1
|
Lee SC, Ma JSY, Kim MS, Laborda E, Choi SH, Hampton EN, Yun H, Nunez V, Muldong MT, Wu CN, Ma W, Kulidjian AA, Kane CJ, Klyushnichenko V, Woods AK, Joseph SB, Petrassi M, Wisler J, Li J, Jamieson CAM, Schultz PG, Kim CH, Young TS. A PSMA-targeted bispecific antibody for prostate cancer driven by a small-molecule targeting ligand. SCIENCE ADVANCES 2021; 7:7/33/eabi8193. [PMID: 34380625 PMCID: PMC8357232 DOI: 10.1126/sciadv.abi8193] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Despite the development of next-generation antiandrogens, metastatic castration-resistant prostate cancer (mCRPC) remains incurable. Here, we describe a unique semisynthetic bispecific antibody that uses site-specific unnatural amino acid conjugation to combine the potency of a T cell-recruiting anti-CD3 antibody with the specificity of an imaging ligand (DUPA) for prostate-specific membrane antigen. This format enabled optimization of structure and function to produce a candidate (CCW702) with specific, potent in vitro cytotoxicity and improved stability compared with a bispecific single-chain variable fragment format. In vivo, CCW702 eliminated C4-2 xenografts with as few as three weekly subcutaneous doses and prevented growth of PCSD1 patient-derived xenograft tumors in mice. In cynomolgus monkeys, CCW702 was well tolerated up to 34.1 mg/kg per dose, with near-complete subcutaneous bioavailability and a PK profile supporting testing of a weekly dosing regimen in patients. CCW702 is being evaluated in a first in-human clinical trial for men with mCRPC who had progressed on prior therapies (NCT04077021).
Collapse
Affiliation(s)
- Sung Chang Lee
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jennifer S Y Ma
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Min Soo Kim
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Eduardo Laborda
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sei-Hyun Choi
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Eric N Hampton
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hwayoung Yun
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Vanessa Nunez
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michelle T Muldong
- Department of Urology, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christina N Wu
- Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wenxue Ma
- Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anna A Kulidjian
- Department of Orthopedic Surgery, Scripps MD Anderson Cancer Center, La Jolla, CA 92093, USA
| | - Christopher J Kane
- Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Vadim Klyushnichenko
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ashley K Woods
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sean B Joseph
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mike Petrassi
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John Wisler
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jing Li
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Christina A M Jamieson
- Department of Urology, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Peter G Schultz
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA.
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Chan Hyuk Kim
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Travis S Young
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA.
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
2
|
Rondon A, Degoul F. Antibody Pretargeting Based on Bioorthogonal Click Chemistry for Cancer Imaging and Targeted Radionuclide Therapy. Bioconjug Chem 2020; 31:159-173. [PMID: 31855602 DOI: 10.1021/acs.bioconjchem.9b00761] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bioorthogonal click chemistry-employing antibody-conjugated trans-cyclooctenes (TCO) and tetrazine (Tz)-based radioligands able to covalently bind in vivo-appeared recently as a potential alternative to circumvent the hematotoxicity induced by radioimmunotherapy of solid tumors. This Review focuses on the recent advances concerning TCO/Tz pretargeting in both cancer imaging and targeted-radionuclide therapy for prospective clinical transfer. We exhaustively identified 25 PubMed publications reporting preclinical imaging and 5 therapy studies with full mAbs as targeting vectors, since its first application in 2010. The fast, safe, modulable, and specific TCO/Tz pretargeting showed high potential as a theranostic tool to get more personalized and precise cancer care. The recent optimizations reported here highlighted a possible first clinical evaluation of IEDDA pretargeting in the coming years.
