1
|
Beard K, Gauff AK, Pennington AM, Marion DW, Smith J, Sloley S. Biofluid, Imaging, Physiological, and Functional Biomarkers of Mild Traumatic Brain Injury and Subconcussive Head Impacts. J Neurotrauma 2024. [PMID: 38943278 DOI: 10.1089/neu.2024.0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024] Open
Abstract
Post-concussive symptoms are frequently reported by individuals who sustain mild traumatic brain injuries (mTBIs) and subconcussive head impacts, even when evidence of intracranial pathology is lacking. Current strategies used to evaluate head injuries, which primarily rely on self-report, have a limited ability to predict the incidence, severity, and duration of post-concussive symptoms that will develop in an individual patient. In addition, these self-report measures have little association with the underlying mechanisms of pathology that may contribute to persisting symptoms, impeding advancement in precision treatment for TBI. Emerging evidence suggests that biofluid, imaging, physiological, and functional biomarkers associated with mTBI and subconcussive head impacts may address these shortcomings by providing more objective measures of injury severity and underlying pathology. Interest in the use of biomarker data has rapidly accelerated, which is reflected by the recent efforts of organizations such as the National Institute of Neurological Disorders and Stroke and the National Academies of Sciences, Engineering, and Medicine to prioritize the collection of biomarker data during TBI characterization in acute-care settings. Thus, this review aims to describe recent progress in the identification and development of biomarkers of mTBI and subconcussive head impacts and to discuss important considerations for the implementation of these biomarkers in clinical practice.
Collapse
Affiliation(s)
- Kryshawna Beard
- General Dynamics Information Technology Fairfax, Falls Church, Virginia, USA
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
| | - Amina K Gauff
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
- Xynergie Federal, LLC, San Juan, United States Minor Outlying Islands
| | - Ashley M Pennington
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
- Xynergie Federal, LLC, San Juan, United States Minor Outlying Islands
| | - Donald W Marion
- General Dynamics Information Technology Fairfax, Falls Church, Virginia, USA
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
| | - Johanna Smith
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
| | - Stephanie Sloley
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
| |
Collapse
|
2
|
Karvandi E, Helmy A, Kolias AG, Belli A, Ganau M, Gomes C, Grey M, Griffiths M, Griffiths T, Griffiths P, Holliman D, Jenkins P, Jones B, Lawrence T, McLoughlin T, McMahon C, Messahel S, Newton J, Noad R, Raymont V, Sharma K, Sylvester R, Tadmor D, Whitfield P, Wilson M, Woodberry E, Parker M, Hutchinson PJ. Specialist healthcare services for concussion/mild traumatic brain injury in England: a consensus statement using modified Delphi methodology. BMJ Open 2023; 13:e077022. [PMID: 38070886 PMCID: PMC10729241 DOI: 10.1136/bmjopen-2023-077022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
OBJECTIVE To establish a consensus on the structure and process of healthcare services for patients with concussion in England to facilitate better healthcare quality and patient outcome. DESIGN This consensus study followed the modified Delphi methodology with five phases: participant identification, item development, two rounds of voting and a meeting to finalise the consensus statements. The predefined threshold for agreement was set at ≥70%. SETTING Specialist outpatient services. PARTICIPANTS Members of the UK Head Injury Network were invited to participate. The network consists of clinical specialists in head injury practising in emergency medicine, neurology, neuropsychology, neurosurgery, paediatric medicine, rehabilitation medicine and sports and exercise medicine in England. PRIMARY OUTCOME MEASURE A consensus statement on the structure and process of specialist outpatient care for patients with concussion in England. RESULTS 55 items were voted on in the first round. 29 items were removed following the first voting round and 3 items were removed following the second voting round. Items were modified where appropriate. A final 18 statements reached consensus covering 3 main topics in specialist healthcare services for concussion; care pathway to structured follow-up, prognosis and measures of recovery, and provision of outpatient clinics. CONCLUSIONS This work presents statements on how the healthcare services for patients with concussion in England could be redesigned to meet their health needs. Future work will seek to implement these into the clinical pathway.
