation anthrax vaccine and that a booster dose might provide enhanced protection by producing toxin-neutralizing antibodies.
Collapse
Affiliation(s)
- Gyu-Lee Kim
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - Seong Wook Pyo
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - Hwajung Yi
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - So-Hyeon Kim
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - Hwachul Shin
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - Min-Ah Yu
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - Yi-Rang Hwang
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - Sang-Yoon Choi
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - Jun Ho Jeon
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - Su Kyoung Jo
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - Gi-Eun Rhie
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea.
| |
Collapse
|
2
|
Manish M, Verma S, Kandari D, Kulshreshtha P, Singh S, Bhatnagar R. Anthrax prevention through vaccine and post-exposure therapy. Expert Opin Biol Ther 2020; 20:1405-1425. [DOI: 10.1080/14712598.2020.1801626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Manish Manish
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Shashikala Verma
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Divya Kandari
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Parul Kulshreshtha
- Department of Zoology, Shivaji College, University of Delhi, Delhi, India
| | - Samer Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- Department of Microbial Biotechnology, Panjab University, Chandigarh, India
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
3
|
Xu X, Godoy-Ruiz R, Adipietro KA, Peralta C, Ben-Hail D, Varney KM, Cook ME, Roth BM, Wilder PT, Cleveland T, Grishaev A, Neu HM, Michel SLJ, Yu W, Beckett D, Rustandi RR, Lancaster C, Loughney JW, Kristopeit A, Christanti S, Olson JW, MacKerell AD, Georges AD, Pozharski E, Weber DJ. Structure of the cell-binding component of the Clostridium difficile binary toxin reveals a di-heptamer macromolecular assembly. Proc Natl Acad Sci U S A 2020; 117:1049-1058. [PMID: 31896582 PMCID: PMC6969506 DOI: 10.1073/pnas.1919490117] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Targeting Clostridium difficile infection is challenging because treatment options are limited, and high recurrence rates are common. One reason for this is that hypervirulent C. difficile strains often have a binary toxin termed the C. difficile toxin, in addition to the enterotoxins TsdA and TsdB. The C. difficile toxin has an enzymatic component, termed CDTa, and a pore-forming or delivery subunit termed CDTb. CDTb was characterized here using a combination of single-particle cryoelectron microscopy, X-ray crystallography, NMR, and other biophysical methods. In the absence of CDTa, 2 di-heptamer structures for activated CDTb (1.0 MDa) were solved at atomic resolution, including a symmetric (SymCDTb; 3.14 Å) and an asymmetric form (AsymCDTb; 2.84 Å). Roles played by 2 receptor-binding domains of activated CDTb were of particular interest since the receptor-binding domain 1 lacks sequence homology to any other known toxin, and the receptor-binding domain 2 is completely absent in other well-studied heptameric toxins (i.e., anthrax). For AsymCDTb, a Ca2+ binding site was discovered in the first receptor-binding domain that is important for its stability, and the second receptor-binding domain was found to be critical for host cell toxicity and the di-heptamer fold for both forms of activated CDTb. Together, these studies represent a starting point for developing structure-based drug-design strategies to target the most severe strains of C. difficile.
Collapse
Affiliation(s)
- Xingjian Xu
- City University of New York Advanced Science Research Center, City University of New York, New York, NY 10017
- PhD Program in Biochemistry, The Graduate Center, City University of New York, New York, NY 10017
| | - Raquel Godoy-Ruiz
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- The Center for Biomolecular Therapeutics, The University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Kaylin A Adipietro
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201
- The Center for Biomolecular Therapeutics, The University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Christopher Peralta
- City University of New York Advanced Science Research Center, City University of New York, New York, NY 10017
| | - Danya Ben-Hail
- City University of New York Advanced Science Research Center, City University of New York, New York, NY 10017
| | - Kristen M Varney
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- The Center for Biomolecular Therapeutics, The University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Mary E Cook
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201
- The Center for Biomolecular Therapeutics, The University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Braden M Roth
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Paul T Wilder
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- The Center for Biomolecular Therapeutics, The University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201
| | | | | | - Heather M Neu
- University of Maryland School of Pharmacy, University of Maryland, Baltimore, MD 21201
| | - Sarah L J Michel
- University of Maryland School of Pharmacy, University of Maryland, Baltimore, MD 21201
| | - Wenbo Yu
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- The Center for Biomolecular Therapeutics, The University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201
- University of Maryland School of Pharmacy, University of Maryland, Baltimore, MD 21201
| | - Dorothy Beckett
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742
| | | | | | | | | | | | | | - Alexander D MacKerell
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- The Center for Biomolecular Therapeutics, The University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201
- University of Maryland School of Pharmacy, University of Maryland, Baltimore, MD 21201
| | - Amedee des Georges
- City University of New York Advanced Science Research Center, City University of New York, New York, NY 10017;
- PhD Program in Biochemistry, The Graduate Center, City University of New York, New York, NY 10017
- PhD Program in Chemistry, The Graduate Center, City University of New York, New York, NY 10017
- Department of Chemistry & Biochemistry, City College of New York, New York, NY 10031
| | - Edwin Pozharski
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201;
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- The Center for Biomolecular Therapeutics, The University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201
| | - David J Weber
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201;
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- The Center for Biomolecular Therapeutics, The University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201
| |
Collapse
|
4
|
Majumder S, Das S, Kingston J, Shivakiran MS, Batra HV, Somani VK, Bhatnagar R. Functional characterization and evaluation of protective efficacy of EA752-862 monoclonal antibody against B. anthracis vegetative cell and spores. Med Microbiol Immunol 2019; 209:125-137. [PMID: 31811379 DOI: 10.1007/s00430-019-00650-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 11/22/2019] [Indexed: 08/30/2023]
Abstract
The most promising means of controlling anthrax, a lethal zoonotic disease during the early infection stages, entail restricting the resilient infectious form, i.e., the spores from proliferating to replicating bacilli in the host. The extractible antigen (EA1), a major S-layer protein present on the vegetative cells and spores of Bacillus anthracis, is highly immunogenic and protects mice against lethal challenge upon immunization. In the present study, mice were immunized with r-EA1C, the C terminal crystallization domain of EA1, to generate a neutralizing monoclonal antibody EA752-862, that was evaluated for its anti-spore and anti-bacterial properties. The monoclonal antibody EA752-862 had a minimum inhibitory concentration of 0.08 mg/ml, was bactericidal at a concentration of 0.1 mg/ml and resulted in 100% survival of mice against challenge with B. anthracis vegetative cells. Bacterial cell lysis as observed by scanning electron microscopy and nucleic acid leakage assay could be attributed as a possible mechanism for the bactericidal property. The association of mAb EA752-862 with spores inhibits their subsequent germination to vegetative cells in vitro, enhances phagocytosis of the spores and killing of the vegetative cells within the macrophage, and subsequently resulted in 90% survival of mice upon B. anthracis Ames spore challenge. Therefore, owing to its anti-spore and bactericidal properties, the present study demonstrates mAb EA752-862 as an efficient neutralizing antibody that hinders the establishment of early infection before massive multiplication and toxin release takes place.
