1
|
Yu L, Zhu Z, Deng J, Tian K, Li X. Antagonisms of ASFV towards Host Defense Mechanisms: Knowledge Gaps in Viral Immune Evasion and Pathogenesis. Viruses 2023; 15:574. [PMID: 36851786 PMCID: PMC9963191 DOI: 10.3390/v15020574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
African swine fever (ASF) causes high morbidity and mortality of both domestic pigs and wild boars and severely impacts the swine industry worldwide. ASF virus (ASFV), the etiologic agent of ASF epidemics, mainly infects myeloid cells in swine mononuclear phagocyte system (MPS), including blood-circulating monocytes, tissue-resident macrophages, and dendritic cells (DCs). Since their significant roles in bridging host innate and adaptive immunity, these cells provide ASFV with favorable targets to manipulate and block their antiviral activities, leading to immune escape and immunosuppression. To date, vaccines are still being regarded as the most promising measure to prevent and control ASF outbreaks. However, ASF vaccine development is delayed and limited by existing knowledge gaps in viral immune evasion, pathogenesis, etc. Recent studies have revealed that ASFV can employ diverse strategies to interrupt the host defense mechanisms via abundant self-encoded proteins. Thus, this review mainly focuses on the antagonisms of ASFV-encoded proteins towards IFN-I production, IFN-induced antiviral response, NLRP3 inflammasome activation, and GSDMD-mediated pyroptosis. Additionally, we also make a brief discussion concerning the potential challenges in future development of ASF vaccine.
Collapse
Affiliation(s)
- Liangzheng Yu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Zhenbang Zhu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Junhua Deng
- Luoyang Putai Biotech Co., Ltd., Luoyang 471003, China
| | - Kegong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiangdong Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Jia X, Chen J, Qiao C, Li C, Yang K, Zhang Y, Li J, Li Z. Porcine Epidemic Diarrhea Virus nsp13 Protein Downregulates Neonatal Fc Receptor Expression by Causing Promoter Hypermethylation through the NF-κB Signaling Pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:475-485. [PMID: 36602596 DOI: 10.4049/jimmunol.2200291] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 11/28/2022] [Indexed: 01/06/2023]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly pathogenic porcine enteric coronavirus that causes severe watery diarrhea and even death in piglets. The neonatal Fc receptor (FcRn) is the only transport receptor for IgG. FcRn expressed by intestinal epithelial cells can transport IgG from breast milk to piglets to provide immune protection. Previous studies have shown that viral infection affects FcRn expression. In this study, we showed for the first time, to our knowledge, that FcRn expression can be influenced by methyltransferases. In addition, we found that PEDV inhibited FcRn protein synthesis in porcine small intestinal epithelial cells postinfection. Then, we found that PEDV interfered with the transcription of genes through aberrant methylation modification of the FcRn promoter. DNA methyltransferase 3b (DNMT3b) has been implicated in this process. Using a series of PEDV structural and nonstructural protein (nsp) expression plasmids, we showed that nsp13 plays an important role in this aberrant methylation modification. PEDV nsp13 can affect the NF-κB canonical pathway and promote DNMT3b protein expression by facilitating p65 protein binding to chromatin. PEDV caused aberrant methylation of the FcRn promoter via DNMT3b. The same phenomenon was found in animal experiments with large white piglets. IgG transcytosis demonstrated that PEDV nsp13 can inhibit bidirectional IgG transport by FcRn. In addition, the core region of nsp13 (230-597 aa) is critical for FcRn inhibition. Taken together, to our knowledge, our findings revealed a novel immune escape mechanism of PEDV and shed new light on the design and development of vaccines and drugs.