Collapse
Affiliation(s)
- Aurélie Rondon
- Université Clermont Auvergne , Imagerie Moléculaire et Stratégies Théranostiques , BP 184, F-63005 Clermont-Ferrand , France.,Inserm, U 1240 , F-63000 Clermont-Ferrand , France.,Centre Jean Perrin , F-63011 Clermont-Ferrand , France
| | - Françoise Degoul
- Université Clermont Auvergne , Imagerie Moléculaire et Stratégies Théranostiques , BP 184, F-63005 Clermont-Ferrand , France.,Inserm, U 1240 , F-63000 Clermont-Ferrand , France.,Centre Jean Perrin , F-63011 Clermont-Ferrand , France
| |
Collapse
|
3
|
Acheampong DO. Bispecific Antibody (bsAb) Construct Formats and their Application in Cancer Therapy. Protein Pept Lett 2019; 26:479-493. [DOI: 10.2174/0929866526666190311163820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/28/2019] [Accepted: 03/03/2019] [Indexed: 12/15/2022]
Abstract
Development of cancers mostly involves more than one signal pathways, because of the complicated nature of cancer cells. As such, the most effective treatment option is the one that stops the cancer cells in their tracks by targeting these signal pathways simultaneously. This explains why therapeutic monoclonal antibodies targeted at cancers exert utmost activity when two or more are used as combination therapy. This notwithstanding, studies elsewhere have proven that when bispecific antibody (bsAb) is engineered from two conventional monoclonal antibodies or their chains, it produces better activity than when used as combination therapy. This therefore presents bispecific antibody (bsAb) as the appropriate and best therapeutic agent for the treatment of such cancers. This review therefore discusses the various engineering formats for bispecific antibodies (bsAbs) and their applications.
Collapse
Affiliation(s)
- Desmond O. Acheampong
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Science, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
4
|
Osipov A, Murphy A, Zheng L. From immune checkpoints to vaccines: The past, present and future of cancer immunotherapy. Adv Cancer Res 2019; 143:63-144. [PMID: 31202363 DOI: 10.1016/bs.acr.2019.03.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer is a worldwide medical problem with significant repercussions on individual patients and societies as a whole. In order to alter the outcomes of this deadly disease the treatment of cancer over the centuries has undergone a unique evolution. However, utilizing the best treatment modalities and achieving cures or long-term durable responses have been inconsistent and limited, that is until recently. Contemporary research has highlighted a fundamental gap in our understanding of how we approach treating cancer, by revealing the intricate relationship between the immune system and tumors. In this atmosphere, the growth of immunotherapy has not only forever changed our understanding of cancer biology, but the manner by which we treat patients. It's paradigm shifting success has led to the approval of over 10 different immunotherapeutic agents, including checkpoint inhibitors, vaccine-based therapies, oncolytic viruses and T cell directed therapies for nearly 20 different indications across countless tumor types. Despite the breakthroughs that have occurred in the field of immunotherapy, it has not been the panacea for all cancers. With a deeper understanding of the immune system we have been able to peer into tumor immune escape and therapy resistance. Simultaneously this understanding has paved the way for the investigation and development of novel immune system altering agents and combinatorial therapies. In this chapter we review the immune system and its intricate relationship with cancer, the evolution of immunotherapy, its current landscape, and future directions in the context of resistance mechanisms and the challenges faced by immunotherapy against cancer.
Collapse
Affiliation(s)
- Arsen Osipov
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Adrian Murphy
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lei Zheng
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
5
|
New Immunotherapy Strategies in Breast Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14010068. [PMID: 28085094 PMCID: PMC5295319 DOI: 10.3390/ijerph14010068] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 01/05/2017] [Accepted: 01/09/2017] [Indexed: 12/19/2022]
Abstract
Breast cancer is the most commonly diagnosed cancer among women. Therapeutic treatments for breast cancer generally include surgery, chemotherapy, radiotherapy, endocrinotherapy and molecular targeted therapy. With the development of molecular biology, immunology and pharmacogenomics, immunotherapy becomes a promising new field in breast cancer therapies. In this review, we discussed recent progress in breast cancer immunotherapy, including cancer vaccines, bispecific antibodies, and immune checkpoint inhibitors. Several additional immunotherapy modalities in early stages of development are also highlighted. It is believed that these new immunotherapeutic strategies will ultimately change the current status of breast cancer therapies.