Collapse
Affiliation(s)
- Saugata Majumder
- Microbiology Division, Defence Food Research Laboratory, Mysore, 570011, India
| | - Shreya Das
- Microbiology Division, Defence Food Research Laboratory, Mysore, 570011, India
| | - Joseph Kingston
- Microbiology Division, Defence Food Research Laboratory, Mysore, 570011, India.
| | - M S Shivakiran
- Microbiology Division, Defence Food Research Laboratory, Mysore, 570011, India
| | - H V Batra
- Microbiology Division, Defence Food Research Laboratory, Mysore, 570011, India
| | - Vikas Kumar Somani
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rakesh Bhatnagar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
5
|
Cross AR, Baldwin VM, Roy S, Essex-Lopresti AE, Prior JL, Harmer NJ. Zoonoses under our noses. Microbes Infect 2019; 21:10-19. [PMID: 29913297 PMCID: PMC6386771 DOI: 10.1016/j.micinf.2018.06.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 11/22/2022]
Abstract
One Health is an effective approach for the management of zoonotic disease in humans, animals and environments. Examples of the management of bacterial zoonoses in Europe and across the globe demonstrate that One Health approaches of international surveillance, information-sharing and appropriate intervention methods are required to successfully prevent and control disease outbreaks in both endemic and non-endemic regions. Additionally, a One Health approach enables effective preparation and response to bioterrorism threats.
Collapse
Affiliation(s)
- Alice R Cross
- Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD United Kingdom.
| | - Victoria M Baldwin
- Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ United Kingdom
| | - Sumita Roy
- Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD United Kingdom
| | | | - Joann L Prior
- Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD United Kingdom; Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ United Kingdom; London School of Hygiene & Tropical Medicine, Kepple Street, London WC1E 7HT United Kingdom
| | - Nicholas J Harmer
- Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD United Kingdom
| |
Collapse
|
6
|
Mirhaj H, Honari H, Zamani E. Evaluation of immune response to recombinant Bacillus anthracis LFD1-PA4 chimeric protein. IRANIAN JOURNAL OF VETERINARY RESEARCH 2019; 20:112-119. [PMID: 31531033 PMCID: PMC6716276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 12/27/2018] [Accepted: 01/01/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Anthrax is a particularly dangerous infectious disease that affects humans and livestock. Efficacious vaccines that can rapidly induce a long-term immune response are required to prevent anthrax infection in humans. Domains 4 and 1 of the protective antigen (PA) and lethal factor (LF), respectively, have very high antigenic properties. AIMS In this experimental study, the pET28a-lfD1-pa4 expression vector was designed, constructed and transferred into E. coli BL21 (DE3) plysS. METHODS For this purpose, pa4 gene was amplified by polymerase chain reaction (PCR) and cloned in a pGEM T-easy vector. The pGEM-pa4 and pGEM-lfD1 were digested by XbaI and HindIII enzymes. The ligation reaction was performed by ligase T4 enzyme and the gene cassette, lfD1-pa4, was subcloned in pET28a and transferred to E. coli BL21 (DE3) PlysS. Expression and purification of chimeric proteins were confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting techniques. The chimera LFD1-PA4 and mixed LFD1+PA4 proteins were injected four times into mice and antibody production was relativity evaluated by enzyme-linked immunosorbent assay (ELISA) test. RESULTS The results showed that both chimeric and mixed proteins are immunogenic, but LFD1-PA4 has a higher potential to stimulate mice immune system. CONCLUSION LFD1-PA4 chimeric protein induced a higher immune response than LFD1+PA4 mixed protein and elicited antibody responses to LF and edema factor (EF), therefore, it holds promise to be a more effective trivalent vaccine candidate to use in anthrax prevention.
