1
|
Abstract
Even though the treatment of childhood cancer has evolved significantly in recent decades, aggressive central nervous system (CNS) tumors are still a leading cause of morbidity and mortality in this population. Consequently, the identification of molecular targets that can be incorporated into diagnostic practice, effectively predict prognosis, follow treatment response, and materialize into potential targeted therapeutic approaches are still warranted. Since the first evidence of the participation of miRNAs in cancer development and progression 20 years ago, notable progress has been made in the basic understanding of the contribution of their dysregulation as epigenetic driver of tumorigenesis. Nevertheless, among the plethora of articles in the literature, microRNA profiling of pediatric tumors are scarce. This article gives an overview of the recent advances in the diagnostic/prognostic potential of miRNAs in a selection of pediatric CNS tumors: medulloblastoma, ependymoma, pilocytic astrocytoma, glioblastoma, diffuse intrinsic pontine glioma, atypical teratoid/rhabdoid tumors, and choroid plexus tumors.
Collapse
|
2
|
How Nanotechnology and Biomedical Engineering Are Supporting the Identification of Predictive Biomarkers in Neuro-Oncology. MEDICINES 2018; 5:medicines5010023. [PMID: 29495368 PMCID: PMC5874588 DOI: 10.3390/medicines5010023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/12/2018] [Accepted: 02/22/2018] [Indexed: 01/26/2023]
Abstract
The field of neuro-oncology is rapidly progressing and internalizing many of the recent discoveries coming from research conducted in basic science laboratories worldwide. This systematic review aims to summarize the impact of nanotechnology and biomedical engineering in defining clinically meaningful predictive biomarkers with a potential application in the management of patients with brain tumors. Data were collected through a review of the existing English literature performed on Scopus, MEDLINE, MEDLINE in Process, EMBASE, and/or Cochrane Central Register of Controlled Trials: all available basic science and clinical papers relevant to address the above-stated research question were included and analyzed in this study. Based on the results of this systematic review we can conclude that: (1) the advances in nanotechnology and bioengineering are supporting tremendous efforts in optimizing the methods for genomic, epigenomic and proteomic profiling; (2) a successful translational approach is attempting to identify a growing number of biomarkers, some of which appear to be promising candidates in many areas of neuro-oncology; (3) the designing of Randomized Controlled Trials will be warranted to better define the prognostic value of those biomarkers and biosignatures.
Collapse
|
3
|
Ershova ES, Jestkova EM, Chestkov IV, Porokhovnik LN, Izevskaya VL, Kutsev SI, Veiko NN, Shmarina G, Dolgikh O, Kostyuk SV. Quantification of cell-free DNA in blood plasma and DNA damage degree in lymphocytes to evaluate dysregulation of apoptosis in schizophrenia patients. J Psychiatr Res 2017; 87:15-22. [PMID: 27987480 DOI: 10.1016/j.jpsychires.2016.12.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/18/2016] [Accepted: 12/01/2016] [Indexed: 11/30/2022]
Abstract
Oxidative DNA damage has been proposed as one of the causes of schizophrenia (SZ), and post mortem data indicate a dysregulation of apoptosis in SZ patients. To evaluate apoptosis in vivo we quantified the concentration of plasma cell-free DNA (cfDNA index, determined using fluorescence), the levels of 8-oxodG in cfDNA (immunoassay) and lymphocytes (FL1-8-oxodG index, flow cytometry) of male patients with acute psychotic disorders: paranoid SZ (total N = 58), schizophreniform (N = 11) and alcohol-induced (N = 14) psychotic disorder, and 30 healthy males. CfDNA in SZ (N = 58) does not change compared with controls. In SZ patients. Elevated levels of 8-oxodG were found in cfDNA (N = 58) and lymphocytes (n = 45). The main sources of cfDNA are dying cells with oxidized DNA. Thus, the cfDNA/FL1-8-oxodG ratio shows the level of apoptosis in damaged cells. Two subgroups were identified among the SZ patients (n = 45). For SZ-1 (31%) and SZ-2 (69%) median values of cfDNA/FL1-8-oxodG index are related as 1:6 (p < 0.0000001). For the patients with other psychotic disorders and healthy controls, cfDNA/FL1-8-oxodG values were within the range of the values in SZ-2. Thus, apoptosis is impaired in approximately one-third of SZ patients. This leads to an increase in the number of cells with damaged DNA in the patient's body tissues and may be a contributing cause of acute psychotic disorder.
