1
|
Song T, Yang Y, Wang Y, Ni Y, Yang Y, Zhang L. Bulk and single-cell RNA sequencing reveal the contribution of laminin γ2 -CD44 to the immune resistance in lymphocyte-infiltrated squamous lung cancer subtype. Heliyon 2024; 10:e31299. [PMID: 38803944 PMCID: PMC11129014 DOI: 10.1016/j.heliyon.2024.e31299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 04/01/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
The high heterogeneity of lung squamous cell carcinomas (LUSC) and the complex tumor microenvironment lead to non-response to immunotherapy in many patients. Therefore, characterizing the heterogeneity of the tumor microenvironment in patients with LUSC and further exploring the immune features and molecular mechanisms that lead to immune resistance will help improve the efficacy of immunotherapy in such patients. Herein, we retrospectively analyzed the RNA sequencing (RNA-seq) data of 513 LUSC samples with other multiomics and single-cell RNA-seq data and validated key features using multiplex immunohistochemistry. We divided these samples into six subtypes (CS1-CS6) based on the RNA-seq data and found that CS3 activates the immune response with a high level of lymphocyte infiltration and gathers a large number of patients with advanced-stage disease but increases the expression of exhausted markers cytotoxic T-lymphocyte associated protein 4, lymphocyte-activation gene 3, and programmed death-1. The prediction of the response to immunotherapy showed that CS3 is potentially resistant to immune checkpoint blockade therapy, and multi-omic data analysis revealed that CS3 specifically expresses immunosuppression-related proteins B cell lymphoma 2, GRB2-associated binding protein, and dual-specificity phosphatase 4 and has a high mutation ratio of the driver gene ATP binding cassette subfamily A member 13. Furthermore, single-cell RNA-seq verified lymphocyte infiltration in the CS3 subtype and revealed a positive relationship between the expression of LAMC2-CD44 and immune resistance. LAMC2 and CD44 are epithelial-mesenchymal transition-associated genes that modulate tumor proliferation, and multicolor immunofluorescence validated the negative relationship between the expression of LAMC2-CD44 and immune infiltration. Thus, we identified a lymphocyte-infiltrated subtype (CS3) in patients with LUSC that exhibited resistance to immune checkpoint blockade therapy, and the co-hyperexpression of LAMC2-CD44 contributed to immune resistance, which could potentially improve immunological efficacy by targeting this molecule pair in combination with immunotherapy.
Collapse
Affiliation(s)
- Tingting Song
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Yang
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yilong Wang
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinyun Ni
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongfeng Yang
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Zhang
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
2
|
Steffen C, Schallenberg S, Dernbach G, Dielmann A, Dragomir MP, Schweiger-Eisbacher C, Klauschen F, Horst D, Tinhofer I, Heiland M, Keilholz U. Spatial heterogeneity of tumor cells and the tissue microenvironment in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 137:379-390. [PMID: 38281880 DOI: 10.1016/j.oooo.2023.12.785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/07/2023] [Accepted: 12/10/2023] [Indexed: 01/30/2024]
Abstract
PURPOSE This study describes the morphologic and phenotypic spatial heterogeneity of tumor cells and the tissue microenvironment (TME), focusing on immune infiltration in OSCCs. STUDY DESIGN Patients with OSCCs and planned surgical tumor resection were eligible for the study. Two biopsies each from the tumor center and the tumor rim were obtained. Immunohistochemical characterization of tumor and immune cells was performed using a panel of immunohistochemical markers. RESULTS Thirty-six biopsies were obtained from the 9 patients. All patients showed an individual marker expression profile with ITH. Within the same biopsy, the CPS and TPS scores showed relevant variations in PD-L1 expression. Comparisons between the tumor center and rim revealed significant differences in the up/downregulation of p53. Marker expression of patients with recurrences clustered similarly, with the higher expression of FoxP3, IDO, CD4, CD68, and CD163 at the tumor rim. CONCLUSION OSCCs were found to exhibit relevant ITH involving both tumor cells and TME, suggesting that biomarker analysis of multiple tumor regions may be helpful for clinical decision making and tumor characterization. The analysis of multiple spots within a biopsy is recommended for a reliable determination of PD-L1 expression and other biomarkers, impacting current clinical assessments.
Collapse
Affiliation(s)
- Claudius Steffen
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
| | - Simon Schallenberg
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Gabriel Dernbach
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Anastasia Dielmann
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mihnea P Dragomir
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany; Berlin Institute of Health (BIH), Berlin, Germany
| | | | - Frederick Klauschen
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany; Berlin Institute of Health (BIH), Berlin, Germany; Institute of Pathology, Ludwig-Maximilians-University Munich, München, Germany
| | - David Horst
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ingeborg Tinhofer
- German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiooncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Max Heiland
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Ulrich Keilholz
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany; Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
3
|
Sadat Kalaki N, Ahmadzadeh M, Najafi M, Mobasheri M, Ajdarkosh H, Karbalaie Niya MH. Systems biology approach to identify biomarkers and therapeutic targets for colorectal cancer. Biochem Biophys Rep 2024; 37:101633. [PMID: 38283191 PMCID: PMC10821538 DOI: 10.1016/j.bbrep.2023.101633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
Background Colorectal cancer (CRC), is the third most prevalent cancer across the globe, and is often detected at advanced stage. Late diagnosis of CRC, leave the chemotherapy and radiotherapy as the main options for the possible treatment of the disease which are associated with severe side effects. In the present study, we seek to explore CRC gene expression data using a systems biology framework to identify potential biomarkers and therapeutic targets for earlier diagnosis and treatment of the disease. Methods The expression data was retrieved from the gene expression omnibus (GEO). Differential gene expression analysis was conducted using R/Bioconductor package. The PPI network was reconstructed by the STRING. Cystoscope and Gephi software packages were used for visualization and centrality analysis of the PPI network. Clustering analysis of the PPI network was carried out using k-mean algorithm. Gene-set enrichment based on Gene Ontology (GO) and KEGG pathway databases was carried out to identify the biological functions and pathways associated with gene groups. Prognostic value of the selected identified hub genes was examined by survival analysis, using GEPIA. Results A total of 848 differentially expressed genes were identified. Centrality analysis of the PPI network resulted in identification of 99 hubs genes. Clustering analysis dissected the PPI network into seven interactive modules. While several DEGs and the central genes in each module have already reported to contribute to CRC progression, survival analysis confirmed high expression of central genes, CCNA2, CD44, and ACAN contribute to poor prognosis of CRC patients. In addition, high expression of TUBA8, AMPD3, TRPC1, ARHGAP6, JPH3, DYRK1A and ACTA1 was found to associate with decreased survival rate. Conclusion Our results identified several genes with high centrality in PPI network that contribute to progression of CRC. The fact that several of the identified genes have already been reported to be relevant to diagnosis and treatment of CRC, other highlighted genes with limited literature information may hold potential to be explored in the context of CRC biomarker and drug target discovery.
Collapse
Affiliation(s)
- Niloufar Sadat Kalaki
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
- International Institute of New Sciences (IINS), Tehran, Iran
| | - Mozhgan Ahmadzadeh
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Najafi
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Meysam Mobasheri
- Department of Biotechnology, Faculty of Advanced Sciences and Technology, Tehran Islamic Azad University of Medical Sciences, Tehran, Iran
- International Institute of New Sciences (IINS), Tehran, Iran
| | - Hossein Ajdarkosh
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Karbalaie Niya
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Soleimani A, Saeedi N, Al-Asady AM, Nazari E, Hanaie R, Khazaei M, Ghorbani E, Akbarzade H, Ryzhikov M, Avan A, Mehr SMH. Colorectal Cancer Stem Cell Biomarkers: Biological Traits and Prognostic Insights. Curr Pharm Des 2024; 30:1386-1397. [PMID: 38623972 DOI: 10.2174/0113816128291321240329050945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/17/2024]
Abstract
Due to self-renewal, differentiation, and limitless proliferation properties, Cancer Stem Cells (CSCs) increase the probability of tumor development. These cells are identified by using CSC markers, which are highly expressed proteins on the cell surface of CSCs. Recently, the therapeutic application of CSCs as novel biomarkers improved both the prognosis and diagnosis outcome of colorectal Cancer. In the present review, we focused on a specific panel of colorectal CSC markers, including LGR5, ALDH, CD166, CD133, and CD44, which offers a targeted and comprehensive analysis of their functions. The selection criteria for these markers cancer were based on their established significance in Colorectal Cancer (CRC) pathogenesis and clinical outcomes, providing novel insights into the CSC biology of CRC. Through this approach, we aim to elevate understanding and stimulate further research for developing effective diagnostic and therapeutic strategies in CRC.
