1
|
Sanchez AU, Dos Anjos GQ, de Oliveira DGC, Lima JDA, de Lira MS, Costa Júnior MA, de Almeida MBV, Heilmann RM, Rolim Filho EL. Impact of 3D-Printed Anatomical Models on Doctor-Patient Communication in Orthopedic Consultations: A Randomized Clinical Trial. Cureus 2024; 16:e70822. [PMID: 39493008 PMCID: PMC11531919 DOI: 10.7759/cureus.70822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2024] [Indexed: 11/05/2024] Open
Abstract
Effective communication between doctors and patients is essential for treatment adherence and better clinical outcomes. Although 3D printing has advanced in medicine, its impact on doctor-patient communication still requires further investigation. This randomized clinical trial evaluated the effectiveness of 3D anatomical models as a tool to facilitate communication in orthopedic consultations. This randomized clinical trial was conducted between May 2024 and September 2024, with 46 patients randomized into two groups: 21 patients received medical explanations with the aid of 3D models, and 25 without. Patients' knowledge was assessed before and after the consultation, and the quality of communication was measured using the Communication Assessment Tool (CAT). In the group using 3D models, 76.19% of patients reported improved knowledge of their conditions, while in the group without models, the increase was 52.00%. Additionally, 14 out of 15 CAT parameters showed statistically significant differences between the groups, with p-values ranging from 0.001 to 0.021. The use of 3D models significantly improved patients' understanding and facilitated communication with doctors, proving to be an effective tool for explaining complex medical conditions.
Collapse
Affiliation(s)
| | - Guilherme Q Dos Anjos
- Department of Orthopedics and Traumatology, Clinics Hospital of Federal University of Pernambuco, Recife, BRA
| | - Diego Gabriel C de Oliveira
- Department of Orthopedics and Traumatology, Clinics Hospital of Federal University of Pernambuco, Recife, BRA
| | | | - Marina S de Lira
- Department of Orthopedics and Traumatology, Clinics Hospital of Federal University of Pernambuco, Recife, BRA
| | - Mário A Costa Júnior
- Department of Orthopedics and Traumatology, Clinics Hospital of Federal University of Pernambuco, Recife, BRA
| | | | | | | |
Collapse
|
2
|
Lee SY, Squelch A, Sun Z. Investigation of the Clinical Value of Four Visualization Modalities for Congenital Heart Disease. J Cardiovasc Dev Dis 2024; 11:278. [PMID: 39330336 PMCID: PMC11431982 DOI: 10.3390/jcdd11090278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Diagnosing congenital heart disease (CHD) remains challenging because of its complex morphology. Representing the intricate structures of CHD on conventional two-dimensional flat screens is difficult owing to wide variations in the pathologies. Technological advancements, such as three-dimensional-printed heart models (3DPHMs) and virtual reality (VR), could potentially address the limitations of viewing complex structures using conventional methods. This study aimed to investigate the usefulness and clinical value of four visualization modalities across three different cases of CHD, including ventricular septal defect, double-outlet right ventricle, and tetralogy of Fallot. Seventeen cardiac specialists were invited to participate in this study, which was aimed at assessing the usefulness and clinical value of four visualization modalities, namely, digital imaging and communications in medicine (DICOM) images, 3DPHM, VR, and 3D portable document format (PDF). Out of these modalities, 76.4% of the specialists ranked VR as the best for understanding the spatial associations between cardiac structures and for presurgical planning. Meanwhile, 94.1% ranked 3DPHM as the best modality for communicating with patients and their families. Of the various visualization modalities, VR was the best tool for assessing anatomical locations and vessels, comprehending the spatial relationships between cardiac structures, and presurgical planning. The 3DPHM models were the best tool for medical education as well as communication. In summary, both 3DPHM and VR have their own advantages and outperform the other two modalities, i.e., DICOM images and 3D PDF, in terms of visualizing and managing CHD.
Collapse
Affiliation(s)
- Shen-yuan Lee
- Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, Perth, WA 6845, Australia;
| | - Andrew Squelch
- School of Earth and Planetary Sciences, Faculty of Science & Engineering, Curtin University, Perth, WA 6845, Australia;
| | - Zhonghua Sun
- Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, Perth, WA 6845, Australia;
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6845, Australia
| |
Collapse
|
3
|
Nasr B, Lareyre F, Guigo S, Bellenger K, Raffort J, Gouëffic Y. 3-Dimensional printing in vascular disease: From manufacturer to clinical use. Semin Vasc Surg 2024; 37:326-332. [PMID: 39277349 DOI: 10.1053/j.semvascsurg.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 09/17/2024]
Abstract
Three-dimensional (3D) printing has been used in medicine with applications in many different fields. 3D printing allows patient education, interventionalists training, preprocedural planning, and assists the interventionalist to improve treatment outcomes. 3D printing represents a potential advancement by allowing the printing of flexible vascular models. In this article, the authors report a clinical case using 3D printing to perform a physician-modified fenestrated endograft. An overview of 3D printing in vascular and endovascular surgery is provided, focusing on its potential applications for training, education, preprocedural planning, and current clinical applications.