Collapse
Affiliation(s)
- E S Ershova
- Research Centre for Medical Genetics (RCMG), Moscow, 115478, Russia; V. A. Negovsky Research Institute of General Reanimatology, Moscow, 107031, Russia
| | - E M Jestkova
- Psychiatric Hospital № 14 of Moscow City Health Department, Moscow, 115447, Russia
| | - I V Chestkov
- Research Centre for Medical Genetics (RCMG), Moscow, 115478, Russia
| | - L N Porokhovnik
- Research Centre for Medical Genetics (RCMG), Moscow, 115478, Russia.
| | - V L Izevskaya
- Research Centre for Medical Genetics (RCMG), Moscow, 115478, Russia
| | - S I Kutsev
- Research Centre for Medical Genetics (RCMG), Moscow, 115478, Russia
| | - N N Veiko
- Research Centre for Medical Genetics (RCMG), Moscow, 115478, Russia; V. A. Negovsky Research Institute of General Reanimatology, Moscow, 107031, Russia
| | - G Shmarina
- Research Centre for Medical Genetics (RCMG), Moscow, 115478, Russia
| | - O Dolgikh
- Research Centre for Medical Genetics (RCMG), Moscow, 115478, Russia
| | - S V Kostyuk
- Research Centre for Medical Genetics (RCMG), Moscow, 115478, Russia; V. A. Negovsky Research Institute of General Reanimatology, Moscow, 107031, Russia
| |
Collapse
|
4
|
Ricci S, Guadagno E, Bruzzese D, Del Basso De Caro M, Peca C, Sgulò FG, Maiuri F, Di Carlo A. Evaluation of matrix metalloproteinase type IV-collagenases in serum of patients with tumors of the central nervous system. J Neurooncol 2016; 131:223-232. [PMID: 27757720 PMCID: PMC5306235 DOI: 10.1007/s11060-016-2297-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 10/09/2016] [Indexed: 11/30/2022]
Abstract
The basement membrane collagen IV-degrading matrix metalloproteinases -2 and -9 (MMPs) are most often linked to the malignant phenotype of tumor cells by playing a critical role in invasion, metastasis, angiogenesis, and vasculogenesis. We verified the activity of these two MMPs in the sera of patients affected by brain tumors (20 gliomas, 28 meningiomas and 20 metastasis) by zymography. The sera of 25 healthy volunteers with no concomitant illnesses were used for controls. Zymography showed four dominant gelatinolytic bands of 240, 130, 92 (MMP-9) and 72 (MMP-2) kDa. No statistically significant variations of MMP-2 proteolytic activity between patients and healthy individuals were observed. On the contrary, MMP-9 (both monomeric and multimeric forms) lytic activities were significantly higher in tumors specimens compared to healthy controls (p < 0.001). Moreover, MMP-9 immunohistochemistry revealed: (1) a strong reactivity in neoplastic vessels of high-grade gliomas showing an inverse correlation with serum multimeric gelatinolytic activity; (2) a cytoplasmatic reactivity in meningiomas with a significantly increase in atypical meningioma compared with low-grade ones (p = 0.036); (3) a positive correlation between MMP-9 and Ki-67 (Sperman Rho coefficient r = 0.418 and p = 0.034). Our results suggest that serum and tissue MMP-9 might provide clinicians additional objective information in intracranial neoplasms. Finally, it should be possible to use MMP-9 as a target for new forms of therapy. Nevertheless, due to the small number of patients included in the study, the conclusion may not be transferable to the general population and therefore further evaluations are needed.
Collapse
Affiliation(s)
- Serena Ricci
- Department of Medico-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Corso della Repubblica 79, 04100, Latina, Italy.,Department of Translational Medical Science, University of Naples "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - Elia Guadagno
- Department of Advanced Biomorphological Sciences, University of Naples "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - Dario Bruzzese
- Department of Public Health, University of Naples "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - Marialaura Del Basso De Caro
- Department of Advanced Biomorphological Sciences, University of Naples "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - Carmela Peca
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - Francesco G Sgulò
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - Francesco Maiuri
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - Angelina Di Carlo
- Department of Medico-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Corso della Repubblica 79, 04100, Latina, Italy.