Collapse
Affiliation(s)
- H. Mirhaj
- Ph.D. Student in Nano Biotechnology, Department of Biology, Faculty of Basic Science, Imam Hossein University, Tehran, Iran
| | - H. Honari
- Department of Biology, Faculty of Basic Science, Imam Hossein University, Tehran, Iran
| | - E. Zamani
- MSc Student in Cellular and Molecular Biology, Department of Biology, Faculty of Basic Science, Imam Hossein University, Tehran, Iran
| |
Collapse
|
7
|
Hou AW, Morrill AM. Obiltoxaximab: Adding to the Treatment Arsenal for Bacillus anthracis Infection. Ann Pharmacother 2017; 51:908-913. [PMID: 28573869 DOI: 10.1177/1060028017713029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To review the safety and efficacy of obiltoxaximab, a monoclonal antibody indicated for the treatment of Bacillus anthracis inhalational anthrax in adult and pediatric patients. DATA SOURCES A MEDLINE (1946 to May, week 1, 2017) and EMBASE (1980 to 2017, week 19) search was performed using the search terms obiltoxaximab OR ETI-204 OR Anthim AND anthrax. STUDY SELECTION AND DATA EXTRACTION All English-language clinical studies in both animal and human models assessing the safety and efficacy of obiltoxaximab were included. DATA SYNTHESIS A total of 5 articles have been published on clinical studies examining safety and efficacy of obiltoxaximab. Efficacy studies in 2 animal models, New Zealand White rabbits and cynomolgus macaques, showed higher rates of survival post-anthrax exposure when obiltoxaximab was administered. Safety studies in healthy human volunteers showed that it was tolerated, with a relatively low incidence of adverse events. CONCLUSION Based on these clinical studies and the implausibility of conducting a trial in infected individuals, obiltoxaximab is a safe and efficacious addition to the anthrax antitoxin armamentarium to protect against and treat inhalational anthrax.
Collapse
Affiliation(s)
- Audrey W Hou
- 1 Sanofi Genzyme/MCPHS University, Cambridge, MA, USA
| | | |
Collapse
|
8
|
Fowler CC, Chang SJ, Gao X, Geiger T, Stack G, Galán JE. Emerging insights into the biology of typhoid toxin. Curr Opin Microbiol 2017; 35:70-77. [PMID: 28213043 DOI: 10.1016/j.mib.2017.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 11/25/2022]
Abstract
Typhoid toxin is a unique A2B5 exotoxin and an important virulence factor for Salmonella Typhi, the cause of typhoid fever. In the decade since its initial discovery, great strides have been made in deciphering the unusual biological program of this toxin, which is fundamentally different from related toxins in many ways. Purified typhoid toxin administered to laboratory animals causes many of the symptoms of typhoid fever, suggesting that typhoid toxin is a central factor in this disease. Further advances in understanding the biology of this toxin will help guide the development of badly needed diagnostics and therapeutic interventions that target this toxin to detect, prevent or treat typhoid fever.
Collapse
Affiliation(s)
- Casey C Fowler
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, United States
| | - Shu-Jung Chang
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, United States
| | - Xiang Gao
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, United States
| | - Tobias Geiger
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, United States
| | - Gabrielle Stack
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, United States
| | - Jorge E Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, United States.
| |
Collapse
|
9
|
Singh VK, Garcia M, Wise SY, Seed TM. Medical countermeasures for unwanted CBRN exposures: Part I chemical and biological threats with review of recent countermeasure patents. Expert Opin Ther Pat 2016; 26:1431-1447. [DOI: 10.1080/13543776.2017.1233178] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Vijay K. Singh
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Melissa Garcia
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Stephen Y. Wise
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | |
Collapse
|
10
|
Huang E, Pillai SK, Bower WA, Hendricks KA, Guarnizo JT, Hoyle JD, Gorman SE, Boyer AE, Quinn CP, Meaney-Delman D. Antitoxin Treatment of Inhalation Anthrax: A Systematic Review. Health Secur 2016; 13:365-77. [PMID: 26690378 DOI: 10.1089/hs.2015.0032] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Concern about use of anthrax as a bioweapon prompted development of novel anthrax antitoxins for treatment. Clinical guidelines for the treatment of anthrax recommend antitoxin therapy in combination with intravenous antimicrobials; however, a large-scale or mass anthrax incident may exceed antitoxin availability and create a need for judicious antitoxin use. We conducted a systematic review of antitoxin treatment of inhalation anthrax in humans and experimental animals to inform antitoxin recommendations during a large-scale or mass anthrax incident. A comprehensive search of 11 databases and the FDA website was conducted to identify relevant animal studies and human reports: 28 animal studies and 3 human cases were identified. Antitoxin monotherapy at or shortly after symptom onset demonstrates increased survival compared to no treatment in animals. With early treatment, survival did not differ between antimicrobial monotherapy and antimicrobial-antitoxin therapy in nonhuman primates and rabbits. With delayed treatment, antitoxin-antimicrobial treatment increased rabbit survival. Among human cases, addition of antitoxin to combination antimicrobial treatment was associated with survival in 2 of the 3 cases treated. Despite the paucity of human data, limited animal data suggest that adjunctive antitoxin therapy may improve survival. Delayed treatment studies suggest improved survival with combined antitoxin-antimicrobial therapy, although a survival difference compared with antimicrobial therapy alone was not demonstrated statistically. In a mass anthrax incident with limited antitoxin supplies, antitoxin treatment of individuals who have not demonstrated a clinical benefit from antimicrobials, or those who present with more severe illness, may be warranted. Additional pathophysiology studies are needed, and a point-of-care assay correlating toxin levels with clinical status may provide important information to guide antitoxin use during a large-scale anthrax incident.