Collapse
Affiliation(s)
- Bahaa Nasr
- Univ Brest, Institut National de la Santé et de la Recherche Médicale, IMT-Atlantique, UMR1011 LaTIM, Vascular and Endovascular Surgery Department, Centre Hospitalier Universitaire Cavale Blanche, Boulevard Tanguy Prigent, 29200 Brest, France.
| | - Fabien Lareyre
- Department of Vascular Surgery, Hospital of Antibes Juan-les-Pins, France; Université Côte d'Azur, Le Centre National De La Recherche Scientifique, UMR7370, LP2M, Nice, France; Fédération Hospitalo-Universitaire Plan&Go, Nice, France
| | - Samuel Guigo
- W.Print, Clinical Research and Innovation Department, Centre Hospitalier Universitaire Cavale Blanche, Brest, France
| | - Kevin Bellenger
- W.Print, Clinical Research and Innovation Department, Centre Hospitalier Universitaire Cavale Blanche, Brest, France
| | - Juliette Raffort
- Université Côte d'Azur, Le Centre National De La Recherche Scientifique, UMR7370, LP2M, Nice, France; Fédération Hospitalo-Universitaire Plan&Go, Nice, France; Clinical Chemistry Laboratory, University Hospital of Nice, France; Institute 3IA Côte d'Azur, Université Côte d'Azur, France
| | - Yann Gouëffic
- Groupe Hospitalier Paris St Joseph, Service de Chirurgie Vasculaire et Endovasculaire, F-75014
| |
Collapse
|
4
|
Bittner-Frank M, Strassl A, Unger E, Hirtler L, Eckhart B, Koenigshofer M, Stoegner A, Nia A, Popp D, Kainberger F, Windhager R, Moscato F, Benca E. Accuracy Analysis of 3D Bone Fracture Models: Effects of Computed Tomography (CT) Imaging and Image Segmentation. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:1889-1901. [PMID: 38483695 PMCID: PMC11300728 DOI: 10.1007/s10278-024-00998-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 08/07/2024]
Abstract
The introduction of three-dimensional (3D) printed anatomical models has garnered interest in pre-operative planning, especially in orthopedic and trauma surgery. Identifying potential error sources and quantifying their effect on the model dimensional accuracy are crucial for the applicability and reliability of such models. In this study, twenty radii were extracted from anatomic forearm specimens and subjected to osteotomy to simulate a defined fracture of the distal radius (Colles' fracture). Various factors, including two different computed tomography (CT) technologies (energy-integrating detector (EID) and photon-counting detector (PCD)), four different CT scanners, two scan protocols (i.e., routine and high dosage), two different scan orientations, as well as two segmentation algorithms were considered to determine their effect on 3D model accuracy. Ground truth was established using 3D reconstructions of surface scans of the physical specimens. Results indicated that all investigated variables significantly impacted the 3D model accuracy (p < 0.001). However, the mean absolute deviation fell within the range of 0.03 ± 0.20 to 0.32 ± 0.23 mm, well below the 0.5 mm threshold necessary for pre-operative planning. Intra- and inter-operator variability demonstrated fair to excellent agreement for 3D model accuracy, with an intra-class correlation (ICC) of 0.43 to 0.92. This systematic investigation displayed dimensional deviations in the magnitude of sub-voxel imaging resolution for all variables. Major pitfalls included missed or overestimated bone regions during the segmentation process, necessitating additional manual editing of 3D models. In conclusion, this study demonstrates that 3D bone fracture models can be obtained with clinical routine scanners and scan protocols, utilizing a simple global segmentation threshold, thereby providing an accurate and reliable tool for pre-operative planning.