Collapse
Affiliation(s)
- Xiangchao Jia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jing Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Chenyuan Qiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Chenxi Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Kang Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zili Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
3
|
Xu ZY, Gao H, Kuang QY, Xing JB, Wang ZY, Cao XY, Xu SJ, Liu J, Huang Z, Zheng ZZ, Gong L, Wang H, Shi M, Zhang GH, Sun YK. Clinical sequencing uncovers the genomic characteristics and mutation spectrum of the 2018 African swine fever virus in Guangdong, China. Front Vet Sci 2022; 9:978243. [PMID: 36061106 PMCID: PMC9437553 DOI: 10.3389/fvets.2022.978243] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022] Open
Abstract
African swine fever (ASF) outbreak have caused tremendous economic loss to the pig industry in China since its emergence in August 2018. Previous studies revealed that many published sequences are not suitable for detailed analyses due to the lack of data regarding quality parameters and methodology, and outdated annotations. Thus, high-quality genomes of highly pathogenic strains that can be used as references for early Chinese ASF outbreaks are still lacking, and little is known about the features of intra-host variants of ASF virus (ASFV). In this study, a full genome sequencing of clinical samples from the first ASF outbreak in Guangdong in 2018 was performed using MGI (MGI Tech Co., Ltd., Shenzhen, China) and Nanopore sequencing platforms, followed by Sanger sequencing to verify the variations. With 22 sequencing corrections, we obtained a high-quality genome of one of the earliest virulent isolates, GZ201801_2. After proofreading, we improved (add or modify) the annotations of this isolate using the whole genome alignment with Georgia 2007/1. Based on the complete genome sequence, we constructed the methylation profiles of early ASFV strains in China and predicted the potential 5mC and 6mA methylation sites, which are likely involved in metabolism, transcription, and replication. Additionally, the intra-host single nucleotide variant distribution and mutant allele frequency in the clinical samples of early strain were determined for the first time and found a strong preference for A and T substitution mutation, non-synonymous mutations, and mutations that resulted in amino acid substitutions into Lysine. In conclusion, this study provides a high-quality genome sequence, updated genome annotation, methylation profile, and mutation spectrum of early ASFV strains in China, thereby providing a reference basis for further studies on the evolution, transmission, and virulence of ASFV.
Collapse
Affiliation(s)
- Zhi-ying Xu
- African Swine Fever Regional Laboratory of China, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Han Gao
- African Swine Fever Regional Laboratory of China, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Qi-yuan Kuang
- African Swine Fever Regional Laboratory of China, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Jia-bao Xing
- African Swine Fever Regional Laboratory of China, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Zhi-yuan Wang
- African Swine Fever Regional Laboratory of China, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Xin-yu Cao
- African Swine Fever Regional Laboratory of China, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Si-jia Xu
- African Swine Fever Regional Laboratory of China, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Jing Liu
- African Swine Fever Regional Laboratory of China, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Zhao Huang
- African Swine Fever Regional Laboratory of China, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Ze-zhong Zheng
- African Swine Fever Regional Laboratory of China, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Lang Gong
- African Swine Fever Regional Laboratory of China, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Heng Wang
- African Swine Fever Regional Laboratory of China, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Mang Shi
- School of Medicine, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Mang Shi
| | - Gui-hong Zhang
- African Swine Fever Regional Laboratory of China, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Gui-hong Zhang
| | - Yan-kuo Sun
- African Swine Fever Regional Laboratory of China, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Yan-kuo Sun
| |
Collapse
|
4
|
Development of an Accurate and Sensitive Diagnostic System Based on Conventional PCR for Detection of African Swine Fever Virus in Food Waste. Indian J Microbiol 2022; 62:293-306. [PMID: 35462715 PMCID: PMC8980174 DOI: 10.1007/s12088-022-01007-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/29/2022] [Indexed: 12/03/2022] Open
Abstract
African swine fever virus (ASFV), a highly contagious virus, can cause diseases with high mortality rates in pigs, making it a pathogen of social and economic significance. ASFV has been reported to show potential long-term survival in living livestock, such as pigs, but also in leftover cooking meat and undercooked pork meat. Hence, it is possible that there could be direct reinfection or secondary infection through feed produced from household food waste and treatment facilities. Many polymerase chain reaction (PCR)-based molecular diagnostic techniques to detect ASFV in clinical swine samples have been reported. However, those with applicability for food waste samples, which contain relatively low viral copy numbers and may contain various unknown inhibitors of PCR, are still lacking. In this study, we developed a conventional PCR-based diagnostic system that can detect ASFV with high sensitivity from food waste sample types. The technique shows a 10–100 times higher limit of detection compared to that of previously reported methods based on conventional PCR and quantitative real-time PCR. It is also capable of amplifying a sequence that is approximately 751 nucleotides, which is advantageous for similarity analysis and genotyping. Moreover, a ASFV-modified positive material different from ASFV that could synthesize 1400 nucleotide amplicons was developed to identify false-positive cases and thus enhance diagnostic accuracy. The method developed herein may be applicable for future ASFV monitoring, identification, and genotyping in food waste samples.