Collapse
Affiliation(s)
- Elika Karvandi
- Department of Neurosurgery, University of Cambridge, Cambridge, UK
| | - Adel Helmy
- Department of Neurosurgery, University of Cambridge, Cambridge, UK
| | - Angelos G Kolias
- Department of Neurosurgery, University of Cambridge, Cambridge, UK
| | - Antonio Belli
- Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Mario Ganau
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Clint Gomes
- Royal Liverpool University Hospital, Liverpool, UK
- UK Sports Institute, Liverpool, UK
| | - Michael Grey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Michael Griffiths
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Department of Paediatric Neurology, Alder-Hey Children's NHS Trust, Liverpool, UK
| | - Timothy Griffiths
- Department of Cognitive Neurology, Newcastle University, Newcastle Upon Tyne, UK
- Institute of Neurology, University College London, London, UK
| | - Philippa Griffiths
- Sunderland & South Tyneside Community Acquired Brain Injury Service, Northumberland Tyne and Wear NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Damian Holliman
- Department of Neurosurgery, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Peter Jenkins
- Wessex Neuroscience Centre, Southampton General Hospital, Southampton, UK
- Imperial College London, London, UK
| | - Ben Jones
- Carnegie Applied Rugby Research (CARR) Centre, Leeds Beckett University-Headingley Campus, Leeds, UK
- England Performance Unit, Rugby Football League Ltd, Leeds, UK
| | - Tim Lawrence
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Catherine McMahon
- Manchester Centre for Clinical Neurosciences (MCCN), Salford Royal Infirmary, Northern Care Alliance, Liverpool, UK
| | - Shrouk Messahel
- Alder Hey Children's Hospital NHS Foundation Trust, Liverpool, UK
| | - Joanne Newton
- Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Rupert Noad
- University Hospitals Plymouth NHS Trust, Plymouth, UK
| | | | - Kanchan Sharma
- Department of Neurology, North Bristol NHS Trust, Westbury on Trym, UK
| | - Richard Sylvester
- National Hospital for Neurology and Neurosurgery, London, London, UK
- Institute of Exercise and Health, University College London, London, UK
| | - Daniel Tadmor
- Carnegie School of Sport, Leeds Beckett University, Leeds, UK
- Medical, Leeds Rhinos Rugby League Club, Leeds, UK
| | | | - Mark Wilson
- Imperial College London, London, UK
- Department of Neurosurgery, Imperial College Healthcare NHS Trust, London, UK
| | - Emma Woodberry
- Department of Neuropsychology, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
3
|
Zimmer L, McDade C, Beyhaghi H, Purser M, Textoris J, Krause A, Blanc E, Pavlov V, Earnshaw S. Cost-Effectiveness of Blood-Based Brain Biomarkers for Screening Adults with Mild Traumatic Brain Injury in the French Health Care Setting. J Neurotrauma 2023; 40:706-719. [PMID: 36267001 PMCID: PMC10061334 DOI: 10.1089/neu.2022.0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Two blood-based brain biomarker tests such as the combination of glial fibrillary acidic protein and ubiquitin C-terminal hydrolase-L1 (GFAP+UCH-L1) or S100B have potential to reduce the need for head computed tomography (CT) scanning in patients with mild traumatic brain injury (mTBI). We assessed the clinical and economic impact of using GFAP+UCH-L1 versus CT scan and GFAP+UCH-L1 versus S100B to screen adults with suspected mTBI presenting to an emergency department (ED). A decision model was developed to estimate costs and health outcomes of GFAP+UCH-L1, CT scan, and S100B associated with these screening protocols. Model parameters were extracted from peer-reviewed articles, clinical guidelines, and expert opinion. Analysis was performed from a French health care system perspective (costs in 2020 euros). In the model, patients with a positive biomarker receive a CT scan to confirm the presence of intracranial lesions (ICLs). Depending on clinical state and biomarker and CT results, patients were discharged immediately, kept for observation in the ED, admitted for in-hospital stay and observation, or admitted for surgical management. Incorrect test results may lead to delayed treatment and poor outcomes or overtreatment. GFAP+UCH-L1 use was associated with an overall decrease in CT scans when compared with CT screening or S100B use (325.42 and 46.43 CTs per 1000 patients, respectively). The use of GFAP+UCH-L1 resulted in modest cost savings when compared with CT scanning and with S100B. In all cases, use of GFAP+UCH-L1 marginally improved quality-adjusted life-years (QALYs) and outcomes. Thus, screening with GFAP+UCH-L1 reduced the need for CT scans when compared with systematic CT scan screening or use of S100B while maintaining similar costs and health outcomes.