Collapse
Affiliation(s)
- Martin Bittner-Frank
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Andreas Strassl
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Ewald Unger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Lena Hirtler
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Barbara Eckhart
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Markus Koenigshofer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Alexander Stoegner
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Arastoo Nia
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Domenik Popp
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Franz Kainberger
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Reinhard Windhager
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Francesco Moscato
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Emir Benca
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
5
|
Zhao CX, Yam M. Role of patient specific 3D printed models in patient confidence, understanding and satisfaction of care in Singapore. J Orthop 2024; 52:28-32. [PMID: 38404701 PMCID: PMC10881444 DOI: 10.1016/j.jor.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Patient specific 3D models have been widely used for pre-op planning and intra-op guidance in orthopaedic surgery. These models however are not often used in pre-operative doctor-patient communication. This study evaluates the roles of customized 3D models in improving patient understanding, confidence, and satisfaction of patient care when they were used during preoperative counselling. Materials and methods A prospective survey was conducted on 33 orthopaedic trauma patients who were required to rate on a scale of 1-5, the effectiveness of patient specific 3D models in: 1) improving patient's understanding and, 2) helping patients cope with the condition, 3) boosting patients' confidence in the treatment and 4) in the surgeon; and on a scale of 0-10, their overall satisfaction. Subgroup analysis was done to compare ratings of patients by age and by education levels. Results Over 90% patients rated agree or strongly agree on customised 3D models' effectiveness in improving understanding of injury and boosting confidence in treatments and surgeons. 87% patients agreed or strongly agreed that the models enhanced patient self-efficacy. No significant correlation was identified between age and patients' perceived effectiveness of customised 3D models in improving patient care. Ratings on four areas evaluated by pre-secondary and post-secondary groups were comparable. Post-secondary group had significantly higher satisfaction level than the pre-secondary group. Conclusion Customized 3D models help patients visualise complex pathology to facilitate patients' understanding of their condition and treatment, resulting in improved self-efficacy, confidence, and overall satisfaction. The use of patient specific 3D models in pre-operative counselling allows greater patient involvement therefore prompting patient-centred healthcare. Age does not influence patients' perceived effectiveness of customised 3D models in improving patient care. Patients with higher education level are likely to experience higher satisfaction level due to their willingness to take responsibility for their care.
Collapse
Affiliation(s)
- Carol Xiaoshu Zhao
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Michael Yam
- Orthopaedic Department, Tan Tock Seng Hospital, 308433, Singapore
| |
Collapse
|
6
|
Wang F, Hou L, Shan YH, Li ZS, Yang XF. Polyurethane-based three-dimensional printing for biological mesh carriers. Sci Rep 2024; 14:12278. [PMID: 38806559 PMCID: PMC11133434 DOI: 10.1038/s41598-024-63000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024] Open
Abstract
Repair and reconstruction of the myopectineal orifice area using meshes is the mainstay of surgical treatment of inguinal hernias. However, the limitations of existing meshes are becoming increasingly evident in clinical applications; thus, the idea of using three-dimensionally (3D)-printed biological meshes was put forward. According to the current level of the 3D printing technology and the inherent characteristics of biological materials, the direct use of the 3D printing technology for making biological materials into finished products suitable for clinical applications is not yet supported, but synthetic materials can be first printed into 3D form carriers, compounded with biological materials, and finally made into finished products. The purpose of this study was to develop a technical protocol for making 3D-printed biomesh carriers using polyurethane as a raw material. In our study: raw material, polyurethane; weight, 20-30 g/m2; weaving method, hexagonal mesh; elastic tension aspect ratio, 2:1; diameters of pores, 0.1-1 mm; surface area, 8 × 12 cm2; the optimal printing layer height, temperature and velocity were 0.1 mm, 210-220 °C and 60 mm/s. Its clinical significance lies in: (1) applied to preoperative planning and design a detailed surgical plan; (2) applied to special types of surgery including patients in puberty, recurrent and compound inguinal hernias; (3) significantly improve the efficiency of doctor-patient communication; (4) it can shorten the operation and recovery period by about 1/3 and can save about 1/4 of the cost for patients; (5) the learning curve is significantly shortened, which is conducive to the cultivation of reserve talents.
Collapse
Affiliation(s)
- Feng Wang
- Department of General Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China.