Collapse
Affiliation(s)
- Atena Soleimani
- Department of Biochemistry, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Nikoo Saeedi
- Medical School, Islamic Azad University, Mashhad, Iran
| | | | - Elnaz Nazari
- Department of Physiology, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Reyhane Hanaie
- Department of Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Majid Khazaei
- Department of Physiology, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Elnaz Ghorbani
- Department of Microbiology, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Hamed Akbarzade
- Department of Biochemistry, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Mikhail Ryzhikov
- Department of Biochemistry, Saint Louis University, St. Louis, MO 63103, USA
| | - Amir Avan
- Department of Genetics, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | | |
Collapse
|
5
|
Lin Z, Chen Q, Zhou J, Zhang J, Zhang X, Zhang D, Lin J, Lin D. Transcriptomic analysis reveals immune infiltration status and potential biomarkers of canine colorectal cancer. Vet Immunol Immunopathol 2023; 262:110622. [PMID: 37478614 DOI: 10.1016/j.vetimm.2023.110622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 07/23/2023]
Abstract
Colorectal cancer (CRC) in dogs has been shown to have similar molecular characteristics to human colorectal cancer. Although researchers have explored the pathogenesis and immune status of human CRC, the canine CRC has been far less studied. As a result, we analyzed canine colorectal tumors and normal canine intestinal samples by Gene Set Enrichment Analysis (GSEA) and found significant enrichment of immune-related pathways, including the TNF-α signaling pathway and IL6-STAT3 signaling pathway. In addition, the differential infiltration of naive B cells and regulatory T cells suggested that canine CRC was in a state of immunosuppression. Weighted gene co-expression network analysis (WGCNA) revealed the gene modules that contribute to differences in regulatory T cell inetfiltration, Further cross-validation of canine and human CRC differential genes obtained three core genes that are both species-conserved and differentially expressed, CD44, NAT10, and ETV4, of which NAT10 and ETV4 have been little studied in the immune status of colorectal cancer. Our findings may have implications for the pathogenesis and progression of CRC in dogs and could be a new potential therapeutic target for CMT and provide a bioinformatics foundation for later clinical experiment validation.
Collapse
Affiliation(s)
- Zixiang Lin
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qi Chen
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiajing Zhou
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai 264000, Shandong, China
| | - Jiatong Zhang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaohu Zhang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Di Zhang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Jiahao Lin
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Department of Center of Research and Innovation of Traditional Chinese Veterinary Medicine, China Agri-cultural University, Beijing 100193, China.
| | - Degui Lin
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Hanif F, Zhang Y, Dube C, Gibert MK, Saha S, Hudson K, Marcinkiewicz P, Kefas B, Guessous F, Abounader R. miR-3174 Is a New Tumor Suppressor MicroRNA That Inhibits Several Tumor-Promoting Genes in Glioblastoma. Int J Mol Sci 2023; 24:9326. [PMID: 37298284 PMCID: PMC10253284 DOI: 10.3390/ijms24119326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
microRNAs (miRNAs) play an important role in the pathology of glioblastoma (GBM), which is the most malignant and most common primary malignant brain tumor. miRNAs can target multiple genes simultaneously and are considered as potential therapeutic agents or targets. This study aimed to determine the role of miR-3174 in the pathobiology of GBM using both in vitro and in vivo approaches. This is the first study deciphering the role of miR-3174 in GBM. We studied the expression of miR-3174 and found it to be downregulated in a panel of GBM cell lines, GSCs and tissues relative to astrocytes and normal brain tissue. This finding led us to hypothesize that miR-3174 has a tumor-suppressive role in GBM. Exogenous expression of miR-3174 inhibited GBM cell growth and invasion, and hampered the neurosphere formation ability of GSCs. miR-3174 downregulated the expression of multiple tumor-promoting genes including CD44, MDM2, RHOA, PLAU and CDK6. Further, overexpression of miR-3174 reduced tumor volume in nude mice with intracranial xenografts. Immuno-histochemical study of brain sections with intracranial tumor xenografts revealed the pro-apoptotic and anti-proliferative activity of miR-3174. In conclusion, we demonstrated that miR-3174 has a tumor-suppressive role in GBM and could be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Farina Hanif
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Department of Biochemistry, Dow International Medical College, Dow University of Health Sciences, OJHA Campus, SUPARCO Road, Karachi 74200, Pakistan
| | - Ying Zhang
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Collin Dube
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Myron K Gibert
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Shekhar Saha
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Kadie Hudson
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Pawel Marcinkiewicz
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Benjamin Kefas
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Fadila Guessous
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Roger Abounader
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
7
|
Nguyen SV, Shamoun L, Landerholm K, Wågsäter D, Dimberg J. Clinicopathological and prognostic value of CD44 gene polymorphism (rs187115) in Swedish patients with colorectal cancer. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 42:807-817. [PMID: 37074032 DOI: 10.1080/15257770.2023.2200419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/20/2023]
Abstract
Cluster of differentiation (CD) 44 plays a crucial role in apoptosis, cell-cell interactions, angiogenesis, metastasis and proliferation. The aim of the present study was to examine the influence of CD44 gene polymorphism rs187115 on colorectal cancer (CRC) susceptibility and the association with various clinical features including long-term survival in Swedish patients with CRC. Genotypes were screened, using TaqMan single nucleotide polymorphism (SNP) assays based on polymerase chain reaction, in 612 CRC patients and 575 healthy controls.The carriers of G allele, genotypes (AG + GG), were found to be associated with an increased risk of CRC with an odds ratio (OR) of 1.35 (95% confidence interval (CI) = 1.01-1.81; p = 0.039) and found to be more common in patients with mucinous cancer compared with non-mucinous cancer, OR = 1.69 (95% CI = 1.02-2.80; p = 0.011). By using Kaplan-Meier analysis, the patients with genotype GG showed shorter cancer-specific and recurrence free survival with a hazard ratio (HR) of 1.25 (95% CI = 1.02-1.54; p = 0.036) and 1.52 (95% CI = 1.12-2.06; p = 0.007), respectively, in comparison with the carriers of A allele (AG + AA). The present findings demonstrated that the variant G allele of CD44 gene polymorphism rs187115 was related to risk for CRC and associated to mucinous cancer and predict worse prognosis in Swedish patients with CRC.
Collapse
Affiliation(s)
- Song Van Nguyen
- Department of Medical Laboratory, Da Nang University of Medical Technology and Pharmacy, Da Nang, Vietnam
| | - Levar Shamoun
- Department of Laboratory Medicine and Pathology, Region Jönköping County, Jönköping, Sweden
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Kalle Landerholm
- Department of Surgery, Region Jönköping County, Jönköping, Sweden
- Department of Biomedical and Clinical Science, Linköping University, Linköping, Sweden
| | - Dick Wågsäter
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Jan Dimberg
- Department of Natural Science and Biomedicine, School of Health and Welfare, Jönköping University, Jönköping, Sweden
| |
Collapse
|
8
|
El-maksoud RAA, El-okda MO, Zidan AHM, Wagih HM. Assessment of Immunohistochemical Expression of CD44 and Osteopontin in Colorectal Carcinoma and colorectal adenoma.. [DOI: 10.21203/rs.3.rs-2574213/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
Background
Colorectal cancer (CRC) is a foremost global health concern and remains one of the major causes of cancer-related morbidity and mortality. It is the third most common cancer in adults after lung cancer and breast cancer worldwide. The theory that cancer originates from a subpopulation of tumor cells, named cancer stem cells (CSC), they have important role of CSC in the initiation and maintenance of the tumor, as well as invasion, metastasis and therapeutic resistance. Among CSC markers, CD44 and OPN are two of the most investigated colorectal CSC markers and their proteins are introduced as the subpopulation with a greater tumorigenicity. This study aiming assessing the immunohistochemical expression of CD44 & OPN in colorectal adenomas & CRCs. And their relation between immunohistochemical expression of CD44 & OPN with tumor differentiation (grading), lympho-vascular invasion, perineural invasion, desmoplasia and TNM stage.
Methods
this is a retrospective descriptive study that included Sixty paraffin embedded blocks from the pathology laboratory, Suez Canal University Hospital. Paraffin blocks included (14 cases of colorectal carcinoma and 18 cases of colorectal adenoma). paraffin blocks reviewed for clinicopathological prognostic factors and stained by CD44 & OPN, monoclonal antibodies by immunohistochemical method.
Results
The CD44 protein was overexpressed in 80% of CRC, while was positive (44.4%) in adenoma this difference was statistically significant. Also, in this study the difference between the expression OPN in CRC and adenomas was statistically insignificant.
Conclusions
CD 44 is highly expressed in large number of CRC (80 of tumors). It is also significantly more expressed in CRC than in adenomas, suggesting a role of CD 44 in CRC tumorigenesis and progression of adenomas into carcinomas. Our study also associated CD 44 overexpression with both late TNM stage and lympho-vascular invasion.