| |
Collapse
|
5
|
Touat M, Duran-Peña A, Alentorn A, Lacroix L, Massard C, Idbaih A. Emerging circulating biomarkers in glioblastoma: promises and challenges. Expert Rev Mol Diagn 2016; 15:1311-23. [PMID: 26394701 DOI: 10.1586/14737159.2015.1087315] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Glioblastoma (GBM) is the most common and devastating primary malignant brain tumor in adults. The past few years have seen major progress in our understanding of the molecular basis of GBM. These advances, which have contributed to the development of novel targeted therapies, will change the paradigms in GBM therapy from disease-based to individually tailored molecular target-based treatment. No validated circulating biomarkers have yet been integrated into clinical practice for GBM. There is thus a critical need to implement minimally invasive clinical tests enabling molecular stratification and prognosis assessment, as well as the prediction and monitoring of treatment response. After examination of data from recent studies exploring several categories of tumor-associated biomarkers (circulating tumor cells, extracellular vesicles, nucleic acids and oncometabolites) identified in the blood, cerebrospinal fluid and urine, this article discusses the challenges and prospects for the development of circulating biomarkers in GBM.
Collapse
Affiliation(s)
- Mehdi Touat
- a 1 Inserm U981, Université Paris Sud, Gustave Roussy, F-94805 Villejuif, France.,b 2 Département d'innovations thérapeutiques précoces, Gustave Roussy, F-94805 Villejuif, France
| | - Alberto Duran-Peña
- c 3 AP-HP, Hôpital Universitaire la Pitié Salpêtrière, Service de Neurologie 2-Mazarin, F-75013, Paris, France
| | - Agusti Alentorn
- c 3 AP-HP, Hôpital Universitaire la Pitié Salpêtrière, Service de Neurologie 2-Mazarin, F-75013, Paris, France.,d 4 Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Ludovic Lacroix
- a 1 Inserm U981, Université Paris Sud, Gustave Roussy, F-94805 Villejuif, France.,e 5 Département de biologie médicale et de pathologie, Gustave Roussy, F-94805 Villejuif, France.,f 6 Laboratoire de recherche translationnelle et centre de ressources biologiques, Gustave Roussy, F-94805 Villejuif, France
| | - Christophe Massard
- a 1 Inserm U981, Université Paris Sud, Gustave Roussy, F-94805 Villejuif, France.,b 2 Département d'innovations thérapeutiques précoces, Gustave Roussy, F-94805 Villejuif, France
| | - Ahmed Idbaih
- c 3 AP-HP, Hôpital Universitaire la Pitié Salpêtrière, Service de Neurologie 2-Mazarin, F-75013, Paris, France.,d 4 Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| |
Collapse
|
6
|
Liquid biopsies in patients with diffuse glioma. Acta Neuropathol 2015; 129:849-65. [PMID: 25720744 PMCID: PMC4436687 DOI: 10.1007/s00401-015-1399-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 12/18/2022]
Abstract
Diffuse gliomas are the most common malignant primary tumors of the central nervous system. Like other neoplasms, these gliomas release molecular information into the circulation. Tumor-derived biomarkers include proteins, nucleic acids, and tumor-derived extracellular vesicles that accumulate in plasma, serum, blood platelets, urine and/or cerebrospinal fluid. Recently, also circulating tumor cells have been identified in the blood of glioma patients. Circulating molecules, vesicles, platelets, and cells may be useful as easily accessible diagnostic, prognostic and/or predictive biomarkers to guide patient management. Thereby, this approach may help to circumvent problems related to tumor heterogeneity and sampling error at the time of diagnosis. Also, liquid biopsies may allow for serial monitoring of treatment responses and of changes in the molecular characteristics of gliomas over time. In this review, we summarize the literature on blood-based biomarkers and their potential value for improving the management of patients with a diffuse glioma. Incorporation of the study of circulating molecular biomarkers in clinical trials is essential for further assessment of the potential of liquid biopsies in this context.
Collapse
|
7
|
Di Rosa M, Sanfilippo C, Libra M, Musumeci G, Malaguarnera L. Different pediatric brain tumors are associated with different gene expression profiling. Acta Histochem 2015; 117:477-85. [PMID: 25792036 DOI: 10.1016/j.acthis.2015.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 01/30/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023]
Abstract
Malignant brain tumors are the most common pediatric solid tumors and are the leading cause of death from childhood cancers. These tumors include several histologic subtypes. Due to the particular properties of brain tumors, such as growth and division, examination of brain tumors and the analysis of results are not simple. Up to date there is a dearth of useful biomarkers that have been validated and clinically implemented for pediatric brain tumors. In order to identify the new genetic alterations we recognized, using microarray dataset, chitinases as new potential biomarkers of CNS tumors. The modulation of chitinases was confirmed also in the different histologic subtypes. Our study revealed that distinct patterns of chitinases expression characterize the diverse histological subtypes. In addition evaluating other lisosomal enzymes such as glycosidases and proteases we found that NEU4, CTBS and GBA2 belonging to glycosidases family and CTSC, CTSK and CTSF belonging to proteases family were differently modulated. Future investigations are needed to be performed before some of these enzymes could finally be used as biomarkers of specific types of CNS neoplasms.