Collapse
Affiliation(s)
| | - Cheryl McDade
- RTI Health Solutions, Research Triangle Park, North Carolina, USA
| | | | - Molly Purser
- RTI Health Solutions, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
4
|
Roy MJ, Keyser DO, Rowe SS, Hernandez RS, Dovel M, Romero H, Lee D, Menezes M, Magee E, Brooks DJ, Lai C, Gill J, Wiri S, Metzger E, Werner JK, Brungart D, Kulinski DM, Nathan D, Carr WS. Methodology of the INVestigating traIning assoCiated blasT pAthology (INVICTA) study. BMC Med Res Methodol 2022; 22:317. [PMID: 36513998 PMCID: PMC9746108 DOI: 10.1186/s12874-022-01807-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Subconcussive blast exposure during military training has been the subject of both anecdotal concerns and reports in the medical literature, but prior studies have often been small and have used inconsistent methods. METHODS This paper presents the methodology employed in INVestigating traIning assoCiated blasT pAthology (INVICTA) to assess a wide range of aspects of brain function, including immediate and delayed recall, gait and balance, audiologic and oculomotor function, cerebral blood flow, brain electrical activity and neuroimaging and blood biomarkers. RESULTS A number of the methods employed in INVICTA are relatively easy to reproducibly utilize, and can be completed efficiently, while other measures require greater technical expertise, take longer to complete, or may have logistical challenges. CONCLUSIONS This presentation of methods used to assess the impact of blast exposure on the brain is intended to facilitate greater uniformity of data collection in this setting, which would enable comparison between different types of blast exposure and environmental circumstances, as well as to facilitate meta-analyses and syntheses across studies.
Collapse
Affiliation(s)
- Michael J. Roy
- grid.265436.00000 0001 0421 5525Department of Medicine, Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, MD 20814 USA
| | - David O. Keyser
- grid.265436.00000 0001 0421 5525Department of Medicine, Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, MD 20814 USA
| | - Sheilah S. Rowe
- grid.265436.00000 0001 0421 5525Department of Medicine, Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, MD 20814 USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation, Rockville, MD USA
| | - Rene S. Hernandez
- grid.265436.00000 0001 0421 5525Department of Medicine, Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, MD 20814 USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation, Rockville, MD USA
| | - Marcia Dovel
- grid.265436.00000 0001 0421 5525Department of Medicine, Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, MD 20814 USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation, Rockville, MD USA
| | - Holland Romero
- grid.265436.00000 0001 0421 5525Department of Medicine, Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, MD 20814 USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation, Rockville, MD USA
| | - Diana Lee
- grid.265436.00000 0001 0421 5525Department of Medicine, Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, MD 20814 USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation, Rockville, MD USA
| | - Matthew Menezes
- grid.265436.00000 0001 0421 5525Department of Medicine, Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, MD 20814 USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation, Rockville, MD USA
| | - Elizabeth Magee
- grid.265436.00000 0001 0421 5525Department of Medicine, Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, MD 20814 USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation, Rockville, MD USA
| | - Danielle J. Brooks
- grid.265436.00000 0001 0421 5525Department of Medicine, Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, MD 20814 USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation, Rockville, MD USA
| | - Chen Lai
- grid.265436.00000 0001 0421 5525Department of Medicine, Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, MD 20814 USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation, Rockville, MD USA
| | - Jessica Gill
- grid.265436.00000 0001 0421 5525Department of Medicine, Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, MD 20814 USA ,grid.94365.3d0000 0001 2297 5165National Institutes of Health, Bethesda, MD USA
| | - Suthee Wiri
- grid.422775.10000 0004 0477 9461Applied Research Associates, Albuquerque, NM USA
| | - Elizabeth Metzger
- grid.265436.00000 0001 0421 5525Department of Medicine, Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, MD 20814 USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation, Rockville, MD USA
| | - J. Kent Werner
- grid.265436.00000 0001 0421 5525Department of Medicine, Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, MD 20814 USA
| | - Douglas Brungart
- grid.414467.40000 0001 0560 6544Walter Reed National Military Medical Center, Bethesda, MD USA
| | - Devon M. Kulinski
- grid.414467.40000 0001 0560 6544Walter Reed National Military Medical Center, Bethesda, MD USA
| | - Dominic Nathan
- grid.265436.00000 0001 0421 5525Department of Medicine, Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, MD 20814 USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation, Rockville, MD USA
| | - Walter S. Carr
- grid.507680.c0000 0001 2230 3166Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD USA
| |
Collapse
|
5
|
Hossain I, Blennow K, Posti JP, Zetterberg H. Tau as a fluid biomarker of concussion and neurodegeneration. CONCUSSION (LONDON, ENGLAND) 2022; 7:CNC98. [PMID: 36687115 PMCID: PMC9841393 DOI: 10.2217/cnc-2022-0004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022]
Abstract
Concussion is predominant among the vast number of traumatic brain injuries that occur worldwide. Difficulties in timely identification, whether concussion led to neuronal injury or not, diagnosis and the lack of prognostic tools for adequate management could lead this type of brain injury to progressive neurodegenerative diseases. Tau has been extensively studied in recent years, particularly in repetitive mild traumatic brain injuries and sports-related concussions. Tauopathies, the group of neurodegenerative diseases, have also been studied with advanced functional imaging. Nevertheless, neurodegenerative diseases, such as chronic traumatic encephalopathy, are still conclusively diagnosed at autopsy. Here, we discuss the diagnostic dilemma and the relationship between concussion and neurodegenerative diseases and review the literature on tau as a promising biomarker for concussion.