| | - Lin Hou
- The First Clinical College of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China
| | - Yan-Hui Shan
- The First Clinical College of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China
| | - Zhen-Su Li
- Department of General Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China
| | - Xiao-Feng Yang
- Department of Urology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China
| |
Collapse
|
7
|
Zhang X, Yang D, Li L, Wang J, Liang S, Li P, Han Z, Wang X, Zhang K. Application of three-dimensional technology in video-assisted thoracoscopic surgery sublobectomy. Front Oncol 2024; 14:1280075. [PMID: 38525423 PMCID: PMC10957557 DOI: 10.3389/fonc.2024.1280075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 02/15/2024] [Indexed: 03/26/2024] Open
Abstract
Background Due to the widespread use of imaging techniques, the detection rate of early-stage lung cancer has increased. Video-assisted thoracoscopic surgery (VATS) sublobectomy has emerged as a prominent alternative to lobectomy, offering advantages like reduced resection range, better preservation of lung function, and enhanced postoperative quality of life. However, sublobectomy is more intricate than lobectomy, necessitating a higher level of surgical proficiency and anatomical understanding. Methods Three electronic databases were searched to capture relevant studies from January 2016 to March 2023, which related to the application of three-dimensional(3D) technology in VATS sublobectomy. Results Currently, clinical departments such as orthopedics, hepatobiliary surgery, and urology have started using 3D technology. This technology is expected to be widely used in thoracic surgery in future. Now 3D technology assists in preoperative planning, intraoperative navigation and doctor-patient communication. Conclusion 3D technologies, instrumental in locating pulmonary nodules and identifying variations in target lung segmental vessels and bronchi, play pivotal roles in VATS sublobectomy, especially in preoperative planning, intraoperative navigation, and doctor-patient communication. The limitations of 3D technology in clinical application are analyzed, and the future direction of existing 3D technology development is prospected.
Collapse
Affiliation(s)
- Xinyu Zhang
- Clinical Medical College of Hebei University, Affiliated Hospital of Hebei University, Baoding, China
- Thoracic Surgery Department, Affiliated Hospital of Hebei University Cardiothoracic Surgical Department, Affiliated Hospital of Hebei University, Baoding, China
| | - Di Yang
- Clinical Medical College of Hebei University, Affiliated Hospital of Hebei University, Baoding, China
- Thoracic Surgery Department, Affiliated Hospital of Hebei University Cardiothoracic Surgical Department, Affiliated Hospital of Hebei University, Baoding, China
| | - Linqian Li
- Surgical Department, Affiliated Hospital of Hebei University, Baoding, China
- Basic Research Key Laboratory of General Surgery for Digital Medicine, Baoding, China
- Institute of Life Science and Green Development, Hebei University, Baoding, China
- 3D Image and 3D Printing Center, Affiliated Hospital of Hebei University, Baoding, China
| | - Jianing Wang
- Institute of Life Science and Green Development, Hebei University, Baoding, China
- Imaging Department of Hebei University Affiliated Hospital, Baoding, China
| | - Si Liang
- Basic Research Key Laboratory of General Surgery for Digital Medicine, Baoding, China
- Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Peng Li
- Basic Research Key Laboratory of General Surgery for Digital Medicine, Baoding, China
- Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Zhe Han
- Basic Research Key Laboratory of General Surgery for Digital Medicine, Baoding, China
- Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Xiaodong Wang
- Basic Research Key Laboratory of General Surgery for Digital Medicine, Baoding, China
- Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Ke Zhang
- Thoracic Surgery Department, Affiliated Hospital of Hebei University Cardiothoracic Surgical Department, Affiliated Hospital of Hebei University, Baoding, China
- Basic Research Key Laboratory of General Surgery for Digital Medicine, Baoding, China
- Institute of Life Science and Green Development, Hebei University, Baoding, China
- 3D Image and 3D Printing Center, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
8
|
Wu KY, Tabari A, Mazerolle É, Tran SD. Towards Precision Ophthalmology: The Role of 3D Printing and Bioprinting in Oculoplastic Surgery, Retinal, Corneal, and Glaucoma Treatment. Biomimetics (Basel) 2024; 9:145. [PMID: 38534830 PMCID: PMC10968161 DOI: 10.3390/biomimetics9030145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/16/2024] [Indexed: 03/28/2024] Open
Abstract