Collapse
|
11
|
Maxson T, Mitchell DA. Targeted Treatment for Bacterial Infections: Prospects for Pathogen-Specific Antibiotics Coupled with Rapid Diagnostics. Tetrahedron 2016; 72:3609-3624. [PMID: 27429480 PMCID: PMC4941824 DOI: 10.1016/j.tet.2015.09.069] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Antibiotics are a cornerstone of modern medicine and have significantly reduced the burden of infectious diseases. However, commonly used broad-spectrum antibiotics can cause major collateral damage to the human microbiome, causing complications ranging from antibiotic-associated colitis to the rapid spread of resistance. Employing narrower spectrum antibiotics targeting specific pathogens may alleviate this predicament as well as provide additional tools to expand an antibiotic repertoire threatened by the inevitability of resistance. Improvements in clinical diagnosis will be required to effectively utilize pathogen-specific antibiotics and new molecular diagnostics are poised to fulfill this need. Here we review recent trends and the future prospects of deploying narrower spectrum antibiotics coupled with rapid diagnostics. Further, we discuss the theoretical advantages and limitations of this emerging approach to controlling bacterial infectious diseases.
Collapse
Affiliation(s)
- Tucker Maxson
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carle R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
12
|
Mamedov T, Chichester JA, Jones RM, Ghosh A, Coffin MV, Herschbach K, Prokhnevsky AI, Streatfield SJ, Yusibov V. Production of Functionally Active and Immunogenic Non-Glycosylated Protective Antigen from Bacillus anthracis in Nicotiana benthamiana by Co-Expression with Peptide-N-Glycosidase F (PNGase F) of Flavobacterium meningosepticum. PLoS One 2016; 11:e0153956. [PMID: 27101370 PMCID: PMC4839623 DOI: 10.1371/journal.pone.0153956] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 04/06/2016] [Indexed: 11/20/2022] Open
Abstract
Bacillus anthracis has long been considered a potential biological warfare agent, and therefore, there is a need for a safe, low-cost and highly efficient anthrax vaccine with demonstrated long-term stability for mass vaccination in case of an emergency. Many efforts have been made towards developing an anthrax vaccine based on recombinant protective antigen (rPA) of B. anthracis, a key component of the anthrax toxin, produced using different expression systems. Plants represent a promising recombinant protein production platform due to their relatively low cost, rapid scalability and favorable safety profile. Previous studies have shown that full-length rPA produced in Nicotiana benthamiana (pp-PA83) is immunogenic and can provide full protection against lethal spore challenge; however, further improvement in the potency and stability of the vaccine candidate is necessary. PA of B. anthracis is not a glycoprotein in its native host; however, this protein contains potential N-linked glycosylation sites, which can be aberrantly glycosylated during expression in eukaryotic systems including plants. This glycosylation could affect the availability of certain key epitopes either due to masking or misfolding of the protein. Therefore, a non-glycosylated form of pp-PA83 was engineered and produced in N. benthamiana using an in vivo deglycosylation approach based on co-expression of peptide-N-glycosidase F (PNGase F) from Flavobacterium meningosepticum. For comparison, versions of pp-PA83 containing point mutations in six potential N-glycosylation sites were also engineered and expressed in N. benthamiana. The in vivo deglycosylated pp-PA83 (pp-dPA83) was shown to have in vitro activity, in contrast to glycosylated pp-PA83, and to induce significantly higher levels of toxin-neutralizing antibody responses in mice compared with glycosylated pp-PA83, in vitro deglycosylated pp-PA83 or the mutated versions of pp-PA83. These results suggest that pp-dPA83 may offer advantages in terms of dose sparing and enhanced immunogenicity as a promising candidate for a safe, effective and low-cost subunit vaccine against anthrax.
Collapse
Affiliation(s)
- Tarlan Mamedov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Jessica A. Chichester
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - R. Mark Jones
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Ananya Ghosh
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Megan V. Coffin
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Kristina Herschbach
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Alexey I. Prokhnevsky
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Stephen J. Streatfield
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| |
Collapse
|
13
|
Passive Immunotherapy Protects against Enteric Invasion and Lethal Sepsis in a Murine Model of Gastrointestinal Anthrax. Toxins (Basel) 2015; 7:3960-76. [PMID: 26426050 PMCID: PMC4626714 DOI: 10.3390/toxins7103960] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/19/2015] [Indexed: 01/09/2023] Open
Abstract
The principal portal for anthrax infection in natural animal outbreaks is the digestive tract. Enteric exposure to anthrax, which is difficult to detect or prevent in a timely manner, could be exploited as an act of terror through contamination of human or animal food. Our group has developed a novel animal model of gastrointestinal (GI) anthrax for evaluation of disease pathogenesis and experimental therapeutics, utilizing vegetative Bacillus anthracis (Sterne strain) administered to A/J mice (a complement-deficient strain) by oral gavage. We hypothesized that a humanized recombinant monoclonal antibody (mAb) * that neutralizes the protective antigen (PA) component of B. anthracis lethal toxin (LT) and edema toxin (ET) could be an effective treatment. Although the efficacy of this anti-anthrax PA mAb has been shown in animal models of inhalational anthrax, its activity in GI infection had not yet been ascertained. We hereby demonstrate that passive immunotherapy with anti-anthrax PA mAb, administered at the same time as gastrointestinal exposure to B. anthracis, prevents lethal sepsis in nearly all cases (>90%), while a delay of up to forty-eight hours in treatment still greatly reduces mortality following exposure (65%). Moreover, passive immunotherapy protects against enteric invasion, associated mucosal injury and subsequent dissemination by gastrointestinal B. anthracis, indicating that it acts to prevent the initial stages of infection. * Expired raxibacumab being cycled off the Strategic National Stockpile; biological activity confirmed by in vitro assay.