Collapse
|
9
|
Kaida T, Fujiyama Y, Soeno T, Yokota M, Nakamoto S, Goto T, Watanabe A, Okuno K, Nie Y, Fujino S, Yokota K, Harada H, Tanaka Y, Tanaka T, Yokoi K, Kojo K, Miura H, Yamanashi T, Sato T, Sasaki J, Sangai T, Hiki N, Kumamoto Y, Naitoh T, Yamashita K. Less demand on stem cell marker-positive cancer cells may characterize metastasis of colon cancer. PLoS One 2023; 18:e0277395. [PMID: 37098074 PMCID: PMC10128954 DOI: 10.1371/journal.pone.0277395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 10/26/2022] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND CD44 and CD133 are stem cell markers in colorectal cancer (CRC). CD44 has distinctive isoforms with different oncological properties like total CD44 (CD44T) and variant CD44 (CD44V). Clinical significance of such markers remains elusive. METHODS Sixty colon cancer were examined for CD44T/CD44V and CD133 at mRNA level in a quantitative PCR, and clarified for their association with clinicopathological factors. RESULTS (1) Both CD44T and CD44V showed higher expression in primary colon tumors than in non-cancerous mucosas (p<0.0001), while CD133 was expressed even in non-cancerous mucosa and rather decreased in the tumors (p = 0.048). (2) CD44V expression was significantly associated with CD44T expression (R = 0.62, p<0.0001), while they were not correlated to CD133 at all in the primary tumors. (3) CD44V/CD44T expressions were significantly higher in right colon cancer than in left colon cancer (p = 0.035/p = 0.012, respectively), while CD133 expression were not (p = 0.20). (4) In primary tumors, unexpectedly, CD44V/CD44T/CD133 mRNA expressions were not correlated with aggressive phenotypes, but CD44V/CD44T rather significantly with less aggressive lymph node metastasis/distant metastasis (p = 0.040/p = 0.039, respectively). Moreover, both CD44V and CD133 expressions were significantly decreased in liver metastasis as compared to primary tumors (p = 0.0005 and p = 0.0006, respectively). CONCLUSION Our transcript expression analysis of cancer stem cell markers did not conclude that their expression could represent aggressive phenotypes of primary and metastatic tumors, and rather represented less demand on stem cell marker-positive cancer cells.
Collapse
Affiliation(s)
- Takeshi Kaida
- Department of Surgery, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yoshiki Fujiyama
- Department of Surgery, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- Department of General Pediatric and Hepatobiliary Pancreatic Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takafumi Soeno
- Department of Surgery, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Mitsuo Yokota
- Department of Surgery, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- Department of Breast and Thyroid Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Shuji Nakamoto
- Department of General Pediatric and Hepatobiliary Pancreatic Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takuya Goto
- Department of Surgery, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Akiko Watanabe
- Department of Surgery, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Kota Okuno
- Department of Surgery, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yusuke Nie
- Department of Surgery, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- Department of General Pediatric and Hepatobiliary Pancreatic Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Shiori Fujino
- Department of Surgery, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- Department of Breast and Thyroid Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Kazuko Yokota
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hiroki Harada
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yoko Tanaka
- Department of Breast and Thyroid Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Toshimichi Tanaka
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Keigo Yokoi
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Ken Kojo
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hirohisa Miura
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takahiro Yamanashi
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takeo Sato
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Jiichiro Sasaki
- Multidisciplinary Cancer Care and Treatment Center, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takafumi Sangai
- Department of Breast and Thyroid Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Naoki Hiki
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yusuke Kumamoto
- Department of General Pediatric and Hepatobiliary Pancreatic Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takeshi Naitoh
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Keishi Yamashita
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
- Division of Advanced Surgical Oncology, Research and Development Center for New Frontiers, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| |
Collapse
|
10
|
Zhou L, Wang C. Diagnosis and prognosis prediction model for digestive system tumors based on immunologic gene sets. Front Oncol 2023; 13:1107532. [PMID: 36937448 PMCID: PMC10020235 DOI: 10.3389/fonc.2023.1107532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
According to 2020 global cancer statistics, digestive system tumors (DST) are ranked first in both incidence and mortality. This study systematically investigated the immunologic gene set (IGS) to discover effective diagnostic and prognostic biomarkers. Gene set variation (GSVA) analysis was used to calculate enrichment scores for 4,872 IGSs in patients with digestive system tumors. Using the machine learning algorithm XGBoost to build a classifier that distinguishes between normal samples and cancer samples, it shows high specificity and sensitivity on both the validation set and the overall dataset (area under the receptor operating characteristic curve [AUC]: validation set = 0.993, overall dataset = 0.999). IGS-based digestive system tumor subtypes (IGTS) were constructed using a consistent clustering approach. A risk prediction model was developed using the Least Absolute Shrinkage and Selection Operator (LASSO) method. DST is divided into three subtypes: subtype 1 has the best prognosis, subtype 3 is the second, and subtype 2 is the worst. The prognosis model constructed using nine gene sets can effectively predict prognosis. Prognostic models were significantly associated with tumor mutational burden (TMB), tumor immune microenvironment (TIME), immune checkpoints, and somatic mutations. A composite nomogram was constructed based on the risk score and the patient's clinical information, with a well-fitted calibration curve (AUC = 0.762). We further confirmed the reliability and validity of the diagnostic and prognostic models using other cohorts from the Gene Expression Omnibus database. We identified diagnostic and prognostic models based on IGS that provide a strong basis for early diagnosis and effective treatment of digestive system tumors.
Collapse
Affiliation(s)
- Lin Zhou
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Chunyu Wang
- School of Biological and Environmental Engineering, Chaohu University, Chaohu, Anhui, China
- *Correspondence: Chunyu Wang,
| |
Collapse
|
11
|
Li Z, Ma Z, Zhou Q, Wang S, Yan Q, Zhuang H, Zhou Z, Liu C, Wu Z, Zhao J, Huang S, Zhang C, Hou B. Identification by genetic algorithm optimized back propagation artificial neural network and validation of a four-gene signature for diagnosis and prognosis of pancreatic cancer. Heliyon 2022; 8:e11321. [DOI: 10.1016/j.heliyon.2022.e11321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/02/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
|
12
|
Huang P, Wang S, Wu Z, Zhou Z, Kuang M, Ren C, Qian X, Jiang A, Zhou Y, Wang X, Shao G. Correlations of ALD, Keap-1, and FoxO4 expression with traditional tumor markers and clinicopathological characteristics in colorectal carcinoma. Medicine (Baltimore) 2022; 101:e30222. [PMID: 36042628 PMCID: PMC9410640 DOI: 10.1097/md.0000000000030222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aldolase A (A-2) (ALD), Kelch-like-ECH associated protein-1 (Keap-1), and Forkhead box O4 (FoxO4) are key regulatory proteins, which have been proven to be involved in tumor development. However, the clinicopathological significance of ALD, Keap-1, and FoxO4 expressions in colorectal (colon) carcinoma (CRC) is not clearly known. We sought to explore the clinicopathological significance of ALD, Keap-1, and FoxO4 in CRC to provide evidences for potential monitoring index of CRC. Cases of 199 CRC patients were analyzed retrospectively. Evaluation of ALD, cAMP response element-binding protein-2, cyclo-oxygenase 2, FoxO4, Keap-1, and p53 expressions in CRC patients was accomplished with immunohistochemical technique. The patients were divided into negative and positive groups in accordance with immunohistochemical result. We compared the clinicopathological characteristics of the patients in the 2 groups, coupled with analysis of the relationship between 6 aforesaid proteins and clinicopathological characteristics. Herein, we confirmed the association of tumor location with the expression of ALD, Keap-1, and FoxO4. Also, tumor differentiation was observed to associate significantly with the expression of Keap-1, FoxO4, and Cox-2. The data also revealed that there was a correlation between smoking and expression of ALD, Keap-1, FoxO4, p53, and Cox-2. Nevertheless, insignificant difference was observed when clinicopathological characteristics were compared with cAMP response element-binding protein-2 expression. These findings suggest that ALD, Keap-1, and FoxO4 reinvolved in CRC development, and thus may be considered as potential monitoring protein for CRC.
Collapse
Affiliation(s)
- Pan Huang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Siyu Wang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhipeng Wu
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhengrong Zhou
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Meiqian Kuang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Caifang Ren
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xin Qian
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Anqi Jiang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yan Zhou
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xuxin Wang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Genbao Shao
- School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Genbao Shao, School of Medicine, Jiangsu University, Zhenjiang 212013, China (e-mail: )
| |
Collapse
|
13
|
Identification of fatty acid metabolism-related lncRNAs in the prognosis and immune microenvironment of colon adenocarcinoma. Biol Direct 2022; 17:19. [PMID: 35902970 PMCID: PMC9331591 DOI: 10.1186/s13062-022-00332-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/23/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cancer metabolism is largely altered compared to normal cells. This study aims to explore critical metabolism pathways in colon adenocarcinoma (COAD), and reveal the possible mechanism of their role in cancer progression. METHODS Expression data and sequencing data of COAD samples were obtained from The Cancer Genome Atlas and Gene Expression Omnibus databases. The expression profiles between tumor and normal samples were compared to identify differential metabolism pathways through single sample gene set enrichment analysis. RESULTS Fatty acid synthesis was identified as a key metabolism pathway in COAD. Based on fatty acid-related lncRNAs, two molecular subtypes (C1 and C2) were defined. C2 subtype with worse prognosis had higher immune infiltration and higher expression of immune checkpoints. Five transcription factors (TFs) including FOS, JUN, HIF1A, STAT3 and STAT2 were highly expressed in C2 subtype. Five fatty acid-related lncRNAs were identified to be biomarkers for predicting COAD prognosis. Finally, further experients showed that knockdown of lncRNA PAXIP1-AS1 decreased the triglyceride content and the fatty acid synthase and acetyl-CoA carboxylase 1 expressions, which suggested that lncRNA PAXIP1-AS1 plays an important role in fatty acid metabolism of COAD. CONCLUSIONS This study demonstrated that fatty acid synthesis was greatly altered in COAD. Fatty acid-related lncRNAs were speculated to be involved in cancer progression through associating with TFs. The five screened TFs may serve as new drug targets for treating COAD.