Collapse
|
6
|
Rathi C, Meibohm B. Clinical pharmacology of bispecific antibody constructs. J Clin Pharmacol 2015; 55 Suppl 3:S21-8. [PMID: 25707960 DOI: 10.1002/jcph.445] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 12/09/2014] [Indexed: 12/25/2022]
Abstract
The confluence of rapid scientific advancements especially in protein engineering and recombinant technology, unmet medical needs, and commercial incentives have led to the development of the next generation of therapeutic proteins. Bispecific antibody constructs are one of the novel strategies that is being pursued, combining the ability to bind simultaneously to two distinct targets and the advantages of purpose-designed and optimized antibody-based scaffolds. Their pharmacokinetic and pharmacodynamic properties, including their immunogenic potential, are closely related to their structural features and ability to interact with disposition mechanisms of immunoglobulin molecules. Catumaxomab and blinatumomab are bispecific constructs that are approved for clinical use and have provided clinical pharmacology data for this novel class of therapeutics. This knowledgebase on the clinical behavior of bispecific therapeutic proteins is poised to rapidly evolve over the next few years with many development programs having entered the clinical development stage.
Collapse
Affiliation(s)
- Chetan Rathi
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | | |
Collapse
|
7
|
Zeglis BM, Brand C, Abdel-Atti D, Carnazza KE, Cook BE, Carlin S, Reiner T, Lewis JS. Optimization of a Pretargeted Strategy for the PET Imaging of Colorectal Carcinoma via the Modulation of Radioligand Pharmacokinetics. Mol Pharm 2015; 12:3575-87. [PMID: 26287993 PMCID: PMC4696756 DOI: 10.1021/acs.molpharmaceut.5b00294] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Pretargeted PET imaging has emerged as an effective strategy for merging the exquisite selectivity of antibody-based targeting vectors with the rapid pharmacokinetics of radiolabeled small molecules. We previously reported the development of a strategy for the pretargeted PET imaging of colorectal cancer based on the bioorthogonal inverse electron demand Diels-Alder reaction between a tetrazine-bearing radioligand and a transcyclooctene-modified huA33 immunoconjugate. Although this method effectively delineated tumor tissue, its clinical potential was limited by the somewhat sluggish clearance of the radioligand through the gastrointestinal tract. Herein, we report the development and in vivo validation of a pretargeted strategy for the PET imaging of colorectal carcinoma with dramatically improved pharmacokinetics. Two novel tetrazine constructs, Tz-PEG7-NOTA and Tz-SarAr, were synthesized, characterized, and radiolabeled with (64)Cu in high yield (>90%) and radiochemical purity (>99%). PET imaging and biodistribution experiments in healthy mice revealed that although (64)Cu-Tz-PEG7-NOTA is cleared via both the gastrointestinal and urinary tracts, (64)Cu-Tz-SarAr is rapidly excreted by the renal system alone. On this basis, (64)Cu-Tz-SarAr was selected for further in vivo evaluation. To this end, mice bearing A33 antigen-expressing SW1222 human colorectal carcinoma xenografts were administered huA33-TCO, and the immunoconjugate was given 24 h to accumulate at the tumor and clear from the blood, after which (64)Cu-Tz-SarAr was administered via intravenous tail vein injection. PET imaging and biodistribution experiments revealed specific uptake of the radiotracer in the tumor at early time points (5.6 ± 0.7 %ID/g at 1 h p.i.), high tumor-to-background activity ratios, and rapid elimination of unclicked radioligand. Importantly, experiments with longer antibody accumulation intervals (48 and 120 h) yielded slight decreases in tumoral uptake but also concomitant increases in tumor-to-blood activity concentration ratios. This new strategy offers dosimetric benefits as well, yielding a total effective dose of 0.041 rem/mCi, far below the doses produced by directly labeled (64)Cu-NOTA-huA33 (0.133 rem/mCi) and (89)Zr-DFO-huA33 (1.54 rem/mCi). Ultimately, this pretargeted PET imaging strategy boasts a dramatically improved pharmacokinetic profile compared to our first generation system and is capable of clearly delineating tumor tissue with high image contrast at only a fraction of the radiation dose created by directly labeled radioimmunoconjugates.