Collapse
|
14
|
Cyclodextrin derivatives as anti-infectives. Curr Opin Pharmacol 2013; 13:717-25. [PMID: 24011515 DOI: 10.1016/j.coph.2013.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/05/2013] [Accepted: 08/14/2013] [Indexed: 11/22/2022]
Abstract
Cyclodextrin derivatives can be utilized as anti-infectives with pore-forming proteins as the targets. The highly efficient selection of potent inhibitors was achieved because per-substituted cyclodextrins have the same symmetry as the target pores. Inhibitors of several bacterial toxins produced by Bacillus anthracis, Staphylococcus aureus, Clostridium perfringens, Clostridium botulinum, and Clostridium difficile were identified from a library of ∼200 CD derivatives. It was demonstrated that multi-targeted inhibitors can be found using this approach and could be utilized for the development of broad-spectrum drugs against various pathogens.
Collapse
|
15
|
Small-molecule inhibitors of lethal factor protease activity protect against anthrax infection. Antimicrob Agents Chemother 2013; 57:4139-45. [PMID: 23774434 DOI: 10.1128/aac.00941-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bacillus anthracis, the causative agent of anthrax, manifests its pathogenesis through the action of two secreted toxins. The bipartite lethal and edema toxins, a combination of lethal factor or edema factor with the protein protective antigen, are important virulence factors for this bacterium. We previously developed small-molecule inhibitors of lethal factor proteolytic activity (LFIs) and demonstrated their in vivo efficacy in a rat lethal toxin challenge model. In this work, we show that these LFIs protect against lethality caused by anthrax infection in mice when combined with subprotective doses of either antibiotics or neutralizing monoclonal antibodies that target edema factor. Significantly, these inhibitors provided protection against lethal infection when administered as a monotherapy. As little as two doses (10 mg/kg) administered at 2 h and 8 h after spore infection was sufficient to provide a significant survival benefit in infected mice. Administration of LFIs early in the infection was found to inhibit dissemination of vegetative bacteria to the organs in the first 32 h following infection. In addition, neutralizing antibodies against edema factor also inhibited bacterial dissemination with similar efficacy. Together, our findings confirm the important roles that both anthrax toxins play in establishing anthrax infection and demonstrate the potential for small-molecule therapeutics targeting these proteins.
Collapse
|
16
|
Combinations of monoclonal antibodies to anthrax toxin manifest new properties in neutralization assays. Infect Immun 2013; 81:1880-8. [PMID: 23509144 DOI: 10.1128/iai.01328-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Monoclonal antibodies (MAbs) are potential therapeutic agents against Bacillus anthracis toxins, since there is no current treatment to counteract the detrimental effects of toxemia. In hopes of isolating new protective MAbs to the toxin component lethal factor (LF), we used a strain of mice (C57BL/6) that had not been used in previous studies, generating MAbs to LF. Six LF-binding MAbs were obtained, representing 3 IgG isotypes and one IgM. One MAb (20C1) provided protection from lethal toxin (LeTx) in an in vitro mouse macrophage system but did not provide significant protection in vivo. However, the combination of two MAbs to LF (17F1 and 20C1) provided synergistic increases in protection both in vitro and in vivo. In addition, when these MAbs were mixed with MAbs to protective antigen (PA) previously generated in our laboratory, these MAb combinations produced synergistic toxin neutralization in vitro. But when 17F1 was combined with another MAb to LF, 19C9, the combination resulted in enhanced lethal toxicity. While no single MAb to LF provided significant toxin neutralization, LF-immunized mice were completely protected from infection with B. anthracis strain Sterne, which suggested that a polyclonal response is required for effective toxin neutralization. In total, these studies show that while a single MAb against LeTx may not be effective, combinations of multiple MAbs may provide the most effective form of passive immunotherapy, with the caveat that these may demonstrate emergent properties with regard to protective efficacy.
Collapse
|
17
|
Grunow R, Verbeek L, Jacob D, Holzmann T, Birkenfeld G, Wiens D, von Eichel-Streiber L, Grass G, Reischl U. Injection anthrax--a new outbreak in heroin users. DEUTSCHES ARZTEBLATT INTERNATIONAL 2012; 109:843-8. [PMID: 23267409 DOI: 10.3238/arztebl.2012.0843] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/24/2012] [Indexed: 11/27/2022]
Abstract
BACKGROUND Injection anthrax is a rare disease that affects heroin users and is caused by Bacillus anthracis. In 2012, there were four cases in Germany, one of which was fatal, as well as a small number of cases in other European countries, including Denmark, France, and the United Kingdom. Three cases among drug users occurred in Germany in 2009/2010, in the setting of a larger outbreak centered on Scotland, where there were 119 cases. CASE PRESENTATION AND CLINICAL COURSE: We present three cases of injection anthrax, two of which were treated in Regensburg and one in Berlin. One patient died of multi-organ-system failure on the day of admission to the hospital. The others were treated with antibiotics, one of them also with surgical wound debridement. The laboratory diagnosis of injection anthrax is based on the demonstration of the pathogen, generally by culture and/or by polymerase chain reaction, in material removed directly from the patient's wound. The diagnosis is additionally supported by the detection of specific antibodies. CONCLUSION Injection anthrax may be viewed either as an independent disease entity or as a special type of cutaneous anthrax with massive edema, necrotizing fasciitis in many cases, and about 30% mortality. It has appeared in recent years among heroin users in various European countries. In patients with suggestive clinical presentation and a history of heroin use, anthrax infection must be suspected early, so that the appropriate diagnostic tests can be performed without delay. Timely treatment can be life-saving. It is therefore important that physicians--and the individuals at risk--should be well-informed about this disease.