In the forefront of ophthalmic innovation, biomimetic 3D printing and bioprinting technologies are redefining patient-specific therapeutic strategies. This critical review systematically evaluates their application spectrum, spanning oculoplastic reconstruction, retinal tissue engineering, corneal transplantation, and targeted glaucoma treatments. It highlights the intricacies of these technologies, including the fundamental principles, advanced materials, and bioinks that facilitate the replication of ocular tissue architecture. The synthesis of primary studies from 2014 to 2023 provides a rigorous analysis of their evolution and current clinical implications. This review is unique in its holistic approach, juxtaposing the scientific underpinnings with clinical realities, thereby delineating the advantages over conventional modalities, and identifying translational barriers. It elucidates persistent knowledge deficits and outlines future research directions. It ultimately accentuates the imperative for multidisciplinary collaboration to enhance the clinical integration of these biotechnologies, culminating in a paradigm shift towards individualized ophthalmic care.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Adrian Tabari
- Southern Medical Program, Faculty of Medicine, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Éric Mazerolle
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
9
|
Sun Z, Silberstein J, Vaccarezza M. Cardiovascular Computed Tomography in the Diagnosis of Cardiovascular Disease: Beyond Lumen Assessment. J Cardiovasc Dev Dis 2024; 11:22. [PMID: 38248892 PMCID: PMC10816599 DOI: 10.3390/jcdd11010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Cardiovascular CT is being widely used in the diagnosis of cardiovascular disease due to the rapid technological advancements in CT scanning techniques. These advancements include the development of multi-slice CT, from early generation to the latest models, which has the capability of acquiring images with high spatial and temporal resolution. The recent emergence of photon-counting CT has further enhanced CT performance in clinical applications, providing improved spatial and contrast resolution. CT-derived fractional flow reserve is superior to standard CT-based anatomical assessment for the detection of lesion-specific myocardial ischemia. CT-derived 3D-printed patient-specific models are also superior to standard CT, offering advantages in terms of educational value, surgical planning, and the simulation of cardiovascular disease treatment, as well as enhancing doctor-patient communication. Three-dimensional visualization tools including virtual reality, augmented reality, and mixed reality are further advancing the clinical value of cardiovascular CT in cardiovascular disease. With the widespread use of artificial intelligence, machine learning, and deep learning in cardiovascular disease, the diagnostic performance of cardiovascular CT has significantly improved, with promising results being presented in terms of both disease diagnosis and prediction. This review article provides an overview of the applications of cardiovascular CT, covering its performance from the perspective of its diagnostic value based on traditional lumen assessment to the identification of vulnerable lesions for the prediction of disease outcomes with the use of these advanced technologies. The limitations and future prospects of these technologies are also discussed.
Collapse
Affiliation(s)
- Zhonghua Sun
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia; (J.S.); (M.V.)
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6102, Australia
| | - Jenna Silberstein
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia; (J.S.); (M.V.)
| | - Mauro Vaccarezza
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia; (J.S.); (M.V.)
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
10
|
Kveller C, Jakobsen AM, Larsen NH, Lindhardt JL, Baad-Hansen T. First experiences of a hospital-based 3D printing facility - an analytical observational study. BMC Health Serv Res 2024; 24:28. [PMID: 38178068 PMCID: PMC10768152 DOI: 10.1186/s12913-023-10511-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
PURPOSE To identify the clinical impact and potential benefits of in-house 3D-printed objects through a questionnaire, focusing on three principal areas: patient education; interdisciplinary cooperation; preoperative planning and perioperative execution. MATERIALS AND METHODS Questionnaires were sent from January 2021 to August 2022. Participants were directed to rate on a scale from 1 to 10. RESULTS The response rate was 43%. The results of the rated questions are averages. 84% reported using 3D-printed objects in informing the patient about their condition/procedure. Clinician-reported improvement in patient understanding of their procedure/disease was 8.1. The importance of in-house placement was rated 9.2. 96% reported using the 3D model to confer with colleagues. Delay in treatment due to 3D printing lead-time was 1.8. The degree with which preoperative planning was altered was 6.9. The improvement in clinician perceived preoperative confidence was 8.3. The degree with which the scope of the procedure was affected, in regard to invasiveness, was 5.6, wherein a score of 5 is taken to mean unchanged. Reduction in surgical duration was rated 5.7. CONCLUSION Clinicians report the utilization of 3D printing in surgical specialties improves procedures pre- and intraoperatively, has a potential for increasing patient engagement and insight, and in-house location of a 3D printing center results in improved interdisciplinary cooperation and allows broader access with only minimal delay in treatment due to lead-time.
Collapse
Affiliation(s)
- Christian Kveller
- Department of Orthopedic Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark.