Collapse
Affiliation(s)
- Iftakher Hossain
- Department of Neurosurgery, Neurocenter, Turku University Hospital, Finland,Turku Brain Injury Center, Turku University Hospital, Finland,Department of Clinical Neurosciences, University of Turku, Finland,Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK,Author for correspondence: Tel.: +358 2 313 0282;
| | - Kaj Blennow
- Institute of Neuroscience & Physiology, Department of Psychiatry & Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jussi P Posti
- Department of Neurosurgery, Neurocenter, Turku University Hospital, Finland,Turku Brain Injury Center, Turku University Hospital, Finland,Department of Clinical Neurosciences, University of Turku, Finland
| | - Henrik Zetterberg
- Institute of Neuroscience & Physiology, Department of Psychiatry & Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK,UK Dementia Research Institute at UCL, University College London, London, UK,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| |
Collapse
|
6
|
OUP accepted manuscript. Arch Clin Neuropsychol 2022; 37:1564-1578. [DOI: 10.1093/arclin/acac031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 11/12/2022] Open
|
7
|
Turner S, Lazarus R, Marion D, Main KL. Molecular and Diffusion Tensor Imaging Biomarkers of Traumatic Brain Injury: Principles for Investigation and Integration. J Neurotrauma 2021; 38:1762-1782. [PMID: 33446015 DOI: 10.1089/neu.2020.7259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The last 20 years have seen the advent of new technologies that enhance the diagnosis and prognosis of traumatic brain injury (TBI). There is recognition that TBI affects the brain beyond initial injury, in some cases inciting a progressive neuropathology that leads to chronic impairments. Medical researchers are now searching for biomarkers to detect and monitor this condition. Perhaps the most promising developments are in the biomolecular and neuroimaging domains. Molecular assays can identify proteins indicative of neuronal injury and/or degeneration. Diffusion imaging now allows sensitive evaluations of the brain's cellular microstructure. As the pace of discovery accelerates, it is important to survey the research landscape and identify promising avenues of investigation. In this review, we discuss the potential of molecular and diffusion tensor imaging (DTI) biomarkers in TBI research. Integration of these technologies could advance models of disease prognosis, ultimately improving care. To date, however, few studies have explored relationships between molecular and DTI variables in patients with TBI. Here, we provide a short primer on each technology, review the latest research, and discuss how these biomarkers may be incorporated in future studies.