Collapse
|
8
|
Dubois LG, Campanati L, Righy C, D'Andrea-Meira I, Spohr TCLDSE, Porto-Carreiro I, Pereira CM, Balça-Silva J, Kahn SA, DosSantos MF, Oliveira MDAR, Ximenes-da-Silva A, Lopes MC, Faveret E, Gasparetto EL, Moura-Neto V. Gliomas and the vascular fragility of the blood brain barrier. Front Cell Neurosci 2014; 8:418. [PMID: 25565956 PMCID: PMC4264502 DOI: 10.3389/fncel.2014.00418] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/18/2014] [Indexed: 12/22/2022] Open
Abstract
Astrocytes, members of the glial family, interact through the exchange of soluble factors or by directly contacting neurons and other brain cells, such as microglia and endothelial cells. Astrocytic projections interact with vessels and act as additional elements of the Blood Brain Barrier (BBB). By mechanisms not fully understood, astrocytes can undergo oncogenic transformation and give rise to gliomas. The tumors take advantage of the BBB to ensure survival and continuous growth. A glioma can develop into a very aggressive tumor, the glioblastoma (GBM), characterized by a highly heterogeneous cell population (including tumor stem cells), extensive proliferation and migration. Nevertheless, gliomas can also give rise to slow growing tumors and in both cases, the afflux of blood, via BBB is crucial. Glioma cells migrate to different regions of the brain guided by the extension of blood vessels, colonizing the healthy adjacent tissue. In the clinical context, GBM can lead to tumor-derived seizures, which represent a challenge to patients and clinicians, since drugs used for its treatment must be able to cross the BBB. Uncontrolled and fast growth also leads to the disruption of the chimeric and fragile vessels in the tumor mass resulting in peritumoral edema. Although hormonal therapy is currently used to control the edema, it is not always efficient. In this review we comment the points cited above, considering the importance of the BBB and the concerns that arise when this barrier is affected.
Collapse
Affiliation(s)
- Luiz Gustavo Dubois
- Instituto Estadual do Cérebro Paulo Niemeyer, Rua do Rezende Rio de Janeiro, Brazil
| | - Loraine Campanati
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas da, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Cassia Righy
- Instituto Estadual do Cérebro Paulo Niemeyer, Rua do Rezende Rio de Janeiro, Brazil
| | | | | | | | - Claudia Maria Pereira
- Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde (ECS), Universidade do Grande Rio (UNIGRANRIO) Duque de Caxias, Brazil
| | - Joana Balça-Silva
- Centro de Neurociência e Biologia Celular, Faculdade de Medicina, Universidade de Coimbra Coimbra, Portugal
| | - Suzana Assad Kahn
- Instituto Estadual do Cérebro Paulo Niemeyer, Rua do Rezende Rio de Janeiro, Brazil
| | - Marcos F DosSantos
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas da, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | | | - Adriana Ximenes-da-Silva
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió Alagoas, Brazil
| | - Maria Celeste Lopes
- Centro de Neurociência e Biologia Celular, Faculdade de Medicina, Universidade de Coimbra Coimbra, Portugal
| | - Eduardo Faveret
- Instituto Estadual do Cérebro Paulo Niemeyer, Rua do Rezende Rio de Janeiro, Brazil
| | | | - Vivaldo Moura-Neto
- Instituto Estadual do Cérebro Paulo Niemeyer, Rua do Rezende Rio de Janeiro, Brazil ; Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas da, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Serum MicroRNA-125b as a Potential Biomarker for Glioma Diagnosis. Mol Neurobiol 2014; 53:163-170. [PMID: 25416859 DOI: 10.1007/s12035-014-8993-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/06/2014] [Indexed: 12/22/2022]
Abstract