Collapse
|
14
|
Role of CD44 isoforms in epithelial-mesenchymal plasticity and metastasis. Clin Exp Metastasis 2022; 39:391-406. [PMID: 35023031 PMCID: PMC10042269 DOI: 10.1007/s10585-022-10146-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/03/2022] [Indexed: 01/21/2023]
Abstract
Cellular plasticity lies at the core of cancer progression, metastasis, and resistance to treatment. Stemness and epithelial-mesenchymal plasticity in cancer are concepts that represent a cancer cell's ability to coopt and adapt normal developmental programs to promote survival and expansion. The cancer stem cell model states that a small subset of cancer cells with stem cell-like properties are responsible for driving tumorigenesis and metastasis while remaining especially resistant to common chemotherapeutic drugs. Epithelial-mesenchymal plasticity describes a cancer cell's ability to transition between epithelial and mesenchymal phenotypes which drives invasion and metastasis. Recent research supports the existence of stable epithelial/mesenchymal hybrid phenotypes which represent highly plastic states with cancer stem cell characteristics. The cell adhesion molecule CD44 is a widely accepted marker for cancer stem cells, and it lies at a functional intersection between signaling networks regulating both stemness and epithelial-mesenchymal plasticity. CD44 expression is complex, with alternative splicing producing many isoforms. Interestingly, not only does the pattern of isoform expression change during transitions between epithelial and mesenchymal phenotypes in cancer, but these isoforms have distinct effects on cell behavior including the promotion of metastasis and stemness. The role of CD44 both downstream and upstream of signaling pathways regulating epithelial-mesenchymal plasticity and stemness make this protein a valuable target for further research and therapeutic intervention.
Collapse
|
15
|
Blatt S, Krüger M, Rump C, Zimmer S, Sagheb K, Künzel J. Differences in PD-L1 Expression between oral and oropharyngeal squamous cell carcinoma. PLoS One 2022; 17:e0269136. [PMID: 35622885 PMCID: PMC9140279 DOI: 10.1371/journal.pone.0269136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/14/2022] [Indexed: 12/09/2022] Open
Abstract
Treatment of metastasized or recurrent oral (OSCC) and oropharyngeal (OPSCC) squamous cell carcinoma remains challenging. Targeted antibody-based therapy inter alia for PD-1 / PD-L1 axis shows promising results, but whether PD-L1 expression varies between the subentities remains unclear. The expression pattern of PD-L1 (EPR19759 antibody, Abcam, Berlin, Germany) and p16 (CINtech® Histology Kit, Ventana, Oro Valley, USA) was determined immunohistochemically and analyzed by HALO™ Image Analysis Software (Indica Lab, Albuquerque, USA). For PD-L1, combined positivity score (CPS), tumor proportion score (TPS) and histoscore, were assessed and results correlated with epidemiological data. In total, 161 patients (OSCC: n = 78, OPSCC: n = 83) were included. A mean of 43.6% (±34.0%) of the specimen showed increased PD-L1 expression that did not differ quantitatively between subentities (TPS: p = 0.159, CPS: p = 0.078), but qualitatively (histoscore: p = 0.003). In the mean follow-up period (45.6 months), contrary to age (p = 0.006) and advanced T-Status (p = 0.018), PD-L1 expression did not correlate with overall (OS, p = 0.191) and recurrence free survival (RFS: p = 0.193) in both subentities. No correlation of p16 and PD-L1 expression was found (p = 0.844). PD-L1 is differentially expressed between OSCC and OPSCC, however without influence on OS. Furthermore, p16 status was not related to PD-L1 expression. This may have implications for future (immune) therapeutical approaches for oral cancer.
Collapse
Affiliation(s)
- Sebastian Blatt
- Department of Oral and Maxillofacial Surgery, University Medical Center, Mainz, Germany
- * E-mail:
| | - Maximilian Krüger
- Department of Oral and Maxillofacial Surgery, University Medical Center, Mainz, Germany
| | - Constantin Rump
- Department of Oral and Maxillofacial Surgery, University Medical Center, Mainz, Germany
| | - Stefanie Zimmer
- Institute of Pathology and Tissue Bank, University Medical Center, Mainz, Germany
| | - Keyvan Sagheb
- Department of Oral and Maxillofacial Surgery, University Medical Center, Mainz, Germany
| | - Julian Künzel
- Department of Otorhinolaryngology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
16
|
Chiou YS, Lan YM, Lee PS, Lin Q, Nagabhushanam K, Ho CT, Pan MH. Piceatannol Prevents Colon Cancer Progression via Dual-Targeting to M2-Polarized Tumor-Associated Macrophages and the TGF-β1 Positive Feedback Signaling Pathway. Mol Nutr Food Res 2022; 66:e2200248. [PMID: 35616191 DOI: 10.1002/mnfr.202200248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/18/2022] [Indexed: 01/10/2023]
Abstract
SCOPE M2 phenotype tumor-associated macrophages (M2-TAMs) play a key role in distant metastasis and poor clinical outcomes. Herein, a specific molecular mechanism that contributes to malignant progression is illuminated and investigates whether piceatannol (PIC) can target the crosstalk between M2-TAMs and cancer cells for potential colorectal cancer (CRC) therapy. METHODS AND RESULTS To mimic the tumor microenvironment (TME), direct and indirect coculture systems in vitro and in vivo mouse xenograft models are established. The results demonstrate that post-treatment with PIC in TME more effectively prevented the aggressive features and stemness of SW480 cells by restricting the polarization of M2-like macrophages and blocking the transforming growth factor β1 (TGF-β1) positive feedback autocrine/paracrine loop that exists between M2-like polarized macrophages and cancer cells. Furthermore, xenograft assays also observe significant repression in tumor growth and lung metastases with the administration of PIC. The key mechanism underlying the antimetastasis effects of PIC may include its directly inhibitory activity against TGF-β receptor type-1 (TGF-βR1) in the M2-like TAMs-created TME. CONCLUSION These novel findings demonstrate that PIC is a potent TGF-β1/TGF-βR1 pathway inhibitor and TME modulator for preventing tumor progression and metastasis in CRC by reeducating TAMs.
Collapse
Affiliation(s)
- Yi-Shiou Chiou
- Master Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.,Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Ming Lan
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Pei-Sheng Lee
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Qianyu Lin
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, P. R. China
| | | | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, 41354, Taiwan
| |
Collapse
|
17
|
Zhang C, Gu H, Liu D, Tong F, Wei H, Zhou D, Fang J, Dai X, Tian H. The circ_FAM53B-miR-183-5p-CCDC6 axis modulates the malignant behaviors of papillary thyroid carcinoma cells. Mol Cell Biochem 2022; 477:2627-2641. [DOI: 10.1007/s11010-022-04465-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/02/2022] [Indexed: 11/24/2022]
|
18
|
Serine-Arginine Protein Kinase 1 (SRPK1): a systematic review of its multimodal role in oncogenesis. Mol Cell Biochem 2022; 477:2451-2467. [PMID: 35583632 PMCID: PMC9499919 DOI: 10.1007/s11010-022-04456-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/27/2022] [Indexed: 11/13/2022]
Abstract
Alternative splicing is implicated in each of the hallmarks of cancer, and is mechanised by various splicing factors. Serine-Arginine Protein Kinase 1 (SRPK1) is an enzyme which moderates the activity of splicing factors rich in serine/arginine domains. Here we review SRPK1’s relationship with various cancers by performing a systematic review of all relevant published data. Elevated SRPK1 expression correlates with advanced disease stage and poor survival in many epithelial derived cancers. Numerous pre-clinical studies investigating a host of different tumour types; have found increased SRPK1 expression to be associated with proliferation, invasion, migration and apoptosis in vitro as well as tumour growth, tumourigenicity and metastasis in vivo. Aberrant SRPK1 expression is implicated in various signalling pathways associated with oncogenesis, a number of which, such as the PI3K/AKT, NF-КB and TGF-Beta pathway, are implicated in multiple different cancers. SRPK1-targeting micro RNAs have been identified in a number of studies and shown to have an important role in regulating SRPK1 activity. SRPK1 expression is also closely related to the response of various tumours to platinum-based chemotherapeutic agents. Future clinical applications will likely focus on the role of SRPK1 as a biomarker of treatment resistance and the potential role of its inhibition.
