1
|
Wu H, Kong Y, Zhao W, Wang F. Measurement of cellular MDA content through MTBE-extraction based TBA assay by eliminating cellular interferences. J Pharm Biomed Anal 2024; 248:116332. [PMID: 38964165 DOI: 10.1016/j.jpba.2024.116332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/25/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Malondialdehyde (MDA) has long been served as a crucial indicator for assessing cellular oxidative stress levels. In this study, we introduce a new approach to determine cellular MDA levels based on a methyl tert-butyl ether (MTBE) extraction, aimed at eliminating interferences from cellular components during thiobarbituric acid (TBA) derivatization of MDA. By leveraging the effective MTBE extraction, we identified that the determination of the MDA-TBA adduct formed from the MTBE extraction layer can effectively eliminate the interferences from cellular proteins and metabolites. This method demonstrated acceptable linearity and precision in cellular samples and showed significant differences in H2O2 treated cellular oxidative stress models. The MTBE extraction-based MDA-TBA approach provides a reliable, cost-effective, and feasible method to determine cellular MDA levels using batch microplate reader approach for the assessment of cellular oxidative stress.
Collapse
Affiliation(s)
- Han Wu
- Department of Interventional Therapy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuwen Kong
- Department of Interventional Therapy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wenjie Zhao
- Department of Interventional Therapy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Feng Wang
- Department of Interventional Therapy, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
2
|
Thakkar H, Gangakhedkar S, Shah RP. Bioanalysis of Stress Biomarkers through Sensitive HILIC-MS/MS Method: A Stride toward Accurate Quantification of MDA, ACR, and CTA. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1110-1119. [PMID: 38665041 DOI: 10.1021/jasms.3c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Quantifying reactive aldehyde biomarkers, such as malondialdehyde, acrolein, and crotonaldehyde, is the most preferred approach to determine oxidative stress. However, reported analytical methods lack specificity for accurately quantifying these aldehydes as certain methodologies may produce false positive results due to harsh experimental conditions. Thus, in this research work, a novel HILIC-MS/MS method with endogenous histidine derivatization is developed, which proves to have higher specificity and reproducibility in quantifying these aldehydes from the biological matrix. To overcome the reactivity of aldehyde, endogenous histidine is used for its derivatization. The generated adduct is orthogonally characterized by NMR and LC-HRMS. The method employed a hydrophilic HILIC column and multiple reaction monitoring (MRM) to accurately quantify these reactive aldehydes. The developed method is an unequivocal solution for quantifying stress in in vivo and in vitro studies.
Collapse
Affiliation(s)
- Harsh Thakkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Gandhinagar 382355, India
| | - Shriya Gangakhedkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Gandhinagar 382355, India
| | - Ravi P Shah
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Gandhinagar 382355, India
| |
Collapse
|
3
|
Homolak J, Varvaras K, Sciacca V, Babic Perhoc A, Virag D, Knezovic A, Osmanovic Barilar J, Salkovic-Petrisic M. Insights into Gastrointestinal Redox Dysregulation in a Rat Model of Alzheimer's Disease and the Assessment of the Protective Potential of D-Galactose. ACS OMEGA 2024; 9:11288-11304. [PMID: 38496956 PMCID: PMC10938400 DOI: 10.1021/acsomega.3c07152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/14/2023] [Accepted: 01/04/2024] [Indexed: 03/19/2024]
Abstract