| | - Anders M Jakobsen
- Department of Plastic and Breast Surgery, 3D Innovation, Aarhus University Hospital, Aarhus, Denmark
| | - Nicoline H Larsen
- Department of Dentistry, Section for Oral and Maxillofacial Surgery, Aarhus University, Aarhus, Denmark
| | - Joakim L Lindhardt
- Department of Plastic and Breast Surgery, 3D Innovation, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Baad-Hansen
- Department of Orthopedic Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark
| |
Collapse
|
11
|
Aliwi I, Schot V, Carrabba M, Duong P, Shievano S, Caputo M, Wray J, de Vecchi A, Biglino G. The Role of Immersive Virtual Reality and Augmented Reality in Medical Communication: A Scoping Review. J Patient Exp 2023; 10:23743735231171562. [PMID: 37441275 PMCID: PMC10333997 DOI: 10.1177/23743735231171562] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023] Open
Abstract
Communication between clinicians and patients and communication within clinical teams is widely recognized as a tool through which improved patient outcomes can be achieved. As emerging technologies, there is a notable lack of commentary on the role of immersive virtual reality (VR) and augmented reality (AR) in enhancing medical communication. This scoping review aims to map the current landscape of literature on this topic and highlights gaps in the evidence to inform future endeavors. A comprehensive search strategy was conducted across 3 databases (PubMed, Web of Science, and Embase), yielding 1000 articles, of which 623 were individually screened for relevance. Ultimately, 22 articles were selected for inclusion and review. Similarities across the cohort of studies included small sample sizes, observational study design, use of questionnaires, and more VR studies than AR. The majority of studies found these technologies to improve medical communication, although user tolerability limitations were identified. More studies are required, presenting more robust findings, in order to draw more definitive conclusions and stronger recommendations for use of immersive VR/AR in clinical environments.
Collapse
Affiliation(s)
| | - Vico Schot
- Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Phuoc Duong
- Alder Hey Children's Hospital,
Liverpool, UK
| | | | - Massimo Caputo
- Bristol Medical School, University of Bristol, Bristol, UK
- University Hospitals Bristol &
Weston NHS Foundation Trust, Bristol, UK
| | - Jo Wray
- UCL Institute of Cardiovascular
Science, UCL, London, UK
- Great Ormond Street Hospital for Children
NHS Foundation Trust, London, UK
| | | | - Giovanni Biglino
- Bristol Medical School, University of Bristol, Bristol, UK
- National Heart and Lung Institute,
Imperial College London, London, UK
| |
Collapse
|
12
|
Biglino G, Hopfner C, Lindhardt J, Moscato F, Munuera J, Oberoi G, Tel A, Esteve AV. Perspectives on medical 3D printing at the point-of-care from the new European 3D Printing Special Interest Group. 3D Print Med 2023; 9:14. [PMID: 37142797 PMCID: PMC10159822 DOI: 10.1186/s41205-022-00167-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 12/31/2022] [Indexed: 05/06/2023] Open
Abstract
This editorial presents the vision for the newly formed (2022) European 3D Special Interest Group (EU3DSIG) in the landscape of medical 3D printing. There are four areas of work identified by the EU3DSIG in the current landscape, namely: 1) creating and fostering communication channels among researches, clinicians and industry, 2) generating awareness of hospitals point-of-care 3D technologies; 3) knowledge sharing and education; 4) regulation, registry and reimbursement models.
Collapse
Affiliation(s)
- Giovanni Biglino
- Bristol Medical School, University of Bristol, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, UK.
- National Heart and Lung Institute, Imperial College London, London, UK.
| | - Carina Hopfner
- Department of Pediatric Cardiology & Pediatric Intensive Care Medicine, LMU Klinikum, Munich, Germany
| | - Joakim Lindhardt
- 3D Printing Center, Aarhus Universitetshospital, Aarhus, Denmark
| | - Francesco Moscato
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Josep Munuera
- 3D Unit (3D4H), Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
- Department of Diagnostic Imaging, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - Gunpreet Oberoi
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Austrian Center for Medical Innovation and Technology in Vienna (ACMIT Gmbh), Wiener Neustadt, Austria
| | - Alessandro Tel
- University Hospital of Udine, Head & Neck and Neuroscience Department, Clinic of Maxillofacial Surgery, Udine, Italy
| | - Arnau Valls Esteve
- 3D Unit (3D4H), Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
- Innovation in Health Technologies, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
- Departament de Medicina i Recerca Translacional, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Patient-Specific 3D-Printed Models in Pediatric Congenital Heart Disease. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10020319. [PMID: 36832448 PMCID: PMC9955978 DOI: 10.3390/children10020319] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Three-dimensional (3D) printing technology has become increasingly used in the medical field, with reports demonstrating its superior advantages in both educational and clinical value when compared with standard image visualizations or current diagnostic approaches. Patient-specific or personalized 3D printed models serve as a valuable tool in cardiovascular disease because of the difficulty associated with comprehending cardiovascular anatomy and pathology on 2D flat screens. Additionally, the added value of using 3D-printed models is especially apparent in congenital heart disease (CHD), due to its wide spectrum of anomalies and its complexity. This review provides an overview of 3D-printed models in pediatric CHD, with a focus on educational value for medical students or graduates, clinical applications such as pre-operative planning and simulation of congenital heart surgical procedures, and communication between physicians and patients/parents of patients and between colleagues in the diagnosis and treatment of CHD. Limitations and perspectives on future research directions for the application of 3D printing technology into pediatric cardiology practice are highlighted.