Collapse
|
18
|
Artenstein AW, Opal SM. Novel approaches to the treatment of systemic anthrax. Clin Infect Dis 2012; 54:1148-61. [PMID: 22438345 DOI: 10.1093/cid/cis017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Anthrax continues to generate concern as an agent of bioterrorism and as a natural cause of sporadic disease outbreaks. Despite the use of appropriate antimicrobial agents and advanced supportive care, the mortality associated with the systemic disease remains high. This is primarily due to the pathogenic exotoxins produced by Bacillus anthracis as well as other virulence factors of the organism. For this reason, new therapeutic strategies that target events in the pathogenesis of anthrax and may potentially augment antimicrobials are being investigated. These include anti-toxin approaches, such as passive immune-based therapies; non-antimicrobial drugs with activity against anthrax toxin components; and agents that inhibit binding, processing, or assembly of toxins. Adjunct therapies that target spore germination or downstream events in anthrax intoxication are also under investigation. In combination, these modalities may enhance the management of systemic anthrax.
Collapse
Affiliation(s)
- Andrew W Artenstein
- Center for Biodefense and Emerging Pathogens, Department of Medicine, Memorial Hospital of Rhode Island, Pawtucket, and The Warren Alpert Medical School of Brown University, Providence, RI 02860, USA
| | | |
Collapse
|
19
|
Rogers MS, Cryan LM, Habeshian KA, Bazinet L, Caldwell TP, Ackroyd PC, Christensen KA. A FRET-based high throughput screening assay to identify inhibitors of anthrax protective antigen binding to capillary morphogenesis gene 2 protein. PLoS One 2012; 7:e39911. [PMID: 22768167 PMCID: PMC3386954 DOI: 10.1371/journal.pone.0039911] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 06/03/2012] [Indexed: 11/18/2022] Open
Abstract
Anti-angiogenic therapies are effective for the treatment of cancer, a variety of ocular diseases, and have potential benefits in cardiovascular disease, arthritis, and psoriasis. We have previously shown that anthrax protective antigen (PA), a non-pathogenic component of anthrax toxin, is an inhibitor of angiogenesis, apparently as a result of interaction with the cell surface receptors capillary morphogenesis gene 2 (CMG2) protein and tumor endothelial marker 8 (TEM8). Hence, molecules that bind the anthrax toxin receptors may be effective to slow or halt pathological vascular growth. Here we describe development and testing of an effective homogeneous steady-state fluorescence resonance energy transfer (FRET) high throughput screening assay designed to identify molecules that inhibit binding of PA to CMG2. Molecules identified in the screen can serve as potential lead compounds for the development of anti-angiogenic and anti-anthrax therapies. The assay to screen for inhibitors of this protein–protein interaction is sensitive and robust, with observed Z' values as high as 0.92. Preliminary screens conducted with a library of known bioactive compounds identified tannic acid and cisplatin as inhibitors of the PA-CMG2 interaction. We have confirmed that tannic acid both binds CMG2 and has anti-endothelial properties. In contrast, cisplatin appears to inhibit PA-CMG2 interaction by binding both PA and CMG2, and observed cisplatin anti-angiogenic effects are not mediated by interaction with CMG2. This work represents the first reported high throughput screening assay targeting CMG2 to identify possible inhibitors of both angiogenesis and anthrax intoxication.
Collapse
Affiliation(s)
- Michael S. Rogers
- Department of Surgery, Vascular Biology Program, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lorna M. Cryan
- Department of Surgery, Vascular Biology Program, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kaiane A. Habeshian
- Department of Surgery, Vascular Biology Program, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lauren Bazinet
- Department of Surgery, Vascular Biology Program, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Thomas P. Caldwell
- Department of Chemistry, Clemson University, Clemson, South Carolina, United States of America
| | - P. Christine Ackroyd
- Department of Chemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Kenneth A. Christensen
- Department of Chemistry, Clemson University, Clemson, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
20
|
|
21
|
Hussack G, Hirama T, Ding W, MacKenzie R, Tanha J. Engineered single-domain antibodies with high protease resistance and thermal stability. PLoS One 2011; 6:e28218. [PMID: 22140551 PMCID: PMC3227653 DOI: 10.1371/journal.pone.0028218] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 11/03/2011] [Indexed: 11/28/2022] Open
Abstract
The extreme pH and protease-rich environment of the upper gastrointestinal tract is a major obstacle facing orally-administered protein therapeutics, including antibodies. Through protein engineering, several Clostridium difficile toxin A-specific heavy chain antibody variable domains (VHHs) were expressed with an additional disulfide bond by introducing Ala/Gly54Cys and Ile78Cys mutations. Mutant antibodies were compared to their wild-type counterparts with respect to expression yield, non-aggregation status, affinity for toxin A, circular dichroism (CD) structural signatures, thermal stability, protease resistance, and toxin A-neutralizing capacity. The mutant VHHs were found to be well expressed, although with lower yields compared to wild-type counterparts, were non-aggregating monomers, retained low nM affinity for toxin A, albeit the majority showed somewhat reduced affinity compared to wild-type counterparts, and were capable of in vitro toxin A neutralization in cell-based assays. Far-UV and near-UV CD spectroscopy consistently showed shifts in peak intensity and selective peak minima for wild-type and mutant VHH pairs; however, the overall CD profile remained very similar. A significant increase in the thermal unfolding midpoint temperature was observed for all mutants at both neutral and acidic pH. Digestion of the VHHs with the major gastrointestinal proteases, at biologically relevant concentrations, revealed a significant increase in pepsin resistance for all mutants and an increase in chymotrypsin resistance for the majority of mutants. Mutant VHH trypsin resistance was similar to that of wild-type VHHs, although the trypsin resistance of one VHH mutant was significantly reduced. Therefore, the introduction of a second disulfide bond in the hydrophobic core not only increases VHH thermal stability at neutral pH, as previously shown, but also represents a generic strategy to increase VHH stability at low pH and impart protease resistance, with only minor perturbations in target binding affinities. These are all desirable characteristics for the design of protein-based oral therapeutics.