Collapse
|
19
|
Pashirzad M, Sathyapalan T, Sheikh A, Kesharwani P, Sahebkar A. Cancer stem cells: An overview of the pathophysiological and prognostic roles in colorectal cancer. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Involvement of Cancer Stem Cells in Chemoresistant Relapse of Epithelial Ovarian Cancer Identified by Transcriptome Analysis. JOURNAL OF ONCOLOGY 2022; 2022:6406122. [PMID: 35401749 PMCID: PMC8991408 DOI: 10.1155/2022/6406122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 11/26/2022]
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy. Despite the initial resection and chemotherapeutic treatment, relapse is common, which leads to poor survival rates in patients. A primary cause of recurrence is the persistence of ovarian cancer stem cells (OCSCs) with high tumorigenicity and chemoresistance. To achieve a better therapeutic response in EOC relapse, the mechanisms underlying acquired chemoresistance associated with relapse-initiating OCSCs need to be studied. Transcriptomes of both chemosensitive primary and chemoresistant relapse EOC samples were obtained from ICGC OV-AU dataset for differential expression analysis. The upregulated genes were further studied using KEGG and GO analysis. Significantly increased expression of eighteen CSC-related genes was found in chemoresistant relapse EOC groups. Upregulation of the expression in four hub genes including WNT3A, SMAD3, KLF4, and PAX6 was verified in chemoresistant relapse samples via immunohistochemistry staining, which confirmed the existence and enrichment of OCSCs in chemoresistant relapse EOC. KEGG and GO enrichment analysis in microarray expression datasets of isolated OCSCs indicated that quiescent state, increased ability of drug efflux, and enhanced response to DNA damage may have caused the chemoresistance in relapse EOC patients. These findings demonstrated a correlation between OCSCs and acquired chemoresistance and illustrated potential underlying mechanisms of OCSC-initiated relapse in EOC patients. Meanwhile, the differentially expressed genes in OCSCs may serve as novel preventive or therapeutic targets against EOC recurrence in the future.
Collapse
|
21
|
Zhu Y, Fu F, Wang Z, Qiu F, Deng T, Du B, Zhu Y, Xi X. Polyphyllin VII is a Potential Drug Targeting CD44 Positive Colon Cancer Cells. Curr Cancer Drug Targets 2022; 22:426-435. [DOI: 10.2174/1568009622666220304110222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
Background:
Current therapies for colon cancer are hindered by treatment failure and recurrence mainly due to colon cancer stem cells (CSCs). Thus, treatment using drugs targeting CSCs should be effective in eliminating colon cancer cells and impeding cancer recurrence.
Objective:
To test if PPVII can a potent drug candidate for the treatment of colon cancer by targeting CD44 positive colon cancer cells.
Methods:
In this study, we first demonstrated that CD44 is highly expressed in colon cancer tissues by TCGA/GTEX database analysis and immunohistochemical staining.
Results:
In this study, we first demonstrated that CD44 is highly expressed in colon cancer tissues by TCGA/GTEX database analysis. CD44 had high accuracy as a diagnostic and predictive index for colorectal cancer through Receiver operating characteristic curve (ROC) analysis. At the same time, survival curve analysis also showed that the high expression of CD44 was associated with poor prognosis in patients with colon cancer. CD44 higher expression in colon cancer tissues was further confirmed by immunohistochemical staining, the positive rate of CD44 expression was 87.95%. Then, one of the constituents that derives from the root of Paris polyphylla, Polyphyllin VII (PPVII) has been confirmed to inhibit the migration of colon cancer cells. Our results also demonstrated that PPVII could inhibit the sphere-forming ability of colon cancer cells. Further experiment results showed that PPVII could downregulate the expression of CD44 in colon cancer cells. In addition, PPVII was proved to have inhibitory effects against CD44 positive colon cancer cells.
Conclusion:
Therefore, PPVII might be a potent candidate reagent for the treatment of colon cancer by targeting CD44 positive colon cancer cells.
Collapse
Affiliation(s)
- Ye Zhu
- Institute of Basic Medical Sciences, Hubei University of Medicine
| | - Fei Fu
- Renmin Hospital, Hubei University of Medicine
| | - Zhongyu Wang
- Institute of Basic Medical Sciences, Hubei University of Medicine
| | - Fen Qiu
- Institute of Basic Medical Sciences, Hubei University of Medicine.
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine
| | - Ting Deng
- Institute of Basic Medical Sciences, Hubei University of Medicine
| | - Boyu Du
- Institute of Basic Medical Sciences, Hubei University of Medicine.
- Renmin Hospital, Hubei University of Medicine
- Hubei Key laboratory of Wudang Local Chinese Medicine Research
| | - Yunhe Zhu
- Renmin Hospital, Hubei University of Medicine
| | - Xueyan Xi
- Institute of Basic Medical Sciences, Hubei University of Medicine.
- Renmin Hospital, Hubei University of Medicine.
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine
| |
Collapse
|
22
|
Ebadi Zavieh S, Safari F. The Antitumor Activity of hAMSCs Secretome in HT-29 Colon Cancer Cells Through Downregulation of EGFR/c-Src/IRTKS Expression and p38/ERK1/2 Phosphorylation. Cell Biochem Biophys 2022; 80:395-402. [PMID: 35150389 DOI: 10.1007/s12013-022-01066-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2022] [Indexed: 11/03/2022]
Abstract
Colon cancer is considered as one of the main causes of mortality worldwide. Identifying a novel and more effective platform with fewer side effects is still progress. In various cancer types, Epidermal growth factor receptor (EGFR) and c-Src (a key mediator in EGFR signaling pathway) are the key targets for cancer therapy. Moreover, insulin receptor tyrosine kinase substrate (IRTKS or BAI1-associated protein 2-like 1: BAIAP2L1) is a member of the subfamily of inverse BAR (I-BAR) domain proteins, which mediates cell morphology and movement through regulation of actin polymerization. In this study, we employed a co-culture system using Transwell six-well plates. After 72 h, hAMSCs-treated HT-29 cells, EGFR, c-Src, IRTKS, p38, and ERK1/2 expression were analyzed using quantitative real time PCR (qRT-PCR) and western blot methods. The significant reduction in tumor cell growth and motility through downregulation of EGFR/c-Src/IRTKS expression and p38/ERK1/2 phosphorylation in HT-29 cells was demonstrated based on 2D and 3D cell culture models. The induction of cellular apoptosis was also found. Our results support the idea that the hAMSCS secretome has therapeutic effects on cancer cells. However, further experiments will be required to identify the exact molecular mechanisms.
Collapse
Affiliation(s)
- Shamin Ebadi Zavieh
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
| |
Collapse
|
23
|
Kalantari E, Taheri T, Fata S, Abolhasani M, Mehrazma M, Madjd Z, Asgari M. Significant co-expression of putative cancer stem cell markers, EpCAM and CD166, correlates with tumor stage and invasive behavior in colorectal cancer. World J Surg Oncol 2022; 20:15. [PMID: 35016698 PMCID: PMC8751119 DOI: 10.1186/s12957-021-02469-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/02/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The crucial oncogenic role of cancer stem cells (CSCs) in tumor maintenance, progression, drug resistance, and relapse has been clarified in different cancers, particularly in colorectal cancer (CRC). The current study was conducted to evaluate the co-expression pattern and clinical significance of epithelial cell adhesion molecules (EpCAM) and activated leukocyte cell adhesion (CD166 or ALCAM) in CRC patients. METHODS This study was carried out on 458 paraffin-embedded CRC specimens by immunohistochemistry on tissue microarray (TMA) slides. RESULTS Elevated expression of EpCAM and CD166 was observed in 61.5% (246/427) and 40.5% (164/405) of CRC cases. Our analysis showed a significant positive association of EpCAM expression with tumor size (P = 0.02), tumor stage (P = 0.007), tumor differentiate (P = 0.005), vascular (P = 0.01), neural (P = 0.01), and lymph node (P = 0.001) invasion. There were no significant differences between CD166 expression and clinicopathological parameters. Moreover, the combined analysis demonstrated a reciprocal significant correlation between EpCAM and CD166 expression (P = 0.02). Interestingly, there was a significant positive correlation between EpCAM/CD166 phenotypes expression and tumor stage (P = 0.03), tumor differentiation (P = 0.05), neural, and lymph node invasion (P =0.01). CONCLUSIONS The significant correlation of EpCAM and CD166 expression and their association with tumor progression and aggressive behavior is the reason for the suggestion of these two CSC markers as promising targets to promote novel effective targeted-therapy strategies for cancer treatment in the present study.