Biomarkers in blood have become increasingly appreciated in the diagnosis of glioma, but most of their diagnostic accuracy was not high enough to be used widely in a clinical context. MicroRNA-125b (miRNA-125b, miR-125b), a member of microRNA cluster, is widely considered as ideal biomarkers for clinical diagnosis in various human cancers. In the current study, we first explored the diagnostic value of serum miR-125b for glioma in a Chinese population, which has not been studied yet. Additionally, we conducted a meta-analysis to assess the diagnostic accuracy of miR-125b in human cancers. Serum miR-125b from the 33 patients with glioma (WHO grades I-IV) and 33 healthy controls were compared. Our results showed that the serum miR-125b level was significantly lower in glioma patients when compared with normal population, and an obvious decreasing trend of miR-125b level along tumor stages was found. The receiver operating characteristic (ROC) curve analysis of the accuracy in distinguishing glioma cancer patients from healthy controls yielded an area under the curve (AUC) value of 0.839 (95 % confidence interval (CI), 0.743-0.935). When glioma patients at different stages were compared with normal controls, the AUC values of WHO grade II (0.868) and WHO grade III-IV (0.959) were higher than WHO grade I (0.691). In the meta-analysis, the overall sensitivity, specificity, and AUC for miR-125b in human cancers diagnosis were 82 % (95 % CI, 76-87 %), 77 % (95 % CI, 70-84 %), and 0.84 (95 % CI, 0.81-0.87), respectively. The results of the present study suggested that miR-125b could be a potential biomarker with relatively high accuracy in the diagnosis of glioma as well as other human cancers.
Collapse
|
10
|
|
11
|
Jayaram S, Gupta MK, Polisetty RV, Cho WCS, Sirdeshmukh R. Towards developing biomarkers for glioblastoma multiforme: a proteomics view. Expert Rev Proteomics 2014; 11:621-39. [PMID: 25115191 DOI: 10.1586/14789450.2014.939634] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive and lethal forms of the primary brain tumors. With predominance of tumor heterogeneity and emergence of new subtypes, new approaches are needed to develop tissue-based markers for tumor typing or circulatory markers to serve as blood-based assays. Multi-omics data integration for GBM tissues would offer new insights on the molecular view of GBM pathogenesis useful to identify biomarker panels. On the other hand, mapping differentially expressed tissue proteins for their secretory potential through bioinformatics analysis or analysis of the tumor cell secretome or tumor exosomes would enhance our understanding of the tumor microenvironment and prospects for targeting circulatory biomarkers. In this review, the authors first present potential biomarker candidates for GBM that have been reported and then focus on plausible pipelines for multi-omic data integration to identify additional, high-confidence molecular panels for clinical applications in GBM.
Collapse
Affiliation(s)
- Savita Jayaram
- Institute of Bioinformatics, International Tech Park, Bangalore, 560066, India
| | | | | | | | | |
Collapse
|
12
|
MicroRNAs as Potential Biomarkers for Diagnosing Cancers of Central Nervous System: a Meta-analysis. Mol Neurobiol 2014; 51:1452-61. [PMID: 25081587 DOI: 10.1007/s12035-014-8822-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/16/2014] [Indexed: 12/24/2022]
Abstract
Recent studies have shown abnormal microRNA (miRNA) expression levels in the central nervous system (CNS) of cancer patients, suggesting that miRNAs may serve as promising biomarkers for cancers of CNS. However, other studies have arrived at conflicting results. Therefore, this meta-analysis aims to systematically measure the potential diagnostic value of miRNAs for CNS cancers. Electronic databases as well as other sources were searched until to April 12, 2014 for relevant articles. Data from different studies were pooled using the random-effects model. The pooled sensitivity, specificity, positive likelihood ratio (PLR), negative LR (NLR), diagnostic odds ratio (DOR), together with the summary receiver operator characteristic (SROC) curve, and area under the SROC curve (AUC) value were used to estimate overall diagnostic performance. Twenty-three studies from 6 articles were included in the current meta-analysis with a total of 299 CNS cancer patients and 418 controls. The pooled sensitivity, specificity, PLR, NLR, DOR, and AUC were 0.85 (95% CI, 0.80-0.89), 0.83 (95% CI, 0.76-0.88), 5.1 (95% CI, 3.4-7.5), 0.18 (95% CI, 0.12-0.26), 28 (95% CI, 14-58), and 0.91 (95% CI, 0.88-0.93), respectively. Subgroup analyses showed that cerebrospinal fluid (CSF)-based miRNAs assays yielded more accurate results and seemed to be more sensitive in diagnosing of primary central nervous system lymphoma (PCNSL). In conclusion, miRNAs may be suitable for serving as noninvasive biomarkers for CNS cancers detection. However, further validation based on a larger sample of patients and controls is still required.