Collapse
|
14
|
Common Errors in the Management of Idiopathic Clubfeet Using the Ponseti Method: A Review of the Literature. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10010152. [PMID: 36670703 PMCID: PMC9856779 DOI: 10.3390/children10010152] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
Congenital talipes equinovarus is one of the most prevalent birth defects, affecting approximately 0.6 to 1.5 children per 1000 live births. Currently, the Ponseti method is the gold-standard treatment for idiopathic clubfeet, with good results reported globally. This literature review focuses on common errors encountered during different stages of the management of idiopathic clubfeet, namely diagnosis, manipulation, serial casting, Achilles tenotomy, and bracing. The purpose is to update clinicians and provide broad guidelines that can be followed to avoid and manage these errors to optimize short- and long-term outcomes of treatment of idiopathic clubfeet using the Ponseti method. A literature search was performed using the following keywords: "Idiopathic Clubfoot" (All Fields) AND "Management" OR "Outcomes" (All Fields). Databases searched included PubMed, EMBASE, Cochrane Library, Google Scholar, and SCOPUS (age range: 0-12 months). A full-text review of these articles was then performed looking for "complications" or "errors" reported during the treatment process. A total of 61 articles were included in the final review: 28 from PubMed, 8 from EMBASE, 17 from Google Scholar, 2 from Cochrane Library, and 6 from SCOPUS. We then grouped the errors encountered during the treatment process under the different stages of the treatment protocol (diagnosis, manipulation and casting, tenotomy, and bracing) to facilitate discussion and highlight solutions. While the Ponseti method is currently the gold standard in clubfoot treatment, its precise and intensive nature can present clinicians, health care providers, and patients with potential problems if proper diligence and attention to detail is lacking. The purpose of this paper is to highlight common mistakes made throughout the Ponseti treatment protocol from diagnosis to bracing to optimize care for these patients.
Collapse
|
15
|
Jacob J, Stunden C, Zakani S. Exploring the value of three-dimensional printing and virtualization in paediatric healthcare: A multi-case quality improvement study. Digit Health 2023; 9:20552076231159988. [PMID: 36865771 PMCID: PMC9972041 DOI: 10.1177/20552076231159988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Background Three-dimensional printing is being utilized in clinical medicine to support activities including surgical planning, education, and medical device fabrication. To better understand the impacts of this technology, a survey was implemented with radiologists, specialist physicians, and surgeons at a tertiary care hospital in Canada, examining multidimensional value and considerations for uptake. Objectives To examine how three-dimensional printing can be integrated into the paediatric context and highlight areas of impact and value to the healthcare system using Kirkpatrick's Model. Secondarily, to explore the perspective of clinicians utilizing three-dimensional models and how they make decisions about whether or not to use the technology in patient care. Methods A post-case survey. Descriptive statistics are provided for Likert-style questions, and a thematic analysis was conducted to identify common patterns in open-ended responses. Results In total, 37 respondents were surveyed across 19 clinical cases, providing their perspectives on model reaction, learning, behaviour, and results. We found surgeons and specialists to consider the models more beneficial than radiologists. Results further showed that the models were more helpful when used to assess the likelihood of success or failure of clinical management strategies, and for intraoperative orientation. We demonstrate that three-dimensional printed models could improve perioperative metrics, including a reduction in operating room time, but with a reciprocal effect on pre-procedural planning time. Clinicians who shared the models with patients and families thought it increased understanding of the disease and surgical procedure, and had no effect on their consultation time. Conclusions Three-dimensional printing and virtualization were used in preoperative planning and for communication among the clinical care team, trainees, patients, and families. Three-dimensional models provide multidimensional value to clinical teams, patients, and the health system. Further investigation is warranted to assess value in other clinical areas, across disciplines, and from a health economics and outcomes perspective.