Collapse
Affiliation(s)
- Elham Kalantari
- Oncopathology Research Center, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Tahereh Taheri
- Department of Pathology, Iran University of Medical Sciences, Tehran, Iran
| | - Saba Fata
- Department of Pathology, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Abolhasani
- Oncopathology Research Center, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Department of Pathology, Hasheminejad kidney Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Mehrazma
- Oncopathology Research Center, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mojgan Asgari
- Oncopathology Research Center, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
- Department of Pathology, Hasheminejad kidney Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Bhanu H, Mittal R, Raman S. Evaluation and Clinicopathological Correlation of CD44 in Colorectal Adenoma with Low/High-Grade Dysplasia and Carcinoma. CLINICAL CANCER INVESTIGATION JOURNAL 2022. [DOI: 10.51847/q4yjbhtgzg] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
Kalantari E, Ghods R, Zanjani LS, Rahimi M, Eini L, Razmi M, Asadi-Lari M, Madjd Z. Cytoplasmic expression of DCLK1-S, a novel DCLK1 isoform, is associated with tumor aggressiveness and worse disease-specific survival in colorectal cancer. Cancer Biomark 2021; 33:277-289. [DOI: 10.3233/cbm-210330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND: Isoform-specific function of doublecortin-like kinase 1 (DCLK1) has highlighted the key role of the DCLK1-S (short isoform) in the maintenance, progression, and invasion of the tumor. OBJECTIVE: This study was designed to produce an anti-DCLK1-S polyclonal antibody to evaluate DCLK1-S in human colorectal cancer (CRC) specifically. METHODS: The expression pattern and clinical significance of DCLK1-S were assessed in a well-defined tissue microarray (TMA) series of 348 CRC and 51 adjacent normal tissues during a follow-up period of 108 months. RESULTS: Expression of DCLK1-S was significantly higher in CRC samples compared to adjacent normal samples (P< 0.001). Cytoplasmic expression of DCLK1-S was significantly higher in the tumors at the advanced stage of cancer and with poorer differentiation (P< 0.001, P= 0.02). The patients with CRC whose tumors showed higher cytoplasmic expression of DCLK1-S had worse disease-specific survival (DSS) (log-rank test, P= 0.03) and 5-year DSS rates (P= 0.01). Additionally, an improved prognostic value was observed in the patients with CRC with high DCLK1-S expression vs. its moderate expression (HR: 2.70, 95% CI: 0.98–7.38; p= 0.04) by multivariate analysis. CONCLUSIONS: Our findings strongly supported that high cytoplasmic expression of DCLK1-S compared to its moderate expression could be considered an independent prognostic factor influencing DSS.
Collapse
Affiliation(s)
- Elham Kalantari
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Mandana Rahimi
- Hasheminejad Kidney Center, Pathology Department, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Leila Eini
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Division of Histology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahdieh Razmi
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mohsen Asadi-Lari
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
26
|
CD44 Variant Exon 6 Isoform Expression as a Potential Predictor of Lymph Node Metastasis in Invasive Breast Carcinoma of No Special Type. Int J Breast Cancer 2021; 2021:1586367. [PMID: 34925920 PMCID: PMC8683235 DOI: 10.1155/2021/1586367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Background Invasive breast carcinoma of no special type (IBC-NST) is the most widespread invasive carcinoma subtype causing primarily regional metastases of the lymphatic node (LNM). The capacity of CD44 variant exon 6 (CD44v6) expression as an LNM predictor biomarker in IBC-NST was explored. Methods We conducted a cross-sectional research with 48 paraffin blocks containing IBC-NST primary tumors that were divided into two groups by LNM. The assessment has been carried out in terms of age, tumor size, tumor grade, lymphovascular invasion (LVI), and CD44v6 expression. The expression of CD44v6 was analyzed on the grounds of immunohistochemical (IHC) staining, while other data were taken from archives. Statistical analysis is carried out by univariate, multivariate, and AUROC. Results CD44v6 exhibits a dominant expression in IBC-NST tumor cells. Univariate analysis revealed a significant association between CD44v6 and LNM status (p = 0.001). Multiple logistic regression results showed that CD44v6 expression and LVI were significantly associated with LNM with OR 10.7 (95% CI: 2.43 to 47.08) and 6.22 (95% CI: 1.4 to 27.88), respectively. CD44v6 expression was able to discriminate against LNM with AUROC 0.863 ± 0.053 (95% CI: 0.759 to 0.967) at the H-score cut-off 133.889 (75% sensitivity and 83.3% specificity). Conclusion CD44v6 expression and LVI are potential predictors of LNM in IBC-NST. The H-score cut-off of the CD44v6 expression can also be used as a threshold for classification in further investigation.
Collapse
|
27
|
Manoochehri H, Asadi S, Tanzadehpanah H, Sheykhhasan M, Ghorbani M. CDC25A is strongly associated with colorectal cancer stem cells and poor clinical outcome of patients. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101415] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
28
|
Identification of AGT and CD44 in methotrexate-resistant colorectal cancer and reversal of methotrexate-resistance. Pathol Res Pract 2021; 229:153717. [PMID: 34952427 DOI: 10.1016/j.prp.2021.153717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/03/2021] [Accepted: 11/25/2021] [Indexed: 11/21/2022]
Abstract
This study aims to screen out hub genes in 2 methotrexate-resistant colorectal cancer (CRC) cells (HT29 and Caco2), compared with parental CRC cells and reverse methotrexate-resistance in methotrexate-resistant CRC. GEO database and R software were utilized to analyze the gene expression profiles GSE11440 and GSE16066. Venn diagram was used to identify intersection differentially expressed genes (DEGs) between GSE11440 and GSE16066. Protein-protein interaction (PPI) was utilized to screen out central node genes. Hub genes were determined by volcano graphs, heatmaps and box plots. The functional enrichment analysis was exhibited with DAVID. The GEPIA was used to obtain survival curves to analyze association between patient prognosis and hub genes. Western blotting was used to detect the expressions of hub genes. CCK-8 assay was used to show MTX-resistant CRC cell viability following CD44 inhibitor (THIQ) and AGT inhibitor (O6-BG) treatments. In our results, there were 180 intersection DEGs between GSE11440 and GSE16066. CD44 and AGT were screened out as hub genes by PPI, heatmaps, volcano and box plots. In the 2 MTX-resistant CRC cells, the expressions of CD44 and AGT were up-regulated compared with parental CRC cells. The results of western blotting showed that CD44 and AGT were up-regulated in MTX-resistant HT29 and Caco2 cells compared with parental CRC cells. CCK-8 assay results showed that the combination of MTX with O6-BG or THIQ could significantly reduce the activity of MTX-resistant CRC cells. This research screened out CD44 and AGT in MTX-resistant CRC cells by bioinformatics and suggested that the combination of MTX with O6-BG or THIQ could enhance the sensitivity of MTX-resistant CRC cells to MTX. This research provides a new strategy for overcoming MTX-resistance in CRC.
Collapse
|
29
|
Kim N, Gim JA, Lee BJ, Choi BI, Park SB, Yoon HS, Kang SH, Kim SH, Joo MK, Park JJ, Kim C, Kim HK. RNA-sequencing identification and validation of genes differentially expressed in high-risk adenoma, advanced colorectal cancer, and normal controls. Funct Integr Genomics 2021; 21:513-521. [PMID: 34273035 DOI: 10.1007/s10142-021-00795-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022]
Abstract
Distinct gene expression patterns that occur during the adenoma-carcinoma sequence need to be determined to analyze the underlying mechanism in each step of colorectal cancer progression. Elucidation of biomarkers for colorectal polyps that harbor malignancy potential is important for prevention of colorectal cancer. Here, we use RNA sequencing to determine gene expression profile in patients with high-risk adenoma treated with endoscopic submucosal dissection by comparing with gene expression in patients with advanced colorectal cancer and normal controls. We collected 70 samples, which consisted of 27 colorectal polyps, 24 cancer tissues, and 19 normal colorectal mucosa. RNA sequencing was performed on an Illumina platform to select differentially expressed genes (DEGs) between colorectal polyps and cancer, polyps and controls, and cancer and normal controls. The Kyoto Gene and Genome Encyclopedia (KEGG) and gene ontology (GO) analysis, gene-concept network, GSEA, and a decision tree were used to evaluate the DEGs. We selected the most highly expressed genes in high-risk polyps and validated their expression using real-time PCR and immunohistochemistry. Compared to patients with colorectal cancer, 82 upregulated and 24 downregulated genes were detected in high-risk adenoma. In comparison with normal controls, 33 upregulated and 79 downregulated genes were found in high-risk adenoma. In total, six genes were retrieved as the highest and second highest expressed in advanced polyps and cancers among the three groups. Among the six genes, ANAX3 and CD44 expression in real-time PCR for validation was in good accordance with RNA sequencing. We identified differential expression of mRNAs among high-risk adenoma, advanced colorectal cancer, and normal controls, including that of CD44 and ANXA3, suggesting that this cluster of genes as a marker of high-risk colorectal adenoma.
Collapse
Affiliation(s)
- Namjoo Kim
- Department of Gastroenterology, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Jeong-An Gim
- Medical Science Research Center, College of Medicine, Korea University Guro Hospital Seoul, Seoul, Republic of Korea
| | - Beom Jae Lee
- Department of Gastroenterology, Korea University Guro Hospital, Seoul, Republic of Korea.
| | - Byung Il Choi
- Department of Gastroenterology, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Seung Bin Park
- Department of Gastroenterology, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Hee Sook Yoon
- Department of Gastroenterology, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Sang Hee Kang
- Department of Surgery, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Seung Han Kim
- Department of Gastroenterology, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Moon Kyung Joo
- Department of Gastroenterology, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Jong-Jae Park
- Department of Gastroenterology, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Chungyeul Kim
- Department of Pathology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Han-Kyeom Kim
- Department of Pathology, College of Medicine, Korea University, Seoul, Republic of Korea
| |
Collapse
|
30
|
Rustamadji P, Wiyarta E, Bethania KA, Kusmardi K. Potential of AKT2 expression as a predictor of lymph-node metastasis in invasive breast carcinoma of no special type. J Pathol Transl Med 2021; 55:271-278. [PMID: 34111909 PMCID: PMC8353139 DOI: 10.4132/jptm.2021.04.26] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/11/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Invasive breast carcinoma of no special type (IBC-NST) is the most common type of breast cancer and mainly causes regional lymph-node metastasis (LNM). We investigated the potential for AKT2 expression as a predictive biomarker for LNM in IBC-NST. METHODS Forty-eight paraffin blocks containing IBC-NST primary tumors were divided into two groups based on presence or absence of LNM. Age, tumor grade, tumor size, lymphovascular invasion (LVI), and AKT expression were assessed. AKT2 expression was assessed based on immunohistochemical staining, while other data were collected from archives. RESULTS Multiple logistic regression results showed that AKT2 expression and LVI were significantly associated with LNM (odds ratio [OR], 5.32; 95% confidence interval [CI], 1.42 to 19.93 and OR, 4.46; 95% CI, 1.17 to 16.97, respectively). AKT2 expression was able to discriminate against LNM (area under the receiver operating characteristic, 0.799 ± 0.063; 95% CI, 0.676 to 0.921) at an H-score cutoff of 104.62 (83.3% sensitivity, 62.5% specificity). CONCLUSIONS AKT2 expression has potential as a predictor of LNM in IBC-NST. The H-score cutoff for AKT2 expression can be used as a classification guide in future studies.