Collapse
Affiliation(s)
- Greg Hussack
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Tomoko Hirama
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, Canada
| | - Wen Ding
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, Canada
| | - Roger MacKenzie
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, Canada
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jamshid Tanha
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
22
|
Inhibition of anthrax toxins with a bispecific monoclonal antibody that cross reacts with edema factor as well as lethal factor of Bacillus anthracis. Mol Immunol 2011; 48:1958-65. [PMID: 21704379 DOI: 10.1016/j.molimm.2011.05.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/26/2011] [Accepted: 05/26/2011] [Indexed: 01/29/2023]
Abstract
Bacillus anthracis overwhelms its victims by way of two toxins, namely edema toxin and lethal toxin. Lethal toxin is formed by the combination of protective antigen with lethal factor while edema toxin is formed by the combination of Protective Antigen with edema factor. Overlapping regions between edema factor and lethal factor have been reported in past. For the first time, this study reports characterization of a bispecific monoclonal antibody (mAb), H10, which showed high affinity interaction with both edema factor and lethal factor of B. anthracis. H10 mAb not only neutralized the adenylate cyclase activity of edema toxin but it could also neutralize the cytotoxic activity of lethal toxin. Passive immunization with this antibody gave 100% protection to mice from in vivo challenge with lethal toxin and edema toxin. The results of this study suggest future application of this bispecific monoclonal antibody as passive immunization prophylactics in cases of B. anthracis exposure and infection.
Collapse
|
23
|
Xie T, Auth RD, Frucht DM. The effects of anthrax lethal toxin on host barrier function. Toxins (Basel) 2011; 3:591-607. [PMID: 22069727 PMCID: PMC3202839 DOI: 10.3390/toxins3060591] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 06/02/2011] [Accepted: 06/07/2011] [Indexed: 01/08/2023] Open
Abstract
The pathological actions of anthrax toxin require the activities of its edema factor (EF) and lethal factor (LF) enzyme components, which gain intracellular access via its receptor-binding component, protective antigen (PA). LF is a metalloproteinase with specificity for selected mitogen-activated protein kinase kinases (MKKs), but its activity is not directly lethal to many types of primary and transformed cells in vitro. Nevertheless, in vivo treatment of several animal species with the combination of LF and PA (termed lethal toxin or LT) leads to morbidity and mortality, suggesting that LT-dependent toxicity is mediated by cellular interactions between host cells. Decades of research have revealed that a central hallmark of this toxicity is the disruption of key cellular barriers required to maintain homeostasis. This review will focus on the current understanding of the effects of LT on barrier function, highlighting recent progress in establishing the molecular mechanisms underlying these effects.
Collapse
Affiliation(s)
- Tao Xie
- Laboratory of Cell Biology, Division of Monoclonal Antibodies, Office of Biotechnology Products, Office of Pharmaceutical Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
24
|
Ramasamy S, Liu CQ, Tran H, Gubala A, Gauci P, McAllister J, Vo T. Principles of antidote pharmacology: an update on prophylaxis, post-exposure treatment recommendations and research initiatives for biological agents. Br J Pharmacol 2010; 161:721-48. [PMID: 20860656 DOI: 10.1111/j.1476-5381.2010.00939.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The use of biological agents has generally been confined to military-led conflicts. However, there has been an increase in non-state-based terrorism, including the use of asymmetric warfare, such as biological agents in the past few decades. Thus, it is becoming increasingly important to consider strategies for preventing and preparing for attacks by insurgents, such as the development of pre- and post-exposure medical countermeasures. There are a wide range of prophylactics and treatments being investigated to combat the effects of biological agents. These include antibiotics (for both conventional and unconventional use), antibodies, anti-virals, immunomodulators, nucleic acids (analogues, antisense, ribozymes and DNAzymes), bacteriophage therapy and micro-encapsulation. While vaccines are commercially available for the prevention of anthrax, cholera, plague, Q fever and smallpox, there are no licensed vaccines available for use in the case of botulinum toxins, viral encephalitis, melioidosis or ricin. Antibiotics are still recommended as the mainstay treatment following exposure to anthrax, plague, Q fever and melioidosis. Anti-toxin therapy and anti-virals may be used in the case of botulinum toxins or smallpox respectively. However, supportive care is the only, or mainstay, post-exposure treatment for cholera, viral encephalitis and ricin - a recommendation that has not changed in decades. Indeed, with the difficulty that antibiotic resistance poses, the development and further evaluation of techniques and atypical pharmaceuticals are fundamental to the development of prophylaxis and post-exposure treatment options. The aim of this review is to present an update on prophylaxis and post-exposure treatment recommendations and research initiatives for biological agents in the open literature from 2007 to 2009.