Collapse
Affiliation(s)
- Stephanie Turner
- Defense and Veterans Brain Injury Center, Silver Spring, Maryland, USA.,General Dynamics Information Technology, Falls Church, Virginia, USA
| | - Rachel Lazarus
- Defense and Veterans Brain Injury Center, Silver Spring, Maryland, USA.,General Dynamics Information Technology, Falls Church, Virginia, USA
| | - Donald Marion
- Defense and Veterans Brain Injury Center, Silver Spring, Maryland, USA.,General Dynamics Information Technology, Falls Church, Virginia, USA
| | - Keith L Main
- Defense and Veterans Brain Injury Center, Silver Spring, Maryland, USA.,General Dynamics Information Technology, Falls Church, Virginia, USA
| |
Collapse
|
8
|
Ciuffreda KJ, Tannen B, Suter PS. Vision care in concussion and traumatic brain injury: unmet needs. Concussion 2020; 5:CNC77. [PMID: 33005436 PMCID: PMC7506479 DOI: 10.2217/cnc-2020-0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
| | - Barry Tannen
- Emeritus Clinical Professor, SUNY/College of Optometry, NY 10036, USA
| | | |
Collapse
|
9
|
Meier TB, Nitta ME, Teague TK, Nelson LD, McCrea MA, Savitz J. Prospective study of the effects of sport-related concussion on serum kynurenine pathway metabolites. Brain Behav Immun 2020; 87:715-724. [PMID: 32147388 PMCID: PMC7316609 DOI: 10.1016/j.bbi.2020.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023] Open
Abstract
Reports of neurodegenerative and psychiatric disease in former athletes have increased public concern about the acute and chronic effects of sport-related concussions (SRC). The biological factors underlying individual differences in the psychiatric sequalae of SRC and their role in potential long-term negative outcomes have not been determined. One understudied biological consequence of the known inflammatory response to concussion is the activation of a key immunoregulatory pathway, the kynurenine pathway (KP). Activation of the KP produces several neuroactive metabolites that have been associated with psychiatric and neurodegenerative diseases. We tested the hypothesis that SRC results in an elevation of serum KP metabolites with neurotoxic properties (quinolinic acid [QuinA], 3-hydroxykynurenine [3HK]) together with a reduction in the neuroprotective metabolite kynurenic acid (KynA), and that these metabolites would predict post-concussion psychological symptoms. Additionally, because brain injury is thought to prime the immune system, a secondary goal was to test the hypothesis that athletes with acute SRC and a history of prior SRC would have elevated neurotoxic relative to neuroprotective KP metabolites compared to athletes that were concussed for the first time. High school and collegiate football players (N = 1136) were enrolled at a preseason baseline visit that included clinical testing and blood specimen collection. Athletes that suffered a SRC (N = 59) completed follow-up visits within 6-hours (early-acute), at 24-48 h (late-acute) and at 8, 15, and 45 days post-injury. Uninjured contact sport (CC; N = 54) and non-contact sport athletes completed similar visits and served as controls (NCC; N = 30). SRC athletes had significantly elevated psychological symptoms, assessed using the Brief Symptom Inventory-18 (BSI), acutely following injury relative to both control groups. There was a group-by-visit interaction on the ratio of KynA to 3HK in serum, a neuroprotective index, with elevated KynA/3HK in athletes with SRC at the early-acute visit relative to later visits. Importantly, athletes with greater elevation in this neuroprotective index at the early-acute visit reported fewer depressive symptoms at the late-acute visit. Finally, SRC athletes with prior concussion had significantly lower serum KynA/QuinA at all visits compared to SRC athletes with no prior concussion, an effect driven by elevated QuinA in SRC athletes with prior concussion. These results suggest that early-acute activation of the KynA branch of the KP may protect against the development of depressive symptoms following concussion. Furthermore, they highlight the potential of serum QuinA as a biomarker for repetitive head injury and provide insight into possible mechanisms linking prior concussion with subsequent injury.
Collapse
Affiliation(s)
- Timothy B. Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI,Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI,Corresponding Author: Timothy B. Meier, PhD, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, Phone: 414-955-7310, Fax: 414-955-0115,
| | - Morgan E. Nitta
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI,Department of Psychology, Marquette University, Milwaukee, WI
| | - T. Kent Teague
- Department of Surgery, University of Oklahoma School of Community Medicine, Tulsa, OK,Department of Psychiatry, University of Oklahoma School of Community Medicine, Tulsa, OK,Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, Tulsa, OK.,Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK
| | - Lindsay D. Nelson
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI,Department of Neurology, Medical College of Wisconsin, Milwaukee, WI
| | - Michael A. McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI,Department of Neurology, Medical College of Wisconsin, Milwaukee, WI
| | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK,Oxley College of Health Sciences, The University of Tulsa, Tulsa OK
| |
Collapse
|
10
|
Silverberg ND, Iaccarino MA, Panenka WJ, Iverson GL, McCulloch KL, Dams-O’Connor K, Reed N, McCrea M, Cogan AM, Park Graf MJ, Kajankova M, McKinney G, Weyer Jamora C. Management of Concussion and Mild Traumatic Brain Injury: A Synthesis of Practice Guidelines. Arch Phys Med Rehabil 2020; 101:382-393. [DOI: 10.1016/j.apmr.2019.10.179] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/13/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022]
|