Collapse
Affiliation(s)
- Brian M. Zeglis
- Department of Chemistry and Biochemistry, Hunter College and the Graduate Center of the City University of New York, New York, New York 10021, United States
| | - Christian Brand
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Dalya Abdel-Atti
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Kathryn E. Carnazza
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Brendon E. Cook
- Department of Chemistry and Biochemistry, Hunter College and the Graduate Center of the City University of New York, New York, New York 10021, United States
| | - Sean Carlin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Jason S. Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Program in Molecular Pharmacology and Chemistry, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| |
Collapse
|
8
|
Reiner T, Lewis JS, Zeglis BM. Harnessing the bioorthogonal inverse electron demand Diels-Alder cycloaddition for pretargeted PET imaging. J Vis Exp 2015:e52335. [PMID: 25742199 DOI: 10.3791/52335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Due to their exquisite affinity and specificity, antibodies have become extremely promising vectors for the delivery of radioisotopes to cancer cells for PET imaging. However, the necessity of labeling antibodies with radionuclides with long physical half-lives often results in high background radiation dose rates to non-target tissues. In order to circumvent this issue, we have employed a pretargeted PET imaging strategy based on the inverse electron demand Diels-Alder cycloaddition reaction. The methodology decouples the antibody from the radioactivity and thus exploits the positive characteristics of antibodies, while eschewing their pharmacokinetic drawbacks. The system is composed of four steps: (1) the injection of a mAb-trans-cyclooctene (TCO) conjugate; (2) a localization time period during which the antibody accumulates in the tumor and clears from the blood; (3) the injection of the radiolabeled tetrazine; and (4) the in vivo click ligation of the components followed by the clearance of excess radioligand. In the example presented in the work at hand, a (64)Cu-NOTA-labeled tetrazine radioligand and a trans-cyclooctene-conjugated humanized antibody (huA33) were successfully used to delineate SW1222 colorectal cancer tumors with high tumor-to-background contrast. Further, the pretargeting methodology produces high quality images at only a fraction of the radiation dose to non-target tissue created by radioimmunoconjugates directly labeled with (64)Cu or (89)Zr. Ultimately, the modularity of this protocol is one of its greatest assets, as the trans-cyclooctene moiety can be appended to any non-internalizing antibody, and the tetrazine can be attached to a wide variety of radioisotopes.
Collapse
Affiliation(s)
- Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center
| | - Brian M Zeglis
- Department of Radiology, Memorial Sloan Kettering Cancer Center;
| |
Collapse
|
9
|
Vugmeyster Y, Zhang YE, Zhong X, Wright J, Leung SS. Pharmacokinetics of anti-IL17A and anti-IL22 peptide-antibody bispecific genetic fusions in mice. Int Immunopharmacol 2014; 18:225-7. [PMID: 24295652 DOI: 10.1016/j.intimp.2013.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 10/31/2013] [Accepted: 11/12/2013] [Indexed: 10/26/2022]
Abstract
The peptide-antibody (Ab) genetic fusion is a promising technology for targeting multiple antigens in a single Ab-like molecule. We have recently described generation and in vitro characterization of several such genetic fusions, using an interleukin (IL)-17A binding peptide and an anti-IL-22 Ab as a model system. In this study we assessed pharmacokinetic profiles of these model genetic fusions in mice. Specifically an IL-17A binding peptide was fused to either the heavy chain or both the heavy and the light chains of an anti-IL22 human IgG1 (referred to Compounds 1 or 2, respectively). Swiss Webster mice were given a single 10 mg/kg IV dose of Compound 1 or Compound 2 and serum concentrations were measured by a fused molecule immunoassay, in which IL-17A was used as a capture and anti-human IgG was used as a detector. In addition, serum samples were assayed using a total human IgG immunoassay. PK parameters were calculated by non-compartmental modeling. The two genetic fusions had similar PK profiles, with total body clearance of ~0.9-1.0 mL/h/kg, volume of distribution at steady-state of ~63-65 mL/kg, and elimination half-life of ~40 h. Our study provides the first characterization of the PK properties of peptide-Ab genetic fusions and suggests that although these genetic fusions appear to be eliminated faster than a typical Ab, the PK profile may be suitable for preclinical and clinical testing.