Collapse
Affiliation(s)
- S Ramasamy
- Defence Science & Technology Organisation, Human Protection and Performance Division, Fishermans Bend, Vic., Australia.
| | | | | | | | | | | | | |
Collapse
|
25
|
A chimeric protein that functions as both an anthrax dual-target antitoxin and a trivalent vaccine. Antimicrob Agents Chemother 2010; 54:4750-7. [PMID: 20713663 DOI: 10.1128/aac.00640-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Effective measures for the prophylaxis and treatment of anthrax are still required for counteracting the threat posed by inhalation anthrax. In this study, we first demonstrated that the chimeric protein LFn-PA, created by fusing the protective antigen (PA)-binding domain of lethal factor (LFn) to PA, retained the functions of the respective molecules. On the basis of this observation, we attempted to develop an antitoxin that targets the binding of lethal factor (LF) and/or edema factor (EF) to PA and the transportation of LF/EF. Therefore, we replaced PA in LFn-PA with a dominant-negative inhibitory PA (DPA), i.e., PA(F427D). In in vitro models of anthrax intoxication, the LFn-DPA chimera showed 3-fold and 2-fold higher potencies than DPA in protecting sensitive cells against anthrax lethal toxin (LeTx) and edema toxin (EdTx), respectively. In animal models, LFn-DPA exhibited strong potency in rescuing mice from lethal challenge with LeTx. We also evaluated the immunogenicity and immunoprotective efficacy of LFn-DPA as an anthrax vaccine candidate. In comparison with recombinant PA, LFn-DPA induced significantly higher levels of the anti-PA immune response. Moreover, LFn-DPA elicited an anti-LF antibody response that could cross-react with EF. Mice immunized with LFn-DPA tolerated a LeTx challenge that was 5 times its 50% lethal dose. Thus, LFn-DPA represents a highly effective trivalent vaccine candidate for both preexposure and postexposure vaccination. Overall, we have developed a novel and dually functional reagent for the prophylaxis and treatment of anthrax.
Collapse
|
26
|
Anthrax toxin-neutralizing antibody reconfigures the protective antigen heptamer into a supercomplex. Proc Natl Acad Sci U S A 2010; 107:14070-4. [PMID: 20660775 DOI: 10.1073/pnas.1006473107] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The tripartite protein exotoxin secreted by Bacillus anthracis, a major contributor to its virulence and anthrax pathogenesis, consists of binary complexes of the protective antigen (PA) heptamer (PA63h), produced by proteolytic cleavage of PA, together with either lethal factor or edema factor. The mouse monoclonal anti-PA antibody 1G3 was previously shown to be a potent antidote that shares F(C) domain dependency with the human monoclonal antibody MDX-1303 currently under clinical development. Here we demonstrate that 1G3 instigates severe perturbation of the PA63h structure and creates a PA supercomplex as visualized by electron microscopy. This phenotype, produced by the unconventional mode of antibody action, highlights the feasibility for optimization of vaccines based on analogous structural modification of PA63h as an additional strategy for future remedies against anthrax.
Collapse
|
27
|
Antoniu SA. Raxibacumab for inhalational anthrax: an effective specific therapeutic approach? Expert Opin Investig Drugs 2010; 19:909-11. [DOI: 10.1517/13543784.2010.489547] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Saylor C, Dadachova E, Casadevall A. Monoclonal antibody-based therapies for microbial diseases. Vaccine 2010; 27 Suppl 6:G38-46. [PMID: 20006139 PMCID: PMC2810317 DOI: 10.1016/j.vaccine.2009.09.105] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 09/24/2009] [Indexed: 12/16/2022]
Abstract
The monoclonal antibody (mAb) revolution that currently provides many new options for the treatment of neoplastic and inflammatory diseases has largely bypassed the field of infectious diseases. Only one mAb is licensed for use against an infectious disease, although there are many in various stages of development. This situation is peculiar given that serum therapy was one of the first effective treatments for microbial diseases and that specific antibodies have numerous antimicrobial properties. The underdevelopment and underutilization of mAb therapies for microbial diseases has various complex explanations that include the current availability of antimicrobial drugs, small markets, high costs and microbial antigenic variation. However, there are signs that the climate for mAb therapeutics in infectious diseases is changing given increasing antibiotic drug resistance, the emergence of new pathogenic microbes for which no therapy is available, and development of mAb cocktail formulations. Currently, the major hurdle for the widespread introduction of mAb therapies for microbial diseases is economic, given the high costs of immunoglobulin preparations and relatively small markets. Despite these obstacles there are numerous opportunities for mAb development against microbial diseases and the development of radioimmunotherapy provides new options for enhancing the magic bullet. Hence, there is cautious optimism that the years ahead will see more mAbs in clinical use against microbial diseases.
Collapse
Affiliation(s)
- Carolyn Saylor
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
29
|
Van Der Goot G, Young JA. Receptors of anthrax toxin and cell entry. Mol Aspects Med 2009; 30:406-12. [PMID: 19732789 PMCID: PMC2783407 DOI: 10.1016/j.mam.2009.08.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 08/24/2009] [Indexed: 11/29/2022]
Abstract
Anthrax toxin-receptor interactions are critical for toxin delivery to the host cell cytoplasm. This review summarizes what is known about the molecular details of the protective antigen (PA) toxin subunit interaction with either the ANTXR1 and ANTXR2 cellular receptors, and how receptor-type can dictate the low pH threshold of PA pore formation. The roles played by cellular factors in regulating the endocytosis of toxin-receptor complexes is also discussed.
Collapse
Affiliation(s)
- Gisou Van Der Goot
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, SV-AI extension, Station 15, 1015 Lausanne, Switzerland,
| | - John A.T. Young
- Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037,
| |
Collapse
|
30
|
Abstract
Raxibacumab (ABthrax) is a human IgG1 monoclonal antibody against Bacillus anthracis protective antigen. HGS is currently providing stockpiles of the agent to the US government for use in the prevention and treatment of inhalation anthrax. As of May 2009, the candidate was undergoing review by the US Food and Drug Administration. The availability of bioterrorism countermeasures has become more important since the September 2001 anthrax attacks, and development of raxibacumab is a significant advance in this area.
Collapse
Affiliation(s)
- Sohini Mazumdar
- Genetics Graduate Program, Department of Anatomy and Cell Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|