Recent evidence suggests that the gut plays a vital role in the development and progression of Alzheimer's disease (AD) by triggering systemic inflammation and oxidative stress. The well-established rat model of AD, induced by intracerebroventricular administration of streptozotocin (STZ-icv), provides valuable insights into the GI implications of neurodegeneration. Notably, this model leads to pathophysiological changes in the gut, including redox dyshomeostasis, resulting from central neuropathology. Our study aimed to investigate the mechanisms underlying gut redox dyshomeostasis and assess the effects of D-galactose, which is known to benefit gut redox homeostasis and alleviate cognitive deficits in this model. Duodenal rings isolated from STZ-icv animals and control groups were subjected to a prooxidative environment using 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) or H2O2 with or without D-galactose in oxygenated Krebs buffer ex vivo. Redox homeostasis was analyzed through protein microarrays and functional biochemical assays alongside cell survival assessment. Structural equation modeling and univariate and multivariate models were employed to evaluate the differential response of STZ-icv and control samples to the controlled prooxidative challenge. STZ-icv samples showed suppressed expression of catalase and glutathione peroxidase 4 (GPX4) and increased baseline activity of enzymes involved in H2O2 and superoxide homeostasis. The altered redox homeostasis status was associated with an inability to respond to oxidative challenges and D-galactose. Conversely, the presence of D-galactose increased the antioxidant capacity, enhanced catalase and peroxidase activity, and upregulated superoxide dismutases in the control samples. STZ-icv-induced gut dysfunction is characterized by a diminished ability of the redox regulatory system to maintain long-term protection through the transcription of antioxidant response genes as well as compromised activation of enzymes responsible for immediate antioxidant defense. D-galactose can exert beneficial effects on gut redox homeostasis under physiological conditions.
Collapse
Affiliation(s)
- Jan Homolak
- Department
of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Interfaculty
Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, 72074 Tübingen, Germany
| | - Konstantinos Varvaras
- Department
of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Vittorio Sciacca
- Faculty
of Medicine, University of Catania, 95131 Catania, Italy
| | - Ana Babic Perhoc
- Department
of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Davor Virag
- Department
of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Ana Knezovic
- Department
of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Jelena Osmanovic Barilar
- Department
of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Melita Salkovic-Petrisic
- Department
of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Yang C, Wang T, Zhao Y, Meng X, Ding W, Wang Q, Liu C, Deng H. Flavonoid 4,4'-dimethoxychalcone induced ferroptosis in cancer cells by synergistically activating Keap1/Nrf2/HMOX1 pathway and inhibiting FECH. Free Radic Biol Med 2022; 188:14-23. [PMID: 35697292 DOI: 10.1016/j.freeradbiomed.2022.06.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/08/2023]
Abstract
Flavonoids are widely distributed in plants as secondary metabolites and have various biological benefits such as anti-tumor, anti-oxidant, anti-inflammatory and anti-aging. We previously reported that 4,4'-dimethoxychalcone (DMC) suppressed cancer cell proliferation by aggravating oxidative stress and inducing G2/M cell cycle arrest. In the present study, we explored the underlying mechanisms by which DMC inhibited cancer cell growth. Given that ferrochelatase (FECH) is a potential target of DMC identified by thermal proteome profiling (TPP) method, herein, we confirmed that DMC inhibited the enzymatic activity of FECH. Furthermore, we proved that DMC induced Keap1 degradation via ubiquitin-proteasome system, which led to the nuclear translocation of Nrf2 and upregulated Nrf2 targeted gene HMOX1. FECH inhibition and HMOX1 upregulation resulted in iron overload and triggered ferroptosis in cancer cells. Collectively, we revealed that DMC induced ferroptosis by synergistically activating Keap1/Nrf2/HMOX1 pathway and inhibiting FECH. Our findings indicate that FECH contributes to the non-canonical ferroptosis induction, shed light on the mechanisms of DMC inhibiting cancer cell growth, and set an example for studying biological functions of flavonoids.
Collapse
Affiliation(s)
- Changmei Yang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Tianxiang Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Yujiao Zhao
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Xianbin Meng
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Wenxi Ding
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Qingtao Wang
- Chao Yang Hospital of Capital Medical University, Beijing, 100020, PR China
| | - Chongdong Liu
- Chao Yang Hospital of Capital Medical University, Beijing, 100020, PR China.