Collapse
Affiliation(s)
- Yulia Vugmeyster
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Andover, MA, United States; Clinical Pharmacology, Alexion Pharmaceutical, Inc., Cambridge, MA, United States.
| | - Yiqun Etran Zhang
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Andover, MA, United States
| | - Xiaotian Zhong
- Global Biotherapeutic Technologies, Pfizer Inc., Cambridge, MA, United States
| | - Jill Wright
- Development Management, Pfizer Inc., Cambridge, MA, United States
| | - Sheldon S Leung
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Andover, MA, United States
| |
Collapse
|
10
|
Zeglis BM, Sevak KK, Reiner T, Mohindra P, Carlin SD, Zanzonico P, Weissleder R, Lewis JS. A pretargeted PET imaging strategy based on bioorthogonal Diels-Alder click chemistry. J Nucl Med 2013; 54:1389-96. [PMID: 23708196 DOI: 10.2967/jnumed.112.115840] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED The specificity of antibodies have made immunoconjugates promising vectors for the delivery of radioisotopes to cancer cells; however, their long pharmacologic half-lives necessitate the use of radioisotopes with long physical half-lives, a combination that leads to high radiation doses to patients. Therefore, the development of targeting modalities that harness the advantages of antibodies without their pharmacokinetic limitations is desirable. To this end, we report the development of a methodology for pretargeted PET imaging based on the bioorthogonal Diels-Alder click reaction between tetrazine and transcyclooctene. METHODS A proof-of-concept system based on the A33 antibody, SW1222 colorectal cancer cells, and (64)Cu was used. The huA33 antibody was covalently modified with transcyclooctene, and a NOTA-modified tetrazine was synthesized and radiolabeled with (64)Cu. Pretargeted in vivo biodistribution and PET imaging experiments were performed with athymic nude mice bearing A33 antigen-expressing, SW1222 colorectal cancer xenografts. RESULTS The huA33 antibody was modified with transcyclooctene to produce a conjugate with high immunoreactivity, and the (64)Cu-NOTA-labeled tetrazine ligand was synthesized with greater than 99% purity and a specific activity of 9-10 MBq/μg. For in vivo experiments, mice bearing SW1222 xenografts were injected with transcyclooctene-modified A33; after allowing 24 h for accumulation of the antibody in the tumor, the mice were injected with (64)Cu-NOTA-labeled tetrazine for PET imaging and biodistribution experiments. At 12 h after injection, the retention of uptake in the tumor (4.1 ± 0.3 percent injected dose per gram), coupled with the fecal excretion of excess radioligand, produced images with high tumor-to-background ratios. PET imaging and biodistribution experiments performed using A33 directly labeled with either (64)Cu or (89)Zr revealed that although absolute tumor uptake was higher with the directly radiolabeled antibodies, the pretargeted system yielded comparable images and tumor-to-muscle ratios at 12 and 24 h after injection. Further, dosimetry calculations revealed that the (64)Cu pretargeting system resulted in only a fraction of the absorbed background dose of A33 directly labeled with (89)Zr (0.0124 mSv/MBq vs. 0.4162 mSv/MBq, respectively). CONCLUSION The high quality of the images produced by this pretargeting approach, combined with the ability of the methodology to dramatically reduce nontarget radiation doses to patients, marks this system as a strong candidate for clinical translation.