Collapse
Affiliation(s)
- Primariadewi Rustamadji
- Department of Anatomic Pathology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Elvan Wiyarta
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Kristina Anna Bethania
- Department of Anatomic Pathology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Kusmardi Kusmardi
- Department of Anatomic Pathology, Drug Development Research Cluster, Human Cancer Research Center, IMERI, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
31
|
Gholamzadeh Khoei S, Saidijam M, Amini R, Jalali A, Najafi R. Impact of PIN1 Inhibition on Tumor Progression and Chemotherapy Sensitivity in Colorectal Cancer. J Gastrointest Cancer 2021; 53:299-310. [PMID: 33580870 DOI: 10.1007/s12029-021-00600-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2021] [Indexed: 01/16/2023]
Abstract
BACKGROUND Deregulated PIN1 is associated with cancer development and progression. Herein, for the first time, we evaluate the roles that PIN1 in tumorigenic characteristics of colorectal cancer (CRC) cells. METHODS In this study, PIN1 expression was knocked down in SW-48 cells by synthetic small interfering RNA (siRNA). After confirming the knockdown of PIN1, cell viability, colony formation, apoptosis, autophagy, cancer stem cell (CSC)-related genes, CSC-related signaling pathways, cell migration, and 5-FU chemosensitivity were evaluated in vitro. RESULTS Transfection of PIN1 siRNA into SW-48 cells inhibited cancer cell proliferation, migration, and increased apoptosis and autophagy. Transfected SW-48 cells had lower properties of CSCs through the inhibition of β-catenin and Notch1 gene expression. Moreover, inhibition of PIN1 enhanced the inhibitory effect of 5-FU on SW-48 cell proliferation. CONCLUSION Our results indicated that targeting of PIN1 serves as a promising therapeutic solution for the suppression of tumor progression processes in CRC.
Collapse
Affiliation(s)
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Jalali
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
32
|
Xu H, Niu M, Yuan X, Wu K, Liu A. CD44 as a tumor biomarker and therapeutic target. Exp Hematol Oncol 2020; 9:36. [PMID: 33303029 PMCID: PMC7727191 DOI: 10.1186/s40164-020-00192-0] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/21/2020] [Indexed: 12/15/2022] Open
Abstract
CD44, a complex transmembrane glycoprotein, exists in multiple molecular forms, including the standard isoform CD44s and CD44 variant isoforms. CD44 participates in multiple physiological processes, and aberrant expression and dysregulation of CD44 contribute to tumor initiation and progression. CD44 represents a common biomarker of cancer stem cells, and promotes epithelial-mesenchymal transition. CD44 is involved in the regulation of diverse vital signaling pathways that modulate cancer proliferation, invasion, metastasis and therapy-resistance, and it is also modulated by a variety of molecules in cancer cells. In addition, CD44 can serve as an adverse prognostic marker among cancer population. The pleiotropic roles of CD44 in carcinoma potentially offering new molecular target for therapeutic intervention. Preclinical and clinical trials for evaluating the pharmacokinetics, efficacy and drug-related toxicity of CD44 monoclonal antibody have been carried out among tumors with CD44 expression. In this review, we focus on current data relevant to CD44, and outline CD44 structure, the regulation of CD44, functional properties of CD44 in carcinogenesis and cancer progression as well as the potential CD44-targeting therapy for cancer management.
Collapse
Affiliation(s)
- Hanxiao Xu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mengke Niu
- Department of Medical Oncology, The Affiliated Tumor Hospital of Zhengzhou University: Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Xun Yuan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Kongming Wu
- Department of Medical Oncology, The Affiliated Tumor Hospital of Zhengzhou University: Henan Cancer Hospital, Zhengzhou, 450008, China. .,Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Aiguo Liu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
33
|
Xu Y, Liu Z, Lv L, Li P, Xiu B, Qian W, Liang A. MiRNA-340-5p mediates the functional and infiltrative promotion of tumor-infiltrating CD8 + T lymphocytes in human diffuse large B cell lymphoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:238. [PMID: 33168024 PMCID: PMC7653890 DOI: 10.1186/s13046-020-01752-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022]
Abstract
Background CD8+ tumor-infiltrating T lymphocytes (T-TILs) in the tumor microenvironment (TME) play an important role in tumor development, and miRNAs regulate tumor cell interactions with the microenvironment. T-TIL-based tumor immunotherapy provides a promising treatment strategy in diffuse large B-cell lymphoma (DLBCL). MiRNAs tend to be attractive targets for novel antitumor interventions. Methods Weighted gene coexpression network analysis (WGCNA), CIBERSORT analysis and Cox regression analysis were used to identify CD8+ T-TIL-related miRNAs. RT-PCR, western blotting, immunohistochemistry (IHC), in situ hybridization (ISH), luciferase reporter assay, coimmunoprecipitation and ubiquitination analyses were used to detect miRNA, mRNA and protein expression and their combination. The viability and function of CD8+ T cells after stimulation were evaluated by enzyme-linked immunosorbent assay (ELISA), cytotoxicity assay, functional avidity assessment, flow cytometry and Cell Counting Kit-8 (CCK-8) assay. DLBCL cell lines, primary cells and a murine xenograft model established with A20 cell injection were used as in vitro and in vivo experimental models. Results MiR-340-5p was positively correlated with CD8+ T-TILs in DLBCL patients, and KMT5A was a direct target gene of miR-340-5p. CD8+ T-cell function was significantly enhanced by miR-340-5p mimics both in vitro and in vivo, which was reversed by KMT5A overexpression. We demonstrated that COP1/CD73 was involved in the downstream mechanism of the miR-340-5p/KMT5A axis involving ubiquitination. In vivo, we validated an improved CD8+ T-TIL infiltration rate and tumor suppression with miR-340-5p treatment. Furthermore, miR-340-5p directly regulated the biological activity of DLBCL cells without CD8+ T-cell participation. Conclusions MiR-340-5p promoted CD8+ T-TIL infiltration and antitumor function by regulating KMT5A and COP1 and further activating CD73 ubiquitination. MiR-340-5p is potentially a novel target for DLBCL immunotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-020-01752-2.
Collapse
Affiliation(s)
- Yangyang Xu
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Zhenchuan Liu
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Lixin Lv
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Ping Li
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Bing Xiu
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Wenbin Qian
- Department of Hematology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Aibin Liang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|
34
|
Pourjafar M, Samadi P, Karami M, Najafi R. Assessment of clinicopathological and prognostic relevance of BMI-1 in patients with colorectal cancer: A meta-analysis. Biotechnol Appl Biochem 2020; 68:1313-1322. [PMID: 33086431 DOI: 10.1002/bab.2053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Abstract
B-cell-specific Moloney leukemia virus insertion site 1 (BMI-1) is one of the stemness markers. The prognostic and clinicopathological effects of BMI-1 expression in colorectal cancer (CRC) have been in dispute with different studies. Eligible studies were retrieved from international databases up to December 2019. Studies with a relationship between the clinicopathological and prognostic value of CRC patients with BMI-1 expression were selected. The correlations in the random-effect model were evaluated using the hazard ratios, odds ratio, and 95% confidence intervals (CIs). A total of nine studies comprising Asian cases (seven studies) and European cases (two studies) covering 1,294 samples of CRC were included for this meta-analysis. The analysis suggested that in Asian cases, increased expression of BMI-1 was associated with poor overall survival (OS) and death-free survival, whereas in European populations, high expression of BMI-1 was associated with better OS. Also, overexpression of BMI-1 in the Asian population was associated with the tumor size, distant metastasis, and patient's gender and age. Results suggested that high expression of BMI-1 can be involved in the progression and invasion of CRC, and so its inhibitor-based therapies could be used to prevent the progression of CRC.