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
5
|
van der Slikke EC, Star BS, Quinten VM, Ter Maaten JC, Ligtenberg JJM, van Meurs M, Gansevoort RT, Bakker SJL, Chao MR, Henning RH, Bouma HR. Association between oxidized nucleobases and mitochondrial DNA damage with long-term mortality in patients with sepsis. Free Radic Biol Med 2022; 179:156-163. [PMID: 34952158 DOI: 10.1016/j.freeradbiomed.2021.12.305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Sepsis not only leads to short-term mortality during hospitalization, but is also associated with increased mortality during long-term follow-up after hospital discharge. Metabolic stress during sepsis may cause oxidative damage to both nuclear and mitochondrial DNA (mtDNA) and RNA, which could affect long-term health and life span. Therefore, the aim of this study was to assess the association of sepsis with oxidized nucleobases and (mt)DNA damage and long-term all-cause mortality in septic patients. METHODS 91 patients with sepsis who visited the emergency department (ED) of the University Medical Center Groningen between August 2012 and June 2013 were included. Urine and plasma were collected during the ED visit. Septic patients were matched with 91 healthy controls. Death rate was obtained until June 2020.The degree of oxidation of DNA, RNA and free nucleobases were assessed in urine by mass-spectrometry. Lipid peroxidation was assessed in plasma using a TBAR assay. Additionally, plasma levels of mtDNA and damage to mtDNA were determined by qPCR. RESULTS Sepsis patients denoted higher levels of oxidated DNA, RNA, free nucleobases and lipid peroxidation than controls (all p < 0.01). Further, sepsis patients displayed an increase in plasma mtDNA with an increase in mtDNA damage compared to matched controls (p < 0.01). Kaplan meier survival analyses revealed that high degrees of RNA- and nucleobase oxidation were associated with higher long-term all-cause mortality after sepsis (p < 0.01 and p = 0.01 respectively). Of these two, high RNA oxidation was associated with long-term all-cause mortality, independent of adjustment for age, medical history and sepsis severity (HR 1.29 [(1.17-1.41, 95% CI] p < 0.01). CONCLUSIONS Sepsis is accompanied with oxidation of nuclear and mitochondrial DNA and RNA, where RNA oxidation is an independent predictor of long-term all-cause mortality. In addition, sepsis causes mtDNA damage and an increase in cell free mtDNA in plasma.
Collapse
Affiliation(s)
- Elisabeth C van der Slikke
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Bastiaan S Star
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Vincent M Quinten
- Department of Emergency Medicine, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Jan C Ter Maaten
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Jack J M Ligtenberg
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Matijs van Meurs
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ron T Gansevoort
- Department of Nephrology, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - Stephan J L Bakker
- Department of Nephrology, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Robert H Henning
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Hjalmar R Bouma
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, the Netherlands; Department of Internal Medicine, University of Groningen, University Medical Center Groningen, the Netherlands.