Collapse
Affiliation(s)
- John Jacob
- Faculty of Medicine, Department of Paediatrics, University of British
Columbia, Vancouver, BC, Canada
- Digital Lab, BC Children's Hospital, Vancouver, BC, Canada
- Bayes Business School, City, University of London, London, UK
| | - Chelsea Stunden
- Faculty of Medicine, Department of Paediatrics, University of British
Columbia, Vancouver, BC, Canada
- Digital Lab, BC Children's Hospital, Vancouver, BC, Canada
| | - Sima Zakani
- Faculty of Medicine, Department of Paediatrics, University of British
Columbia, Vancouver, BC, Canada
- Digital Lab, BC Children's Hospital, Vancouver, BC, Canada
| |
Collapse
|
16
|
AlRawi A, Basha T, Elmeligy AO, Mousa NA, Mohammed G. The Role of Three-dimensional Printed Models in Women's Health. WOMEN'S HEALTH (LONDON, ENGLAND) 2023; 19:17455057231199040. [PMID: 37688305 PMCID: PMC10493061 DOI: 10.1177/17455057231199040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/26/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023]
Abstract
Three-dimensional printing is an innovative technology that has gained prominence in recent years due to its attractive features such as affordability, efficiency, and quick production. The technology is used to produce a three-dimensional model by depositing materials in layers using specific printers. In the medical field, it has been increasingly used in various specialties, including neurosurgery, cardiology, and orthopedics, most commonly for the pre-planning of complex surgeries. In addition, it has been applied in therapeutic treatments, patient education, and training wof medical professionals. In the field of obstetrics and gynecology, there is a limited number of studies in which three-dimensional printed models were applied. In this review, we aim to provide an overview of three-dimensional printing applications in the medical field, highlighting the few reported applications in obstetrics and gynecology. We also review all relevant studies and discuss the current challenges and limitations of adopting the technology in routine clinical practice. The technology has the potential to expand for wider applications related to women's health, including patient counseling, surgical training, and medical education.
Collapse
Affiliation(s)
- Afnan AlRawi
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Tasneem Basha
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Ahmed O Elmeligy
- Department of Electrical and Computer Engineering, Faculty of Engineering, McGill University, Montreal, QC, Canada
| | - Noha A Mousa
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Ghada Mohammed
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
17
|
Sun Z, Wee C. 3D Printed Models in Cardiovascular Disease: An Exciting Future to Deliver Personalized Medicine. MICROMACHINES 2022; 13:1575. [PMID: 36295929 PMCID: PMC9610217 DOI: 10.3390/mi13101575] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
3D printing has shown great promise in medical applications with increased reports in the literature. Patient-specific 3D printed heart and vascular models replicate normal anatomy and pathology with high accuracy and demonstrate superior advantages over the standard image visualizations for improving understanding of complex cardiovascular structures, providing guidance for surgical planning and simulation of interventional procedures, as well as enhancing doctor-to-patient communication. 3D printed models can also be used to optimize CT scanning protocols for radiation dose reduction. This review article provides an overview of the current status of using 3D printing technology in cardiovascular disease. Limitations and barriers to applying 3D printing in clinical practice are emphasized while future directions are highlighted.
Collapse
Affiliation(s)
- Zhonghua Sun
- Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, Perth 6845, Australia
| | - Cleo Wee
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth 6845, Australia
| |
Collapse
|
18
|
Xenofontos P, Zamani R, Akrami M. The application of 3D printing in preoperative planning for transcatheter aortic valve replacement: a systematic review. Biomed Eng Online 2022; 21:59. [PMID: 36050722 PMCID: PMC9434927 DOI: 10.1186/s12938-022-01029-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recently, transcatheter aortic valve replacement (TAVR) has been suggested as a less invasive treatment compared to surgical aortic valve replacement, for patients with severe aortic stenosis. Despite the attention, persisting evidence suggests that several procedural complications are more prevalent with the transcatheter approach. Consequently, a systematic review was undertaken to evaluate the application of three-dimensional (3D) printing in preoperative planning for TAVR, as a means of predicting and subsequently, reducing the incidence of adverse events. METHODS MEDLINE, Web of Science and Embase were searched to identify studies that utilised patient-specific 3D printed models to predict or mitigate the risk of procedural complications. RESULTS 13 of 219 papers met the inclusion criteria of this review. The eligible studies have shown that 3D printing has most commonly been used to predict the occurrence and severity of paravalvular regurgitation, with relatively high accuracy. Studies have also explored the usefulness of 3D printed anatomical models in reducing the incidence of coronary artery obstruction, new-onset conduction disturbance and aortic annular rapture. CONCLUSION Patient-specific 3D models can be used in pre-procedural planning for challenging cases, to help deliver personalised treatment. However, the application of 3D printing is not recommended for routine clinical practice, due to practicality issues.
Collapse
Affiliation(s)
| | - Reza Zamani
- Medical School, College of Medicine and Health, Exeter, UK
| | - Mohammad Akrami
- Department of Engineering, College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|