Collapse
|
13
|
Dickinson P. Advances in diagnostic and treatment modalities for intracranial tumors. J Vet Intern Med 2014; 28:1165-85. [PMID: 24814688 PMCID: PMC4857954 DOI: 10.1111/jvim.12370] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 02/24/2014] [Accepted: 03/25/2014] [Indexed: 12/23/2022] Open
Abstract
Intracranial neoplasia is a common clinical condition in domestic companion animals, particularly in dogs. Application of advances in standard diagnostic and therapeutic modalities together with a broad interest in the development of novel translational therapeutic strategies in dogs has resulted in clinically relevant improvements in outcome for many canine patients. This review highlights the status of current diagnostic and therapeutic approaches to intracranial neoplasia and areas of novel treatment currently in development.
Collapse
Affiliation(s)
- P.J. Dickinson
- Department of Surgical and Radiological SciencesSchool of Veterinary MedicineUniversity of California DavisDavisCA
| |
Collapse
|
14
|
Hofer S, Rushing E, Preusser M, Marosi C. Molecular biology of high-grade gliomas: what should the clinician know? CHINESE JOURNAL OF CANCER 2013; 33:4-7. [PMID: 24325789 PMCID: PMC3905084 DOI: 10.5732/cjc.013.10218] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The current World Health Organization classification system of primary brain tumors is solely based on morphologic criteria. However, there is accumulating evidence that tumors with similar histology have distinct molecular signatures that significantly impact treatment response and survival. Recent practice-changing clinical trials have defined a role for routine assessment of O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation in glioblastoma patients, especially in the elderly, and 1p and 19q codeletions in patients with anaplastic glial tumors. Recently discovered molecular alterations including mutations in IDH-1/2, epidermal growth factor receptor (EGFR), and BRAF also have the potential to become targets for future drug development. This article aims to summarize current knowledge on the molecular biology of high-grade gliomas relevant to daily practice.
Collapse
Affiliation(s)
- Silvia Hofer
- Department of Medical Oncology, University Hospital Zürich, Zürich, Switzerland.
| | | | | | | |
Collapse
|
15
|
Elshimali YI, Khaddour H, Sarkissyan M, Wu Y, Vadgama JV. The clinical utilization of circulating cell free DNA (CCFDNA) in blood of cancer patients. Int J Mol Sci 2013; 14:18925-58. [PMID: 24065096 PMCID: PMC3794814 DOI: 10.3390/ijms140918925] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/26/2013] [Accepted: 08/30/2013] [Indexed: 02/06/2023] Open
Abstract
Qualitative and quantitative testing of circulating cell free DNA (CCFDNA) can be applied for the management of malignant and benign neoplasms. Detecting circulating DNA in cancer patients may help develop a DNA profile for early stage diagnosis in malignancies. The technical issues of obtaining, using, and analyzing CCFDNA from blood will be discussed.
Collapse
Affiliation(s)
- Yahya I. Elshimali
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, 1720 East 120th Street, Los Angeles, CA 90059, USA; E-Mails: (M.S.); (Y.W.); (J.V.V.)
- Author to whom correspondence should be addressed; E-Mail: or ; Tel.: +1-818-515-7618; Fax: +1-818-994-9875
| | - Husseina Khaddour
- Laboratory Diagnostic Medicine, Faculty of Pharmacy, Mazzeh (17th April Street), Damascus University, Damascus, Syria; E-Mail:
| | - Marianna Sarkissyan
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, 1720 East 120th Street, Los Angeles, CA 90059, USA; E-Mails: (M.S.); (Y.W.); (J.V.V.)
| | - Yanyuan Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, 1720 East 120th Street, Los Angeles, CA 90059, USA; E-Mails: (M.S.); (Y.W.); (J.V.V.)
- David Geffen School of Medicine at UCLA, UCLA’s Jonsson Comprehensive Cancer Center, 8-684 Factor Building, Box 951781, Los Angeles, CA 90095-1781, USA
| | - Jaydutt V. Vadgama
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, 1720 East 120th Street, Los Angeles, CA 90059, USA; E-Mails: (M.S.); (Y.W.); (J.V.V.)
- David Geffen School of Medicine at UCLA, UCLA’s Jonsson Comprehensive Cancer Center, 8-684 Factor Building, Box 951781, Los Angeles, CA 90095-1781, USA
| |
Collapse
|