Collapse
Affiliation(s)
- Mona Pourjafar
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran.,Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pouria Samadi
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran.,Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Manoochehr Karami
- Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
35
|
Zhu P, Liu Z, Huang H, Zhong C, Zhou Y. MiRNA505/NET1 Axis Acts as a CD8 + T-TIL Regulator in Non-Small Cell Lung Cancer. Onco Targets Ther 2020; 13:9785-9795. [PMID: 33061457 PMCID: PMC7534871 DOI: 10.2147/ott.s265859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022] Open
Abstract
Introduction Lung adenocarcinoma (LUAD), which is the most important and common subtype of non-small cell lung cancer (NSCLC), is highly heterogeneous with a poor prognosis and poses great challenges to health worldwide. MicroRNAs (miRNAs) are regulators of gene expression with recognized roles in physiology and diseases, such as cancers, but little is known about their functional relevance to CD8+ T cell infiltration regulation in the tumor microenvironment (TME) of NSCLC patients, especially LUAD patients. Methods Bioinformatic analysis was used to analyze TCGA data. RT-PCT, Western blot, luciferase assay and immunohistochemistry were used to detect the expression levels and bindings of genes and miRNA. ELISA and cytotoxic assay were used to evaluate CD8+ T cell function. Results In this study, bioinformatic analysis unveiled the miR-505-3p/NET1 pair as a CD8+ T-tumor-infiltrating lymphocyte (TIL) regulator. Then, we confirmed the bioinformatic results with LUAD patient samples, and NET1 was shown to be a direct target of miR-505-3p in a luciferase assay. Functional experiments demonstrated that miR-505-3p enhanced CD8+ T-TIL function, while NET1 impaired CD8+ T-TIL function and partly reversed the effects of miR-505-3p. The observed effects might be exerted via the regulation of immunosuppressive receptors in T cells. Discussion Our study may provide novel insights into LUAD progression related to the TME mechanism and new possibilities for improving adoptive immunotherapy.
Collapse
Affiliation(s)
- Pengyuan Zhu
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, School of Medicine, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Zhenchuan Liu
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, People's Republic of China
| | - Haitao Huang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Chongjun Zhong
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Yongxin Zhou
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, People's Republic of China
| |
Collapse
|
36
|
Razi S, Sadeghi A, Asadi-Lari Z, Tam KJ, Kalantari E, Madjd Z. DCLK1, a promising colorectal cancer stem cell marker, regulates tumor progression and invasion through miR-137 and miR-15a dependent manner. Clin Exp Med 2020; 21:139-147. [PMID: 32965580 DOI: 10.1007/s10238-020-00665-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/16/2020] [Indexed: 12/24/2022]
Abstract
Cancer stem cells (CSCs) are thought to be a major player in tumor initiation, progression, and metastasis. Targeting CSCs for elimination presents a promising therapeutic strategy; however, this approach will require a stronger understanding of CSC biology and identification of CSC-specific markers. The present study was conducted to examine the correlation between DCLK1 and miR-137 and miR-15a levels in colorectal cancer. A total of 222 samples, including 181 colorectal cancer specimens, 24 adenomatosis, and 17 non-adenomatosis colonic polyps, were stained for DCLK1 expression using immunohistochemistry. Also, expression of miR-137 and miR-15a was assessed in colorectal cancer with high and low DCLK1 expression levels. Most colorectal cancer specimens (76%) showed strong expression of DCLK1, whereas only 21% of adenomatous and none of non-adenomatous colonic polyps showed strong DCLK1 expression. A significant difference in DCLK1 expression was found between colorectal cancer, adenomatous, and non-adenomatous colonic polyps (P < 0.001). Higher expression of DCLK1 was more frequently detected in colorectal cases with larger tumor size (P = 0.03), poor differentiation (P = 0.03), and lymph node involvement (P = 0.04). Comparison of miR-137 and miR-15a in colorectal cancer cases revealed a significant inverse correlation with DCLK1 expression (P = 0.03 and P = 0.04, respectively). DCLK1 may act as a candidate marker for colorectal cancer stem cells. The critical role of DCLK1 in colorectal cancer suggests that it may represent an early diagnostic marker and therapeutic target; however, further investigation is warranted.
Collapse
Affiliation(s)
- Sepideh Razi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Asieh Sadeghi
- Department of Pathology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Kevin J Tam
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Elham Kalantari
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran. .,Department of Pathology, Iran University of Medical Sciences, Tehran, Iran. .,Department of Molecular Medicine, Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Roudi R, Barodabi M, Madjd Z, Roviello G, Corona SP, Panahei M. Expression patterns and clinical significance of the potential cancer stem cell markers OCT4 and NANOG in colorectal cancer patients. Mol Cell Oncol 2020; 7:1788366. [PMID: 32944642 DOI: 10.1080/23723556.2020.1788366] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is one of the most important malignancies and causes of cancer-related deaths worldwide. Cancer stem cell markers identification could be helpful to acquire important prognostic information and develop new treatment regimens. This study aimed to evaluate the expression of OCT4 and NANOG in CRC patients and their clinical significance. Totally 359 CRC samples were stained for OCT4 and NANOG expression using tissue microarray. The correlation between their expression and clinical and pathological features was explored. The majority of CRC cases showed low-level expression of OCT4 (80%) and NANOG (75%). Lower expression of OCT4 was more often detected in CRC cases with no vascular involvement (P = .01). Also, a trend found between low level of OCT4 expression and absence of distant metastasis or lymph node involvement (P = .07 and P = .09, respectively). Surprisingly, a significant positive correlation was observed between NANOG expression and cellular differentiation (P = .05). Our combined analysis demonstrated that OCT4 low/NANOG low phenotype has frequently seen in colorectal cancer cases with no vascular invasion (P = .05). Our observations indicated that higher expression of OCT4 and NANOG can confer malignant and aggressive behavior to CRC. Evaluation of the co-expression of these cancer stem cell markers can serve a new diagnostic and prognostic approach in CRC patients. These findings also suggested that simultaneous expression of OCT4 and NANOG can be considered as a therapeutic marker for targeted therapy of CRC, especially in advanced stages.
Collapse
Affiliation(s)
- Raheleh Roudi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Mahboubeh Barodabi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Pathology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Pathology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Silvia Paola Corona
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Trieste
| | - Mahshid Panahei
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Pathology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Pathology, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Ihemelandu C, Naeem A, Parasido E, Berry D, Chaldekas K, Harris BT, Rodriguez O, Albanese C. Clinicopathologic and prognostic significance of LGR5, a cancer stem cell marker in patients with colorectal cancer. COLORECTAL CANCER 2019; 8:CRC11. [PMID: 32038737 PMCID: PMC7000925 DOI: 10.2217/crc-2019-0009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aim: To analyze the clinicopathologic and prognostic significance of Leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5), a cancer stem cell marker expression in a cohort of colorectal cancer patients (CRC). Patients & methods: A total of 76 formalin-fixed paraffin-embedded tissue blocks of primary or metastatic tumors from 49 CRC patients were collected for duration 2009–2015. LGR5 expression was assessed through immunohistochemical staining of a tissue microarray. Results: LGR5 was significantly over expressed in CRC tissue samples and found to be a statistically significant independent prognostic marker for an improved overall survival. Conclusion: LGR5 expression was higher in colorectal cancer than in normal tissue. LGR5 was an independent prognostic marker for better clinical outcomes and might be used as a potential therapeutic target in CRCs.
Collapse
Affiliation(s)
- Chukwuemeka Ihemelandu
- Program in Peritoneal Surface Oncology, MedStar Surgical Oncology, Department of Surgery, MedStar Georgetown University Hospital, 3800 Reservoir Rd, NW Washington, DC 20007, USA.,Preclinical Imaging Research Laboratory, Center for Cell Reprogramming, Department of Oncology and Pathology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3800 Reservoir Rd, NW Washington, DC 20007, USA
| | - Aisha Naeem
- Preclinical Imaging Research Laboratory, Center for Cell Reprogramming, Department of Oncology and Pathology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3800 Reservoir Rd, NW Washington, DC 20007, USA.,Biostatistician, Preclinical imaging Research Laboratory, Department of Oncology and Pathology, Lombardi Comprehensive Cancer Center, Georgetown University Medical center, 3800 Reservoir Rd, NW Washington, DC 20007, USA
| | - Erika Parasido
- Preclinical Imaging Research Laboratory, Center for Cell Reprogramming, Department of Oncology and Pathology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3800 Reservoir Rd, NW Washington, DC 20007, USA
| | - Deborah Berry
- Histopathology & Tissue Shared Resource, Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3900 Reservoir Rd, Washington, DC 20007, USA.,Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center
| | - Krysta Chaldekas
- Histopathology & Tissue Shared Resource, Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3900 Reservoir Rd, Washington, DC 20007, USA.,Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center
| | - Brent T Harris
- Histopathology & Tissue Shared Resource, Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3900 Reservoir Rd, Washington, DC 20007, USA.,Departments of Neurology & Pathology, Georgetown University Medical Center
| | - Olga Rodriguez
- Preclinical Imaging Research Laboratory, Center for Cell Reprogramming, Department of Oncology and Pathology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3800 Reservoir Rd, NW Washington, DC 20007, USA.,Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center
| | - Christopher Albanese
- Preclinical Imaging Research Laboratory, Center for Cell Reprogramming, Department of Oncology and Pathology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3800 Reservoir Rd, NW Washington, DC 20007, USA.,Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center
| |
Collapse
|