Collapse
Affiliation(s)
- Brian M Zeglis
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
The Development of Bispecific Hexavalent Antibodies as a Novel Class of DOCK-AND-LOCKTM (DNLTM) Complexes. Antibodies (Basel) 2013. [DOI: 10.3390/antib2020353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
12
|
Wen D, Foley SF, Hronowski XL, Gu S, Meier W. Discovery and Investigation of O-Xylosylation in Engineered Proteins Containing a (GGGGS)n Linker. Anal Chem 2013; 85:4805-12. [DOI: 10.1021/ac400596g] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Dingyi Wen
- Analytical Biochemistry, Department
of Biologics Drug
Discovery, Biogen Idec, 12 Cambridge Center,
Cambridge, Massachusetts 02142, United States
| | - Susan F. Foley
- Analytical Biochemistry, Department
of Biologics Drug
Discovery, Biogen Idec, 12 Cambridge Center,
Cambridge, Massachusetts 02142, United States
| | - Xiaoping L. Hronowski
- Analytical Biochemistry, Department
of Biologics Drug
Discovery, Biogen Idec, 12 Cambridge Center,
Cambridge, Massachusetts 02142, United States
| | - Sheng Gu
- Analytical Biochemistry, Department
of Biologics Drug
Discovery, Biogen Idec, 12 Cambridge Center,
Cambridge, Massachusetts 02142, United States
| | - Werner Meier
- Analytical Biochemistry, Department
of Biologics Drug
Discovery, Biogen Idec, 12 Cambridge Center,
Cambridge, Massachusetts 02142, United States
| |
Collapse
|
13
|
Jiang G, Lee CW, Wong PY, Gazzano-Santoro H. Evaluation of semi-homogeneous assay formats for dual-specificity antibodies. J Immunol Methods 2013; 387:51-6. [DOI: 10.1016/j.jim.2012.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 09/21/2012] [Accepted: 09/21/2012] [Indexed: 11/29/2022]
|
14
|
Wranik BJ, Christensen EL, Schaefer G, Jackman JK, Vendel AC, Eaton D. LUZ-Y, a novel platform for the mammalian cell production of full-length IgG-bispecific antibodies. J Biol Chem 2012; 287:43331-9. [PMID: 23118228 DOI: 10.1074/jbc.m112.397869] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ability of bispecific antibodies to simultaneously bind two unique antigens has great clinical potential. However, most approaches utilized to generate bispecific antibodies yield antibody-like structures that diverge significantly from the structure of archetype human IgG, and those that do approach structural similarity to native antibodies are often challenging to engineer and manufacture. Here, we present a novel platform for the mammalian cell production of bispecific antibodies that differ from their parental mAbs by only a single point mutation per heavy chain. Central to this platform is the addition of a leucine zipper to the C terminus of the C(H)3 domain of the antibody that is sufficient to drive the heterodimeric assembly of antibody heavy chains and can be readily removed post-purification. Using this approach, we developed various antibody constructs including one-armed Abs, bispecific antibodies that utilize a common light chain, and bispecific antibodies that pair light chains to their cognate heavy chains via peptide tethers. We have applied this technology to various antibody pairings and will demonstrate the engineering, purification, and biological activity of these antibodies herein.
Collapse
Affiliation(s)
- Bernd J Wranik
- Department of Protein Chemistry, Genentech, South San Francisco, California 94080, USA
| | | | | | | | | | | |
Collapse
|
15
|
Waldron NN, Oh S, Vallera DA. Bispecific targeting of EGFR and uPAR in a mouse model of head and neck squamous cell carcinoma. Oral Oncol 2012; 48:1202-7. [PMID: 22818892 DOI: 10.1016/j.oraloncology.2012.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 05/25/2012] [Accepted: 06/01/2012] [Indexed: 01/17/2023]
Abstract
OBJECTIVES To investigate the efficacy of the bispecific targeted toxin, dEGFATFKDEL, on head and neck carcinoma cell lines in vitro and in vivo. MATERIALS AND METHODS A deimmunized bispecific anti-cancer agent was constructed to simultaneously target both the overexpressed EGF receptor on carcinomas and the urokinase receptor (uPAR), that is found on the endothelial cells of the neovasculature within tumors. Flow cytometry assays were performed to determine the level of EGFR expressed on a variety of carcinoma lines. These lines were then tested in tritiated leucine incorporation assays to determine the efficacy of dEGFATFKDEL. Human vein endothelial primary cells were also tested to determine the effectiveness of the ATF portion of the molecule that binds uPAR. Furthermore, mouse studies were performed to determine whether dEGFATFKDEL was effective at inhibiting tumor growth in vivo. RESULTS UMSCC-11B and NA, two head and neck squamous cell carcinomas, highly expressed EGFR. Both the carcinoma lines and the human vein endothelial cells were inhibited at sub-nanomolar concentrations by dEGFATFKDEL. The tumor studies showed that the tumors treated with dEGFATFKDEL were significantly inhibited whereas the negative control and untreated tumors progressed. In a separate in vivo study involving another carcinoma line, MDA-MB-231, the effectiveness of dEGFATFKDEL was confirmed. No toxicity was seen at the doses used in either of these mouse studies. CONCLUSIONS This bispecific agent is effective in a mouse model of head and neck squamous cell carcinoma. Further study of this reagent for use in the treatment of carcinomas is warranted.
