1
|
Yang B, Alimperti S, Gonzalez MV, Dentchev T, Kim M, Suh J, Titchenell PM, Ko KI, Seykora J, Benakanakere M, Graves DT. Reepithelialization of Diabetic Skin and Mucosal Wounds Is Rescued by Treatment With Epigenetic Inhibitors. Diabetes 2024; 73:120-134. [PMID: 37874683 PMCID: PMC10784658 DOI: 10.2337/db23-0258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/08/2023] [Indexed: 10/26/2023]
Abstract
Wound healing is a complex, highly regulated process and is substantially disrupted by diabetes. We show here that human wound healing induces specific epigenetic changes that are exacerbated by diabetes in an animal model. We identified epigenetic changes and gene expression alterations that significantly reduce reepithelialization of skin and mucosal wounds in an in vivo model of diabetes, which were dramatically rescued in vivo by blocking these changes. We demonstrate that high glucose altered FOXO1-matrix metallopeptidase 9 (MMP9) promoter interactions through increased demethylation and reduced methylation of DNA at FOXO1 binding sites and also by promoting permissive histone-3 methylation. Mechanistically, high glucose promotes interaction between FOXO1 and RNA polymerase-II (Pol-II) to produce high expression of MMP9 that limits keratinocyte migration. The negative impact of diabetes on reepithelialization in vivo was blocked by specific DNA demethylase inhibitors in vivo and by blocking permissive histone-3 methylation, which rescues FOXO1-impaired keratinocyte migration. These studies point to novel treatment strategies for delayed wound healing in individuals with diabetes. They also indicate that FOXO1 activity can be altered by diabetes through epigenetic changes that may explain other diabetic complications linked to changes in diabetes-altered FOXO1-DNA interactions. ARTICLE HIGHLIGHTS FOXO1 expression in keratinocytes is needed for normal wound healing. In contrast, FOXO1 expression interferes with the closure of diabetic wounds. Using matrix metallopeptidase 9 as a model system, we found that high glucose significantly increased FOXO1-matrix metallopeptidase 9 interactions via increased DNA demethylation, reduced DNA methylation, and increased permissive histone-3 methylation in vitro. Inhibitors of DNA demethylation and permissive histone-3 methylation improved the migration of keratinocytes exposed to high glucose in vitro and the closure of diabetic skin and mucosal wounds in vivo. Inhibition of epigenetic enzymes that alter FOXO1-induced gene expression dramatically improves diabetic healing and may apply to other conditions where FOXO1 has a detrimental role in diabetic complications.
Collapse
Affiliation(s)
- Bo Yang
- Department of Implant Dentistry, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Stella Alimperti
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University, Washington, DC
| | - Michael V. Gonzalez
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA
- Center for Cytokine Storm Treatment & Laboratory, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Tzvete Dentchev
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Minjung Kim
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Justin Suh
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Paul M. Titchenell
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kang I. Ko
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - John Seykora
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Manju Benakanakere
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Dana T. Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
2
|
Epigenetic Control of a Local Chromatin Landscape. Int J Mol Sci 2020; 21:ijms21030943. [PMID: 32023873 PMCID: PMC7038174 DOI: 10.3390/ijms21030943] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/11/2022] Open
Abstract
Proper regulation of the chromatin landscape is essential for maintaining eukaryotic cell identity and diverse cellular processes. The importance of the epigenome comes, in part, from the ability to influence gene expression through patterns in DNA methylation, histone tail modification, and chromatin architecture. Decades of research have associated this process of chromatin regulation and gene expression with human diseased states. With the goal of understanding how chromatin dysregulation contributes to disease, as well as preventing or reversing this type of dysregulation, a multidisciplinary effort has been launched to control the epigenome. Chemicals that alter the epigenome have been used in labs and in clinics since the 1970s, but more recently there has been a shift in this effort towards manipulating the chromatin landscape in a locus-specific manner. This review will provide an overview of chromatin biology to set the stage for the type of control being discussed, evaluate the recent technological advances made in controlling specific regions of chromatin, and consider the translational applications of these works.
Collapse
|