| |
Collapse
|
6
|
Mu L, Jiang L, Chen J, Xiao M, Wang W, Liu P, Wu J. Serum Inflammatory Factors and Oxidative Stress Factors Are Associated With Increased Risk of Frailty and Cognitive Frailty in Patients With Cerebral Small Vessel Disease. Front Neurol 2022; 12:786277. [PMID: 35069415 PMCID: PMC8770428 DOI: 10.3389/fneur.2021.786277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
Objective: To study the correlation between serum inflammatory factors, oxidative stress factors and frailty, and cognitive frailty in patients with cerebral small vessel disease (CSVD). Methods: A total of 281 patients with CSVD were selected from Tianjin Huanhu Hospital and Inner Mongolia People's Hospital from March 2019 to March 2021. CSVD was diagnosed by MRI. The FRAIL scale was used to evaluate the frailty of patients. Patients with CSVD with frailty and MMSE score <27 were considered to have cognitive frailty. Patients with non-cognitive frailty were included in the control group. The Montreal Cognitive Assessment (MoCA) and Mini-Mental State Examination (MMSE) were used to evaluate the cognitive function of patients with CSVD. The serum interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), matrix metalloproteinase 3 (MMP-3), superoxide dismutase (SOD), and malondialdehyde (MDA) of patients with CSVD were detected. The correlation between blood inflammatory factors and oxidative stress factors with the frailty and cognitive frailty patients of CSVD were analyzed. Univariate and multivariate logistic regression were used to analyze the correlation between cognitive frailty and CSVD. Results: Among the patients with CSVD selected in this study, female patients and older patients had a higher proportion of frailty (p < 0.001). In the Frail group, MoCA score and MMSE score were significantly lower than in the Pre-Frail and Robust groups, Hamilton Depression Scale (HAMD) and Hamilton Anxiety Scale (HAMA) scores were significantly higher than the Pre-Frail and Robust groups, and the differences were statistically significant (p < 0.05). Serum CRP, IL-6, TNF-α, MMP-3, and MDA levels in the Frail group were higher, but SOD levels were lower. The levels of serum CRP, IL-6, TNF-α, MMP-3, and MDA in patients with CSVD in the Cognitive Frailty group were significantly higher than those of the Control group, while the levels of SOD were significantly lower than those of the Control group, and the differences were significant (p < 0.001). The results of univariate and multivariate logistic regression analysis showed that CRP, TNF-α, MMP-3, and MDA levels were associated with cognitive frailty in patients with CSVD (p < 0.05). Conclusion: The increase of serum CRP, TNF-α, MMP-3, and MDA levels are significantly related to the increased risk of frailty and cognitive frailty in patients with CSVD.
Collapse
Affiliation(s)
- Lei Mu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China.,Department of Geriatrics, Inner Mongolia People's Hospital, Hohhot, China
| | - Limin Jiang
- Department of Geriatrics, Inner Mongolia People's Hospital, Hohhot, China
| | - Juan Chen
- Department of Geriatrics, Inner Mongolia People's Hospital, Hohhot, China
| | - Mei Xiao
- Department of Geriatrics, Inner Mongolia People's Hospital, Hohhot, China
| | - Wei Wang
- Department of Neurorehabilitation and Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin, China
| | - Peipei Liu
- Department of Neurorehabilitation and Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin, China
| | - Jialing Wu
- Department of Neurorehabilitation and Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin, China
| |
Collapse
|
7
|
Comments on "Increase in the circulating levels of malondialdehyde in patients with obstructive sleep apnea: a systematic review and meta-analysis". Sleep Breath 2021; 26:915-917. [PMID: 34379298 DOI: 10.1007/s11325-021-02467-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 05/31/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
|
8
|
Variations of Serum Oxidative Stress Biomarkers under First-Line Antituberculosis Treatment: A Pilot Study. J Pers Med 2021; 11:jpm11020112. [PMID: 33572362 PMCID: PMC7916141 DOI: 10.3390/jpm11020112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/27/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis (TB) is one of the highest infectious burdens worldwide, and pathogenesis is yet incompletely elucidated. Bacilli dissemination is due to poor antioxidant defense mechanisms and intensified oxidative stress. There are few recent studies that analyzed and compared free radicals or antioxidant status before and after anti-TB treatment. Hence, the present study underlines the need to identify oxidative stress as it could be a useful tool in TB monitorisation. Thirty newly diagnosed patients with pulmonary TB were included after signing an informed consent. Blood was collected before receiving first-line anti-tubercular therapy (T0) and after 60 days (T2). Spectrophotometric methods were used to quantify oxidative parameters (TBARS—thiobarbituric acid reactive species); enzymatic antioxidants such as SOD (superoxide dismutase), CAT (catalase), GPx (glutathione peroxidase), and TAC (total antioxidant capacity); and non-enzymatic antioxidants such as GSH (reduced glutathione). A moderate positive correlation was found between GSH and TAC (r = 0.63, p-value = 0.046) and GSH and SOD (r = 0.64, p-value = 0.041) at T2. Increased values of GSH, CAT, and SOD were noted at T2 in comparison with T0, while GPx, TAC, and TBARS decreased at T2. A better monitorisation in TB could be based on oxidative stress and antioxidant status. Nevertheless, restoring redox host balance could reduce TB progression.