Collapse
Affiliation(s)
- Nate N Waldron
- University of Minnesota, Department of Pharmacology, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
16
|
Abstract
The advent of modern antibody engineering has led to numerous successes in the application of these proteins for cancer therapy in the 13 years since the first Food and Drug Administration approval, which has stimulated active interest in developing more and better drugs based on these molecules. A wide range of tools for discovering and engineering antibodies has been brought to bear on this challenge in the past two decades. Here, we summarize mechanisms of monoclonal antibody therapeutic activity, challenges to effective antibody-based treatment, existing technologies for antibody engineering, and current concepts for engineering new antibody formats and antibody alternatives as next generation biopharmaceuticals for cancer treatment.
Collapse
Affiliation(s)
- Eric T Boder
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA.
| | | |
Collapse
|
17
|
Dong J, Sereno A, Aivazian D, Langley E, Miller BR, Snyder WB, Chan E, Cantele M, Morena R, Joseph IBJK, Boccia A, Virata C, Gamez J, Yco G, Favis M, Wu X, Graff CP, Wang Q, Rohde E, Rennard R, Berquist L, Huang F, Zhang Y, Gao SX, Ho SN, Demarest SJ, Reff ME, Hariharan K, Glaser SM. A stable IgG-like bispecific antibody targeting the epidermal growth factor receptor and the type I insulin-like growth factor receptor demonstrates superior anti-tumor activity. MAbs 2011; 3:273-88. [PMID: 21393993 PMCID: PMC3149708 DOI: 10.4161/mabs.3.3.15188] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 02/16/2011] [Indexed: 01/01/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) and the type I insulin-like growth factor receptor (IGF-1R) are two cell surface receptor tyrosine kinases known to cooperate to promote tumor progression and drug resistance. Combined blockade of EGFR and IGF-1R has shown improved anti-tumor activity in preclinical models. Here, we report the characterization of a stable IgG-like bispecific antibody (BsAb) dual-targeting EGFR and IGF-1R that was developed for cancer therapy. The BsAb molecule (EI-04), constructed with a stability-engineered single chain variable fragment (scFv) against IGF-1R attached to the carboxyl-terminus of an IgG against EGFR, displays favorable biophysical properties for biopharmaceutical development. Biochemically, EI-04 bound to human EGFR and IGF-1R with sub nanomolar affinity, co-engaged the two receptors simultaneously, and blocked the binding of their respective ligands with similar potency compared to the parental monoclonal antibodies (mAbs). In tumor cells, EI-04 effectively inhibited EGFR and IGF-1R phosphorylation, and concurrently blocked downstream AKT and ERK activation, resulting in greater inhibition of tumor cell growth and cell cycle progression than the single mAbs. EI-04, likely due to its tetravalent bispecific format, exhibited high avidity binding to BxPC3 tumor cells co-expressing EGFR and IGF-1R, and consequently improved potency at inhibiting IGF-driven cell growth over the mAb combination. Importantly, EI-04 demonstrated enhanced in vivo anti-tumor efficacy over the parental mAbs in two xenograft models, and even over the mAb combination in the BxPC3 model. Our data support the clinical investigation of EI-04 as a superior cancer therapeutic in treating EGFR and IGF-1R pathway responsive tumors.
Collapse
MESH Headings
- Animals
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/pharmacology
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antibody Affinity/immunology
- Antibody Specificity/immunology
- Blotting, Western
- CHO Cells
- Cell Line, Tumor
- Cell Survival/drug effects
- Cell Survival/immunology
- Cricetinae
- Cricetulus
- Dose-Response Relationship, Drug
- ErbB Receptors/immunology
- ErbB Receptors/metabolism
- Humans
- Immunoglobulin G/immunology
- Mice
- Mice, Nude
- Mice, SCID
- Neoplasms/drug therapy
- Neoplasms/immunology
- Neoplasms/pathology
- Phosphorylation/drug effects
- Receptor, IGF Type 1/immunology
- Receptor, IGF Type 1/metabolism
- Signal Transduction/drug effects
- Single-Chain Antibodies/immunology
- Single-Chain Antibodies/pharmacology
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
Collapse
|