Collapse
|
9
|
Correspondence. Retina 2020; 40:e42-e44. [PMID: 32467481 PMCID: PMC7392580 DOI: 10.1097/iae.0000000000002859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Kartavenka K, Panuwet P, Yakimavets V, Jaikang C, Thipubon K, D’Souza PE, Barr DB, Ryan PB. LC-MS Quantification of Malondialdehyde-Dansylhydrazine Derivatives in Urine and Serum Samples. J Anal Toxicol 2020; 44:470-481. [PMID: 31897465 PMCID: PMC8269965 DOI: 10.1093/jat/bkz112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/21/2019] [Accepted: 11/03/2019] [Indexed: 12/22/2022] Open
Abstract
We developed a robust analytical method for quantification of malondialdehyde (MDA) in urine and serum samples using dansylhydrazine (DH) as a derivatizing reagent. The derivatization procedure was partially carried out using an autosampler injection program to minimize errors associated with the low-volume addition of reagents and was optimized to yield a stable hydrazone derivative of MDA and its labeled d2-MDA analogue. The target MDA-DH derivatives were separated on an Agilent Zorbax Eclipse Plus Phenyl-Hexyl (3.0 × 100 mm, 3.5 μm) column. The mass-to-charge ratios of the target derivatives [(M+H)+ of 302 and 304 for MDA-DH and d2-MDA-DH, respectively] were analyzed in single ion monitoring mode using a single quadrupole mass spectrometer operated under positive electrospray ionization. The method limits of quantification were 5.63 nM (or 0.405 ng/mL) for urine analysis and 5.68 nM (or 0.409 ng/mL) for serum analysis. The quantification range for urine analysis was 5.63-500 nM (0.405-36.0 ng/mL) while the quantification range for serum analysis was 5.68-341 nM (0.409-24.6 ng/mL). The method showed good relative recoveries (98-103%), good accuracies (92-98%), and acceptable precisions (relative standard deviations 1.8-7.3% for inter-day precision; 1.8-6.1% for intra-day precision) as observed from the repeat analysis of quality control samples prepared at different concentrations. The method was used to measure MDA in individual urine samples (n = 287) and de-identified archived serum samples (n = 22) to assess the overall performance of the method. The results demonstrated that our method is capable of measuring urinary and serum levels of MDA, allowing its future application in epidemiologic investigations.
Collapse
Affiliation(s)
- Kostya Kartavenka
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA 30322, USA
| | - Parinya Panuwet
- Laboratory of Exposure Assessment and Development for Environmental Research (LEADER), Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA 30322, USA
| | - Volha Yakimavets
- Laboratory of Exposure Assessment and Development for Environmental Research (LEADER), Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA 30322, USA
| | - Churdsak Jaikang
- Toxicology Section, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, 110 Intavaroros Road, Sriphum Sub-district, Mueang Chiang Mai District, Chiang Mai 50200, Thailand
| | - Kanitarin Thipubon
- Toxicology Section, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, 110 Intavaroros Road, Sriphum Sub-district, Mueang Chiang Mai District, Chiang Mai 50200, Thailand
| | - Priya Esilda D’Souza
- Laboratory of Exposure Assessment and Development for Environmental Research (LEADER), Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA 30322, USA
| | - Dana Boyd Barr
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA 30322, USA
- Laboratory of Exposure Assessment and Development for Environmental Research (LEADER), Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA 30322, USA
| | - P Barry Ryan
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA 30322, USA
- Laboratory of Exposure Assessment and Development for Environmental Research (LEADER), Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA 30322, USA
| |
Collapse
|