Collapse
|
5
|
Wu J, Shi X, Wu L, Wu Z, Wu S, Bao W. Genome-Wide DNA Methylome and Transcriptome Analysis of Porcine Testicular Cells Infected With Transmissible Gastroenteritis Virus. Front Vet Sci 2022; 8:779323. [PMID: 35097042 PMCID: PMC8794705 DOI: 10.3389/fvets.2021.779323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/07/2021] [Indexed: 12/03/2022] Open
Abstract
Transmissible gastroenteritis virus (TGEV) is a porcine pathogen causing highly communicable gastrointestinal infection that are lethal for suckling piglets. In an attempt to delineate the pathogenic mechanism of TGEV-infected porcine testicular cells (ST cells), we conducted a whole genome analysis of DNA methylation and expression in ST cells through reduced bisulfate-seq and RNA-seq. We examined alterations in the methylation patterns and recognized 1764 distinct methylation sites. 385 differentially expressed genes (DEGs) were enriched in the viral defense and ribosome biogenesis pathways. Integrative analysis identified two crucial genes (EMILIN2, RIPOR3), these two genes expression were negatively correlated to promoter methylation. In conclusion, alterations in DNA methylation and differential expression of genes reveal that their potential functional interactions in TGEV infection. Our data highlights the epigenetic and transcriptomic landscapes in TGEV-infected ST cells and provides a reliable dataset for screening TGEV resistance genes and genetic markers.
Collapse
Affiliation(s)
- Jiayun Wu
- Key Laboratory for Animal Genetic, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiaoru Shi
- Key Laboratory for Animal Genetic, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Lisi Wu
- Key Laboratory for Animal Genetic, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhengchang Wu
- Key Laboratory for Animal Genetic, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shenglong Wu
- Key Laboratory for Animal Genetic, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Wenbin Bao
- Key Laboratory for Animal Genetic, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- *Correspondence: Wenbin Bao
| |
Collapse
|
6
|
Wang Y, Kang W, Yang W, Zhang J, Li D, Zheng H. Structure of African Swine Fever Virus and Associated Molecular Mechanisms Underlying Infection and Immunosuppression: A Review. Front Immunol 2021; 12:715582. [PMID: 34552586 PMCID: PMC8450572 DOI: 10.3389/fimmu.2021.715582] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/20/2021] [Indexed: 01/02/2023] Open
Abstract
African swine fever (ASF) is an acute, highly contagious, and deadly infectious disease. The mortality rate of the most acute and acute ASF infection is almost 100%. The World Organization for Animal Health [Office International des épizooties (OIE)] lists it as a legally reported animal disease and China lists it as class I animal epidemic. Since the first diagnosed ASF case in China on August 3, 2018, it has caused huge economic losses to animal husbandry. ASF is caused by the African swine fever virus (ASFV), which is the only member of Asfarviridae family. ASFV is and the only insect-borne DNA virus belonging to the Nucleocytoplasmic Large DNA Viruses (NCLDV) family with an icosahedral structure and an envelope. Till date, there are still no effective vaccines or antiviral drugs for the prevention or treatment of ASF. The complex viral genome and its sophisticated ability to regulate the host immune response may be the reason for the difficulty in developing an effective vaccine. This review summarizes the recent findings on ASFV structure, the molecular mechanism of ASFV infection and immunosuppression, and ASFV-encoded proteins to provide comprehensive proteomic information for basic research on ASFV. In addition, it also analyzes the results of previous studies and speculations on the molecular mechanism of ASFV infection, which aids the study of the mechanism of clinical pathological phenomena, and provides a possible direction for an intensive study of ASFV infection mechanism. By summarizing the findings on molecular mechanism of ASFV- regulated host cell immune response, this review provides orientations and ideas for fundamental research on ASFV and provides a theoretical basis for the development of protective vaccines against ASFV.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weifang Kang
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wenping Yang
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jing Zhang
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dan Li
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
7
|
Pereira De Oliveira R, Lucas P, Chastagner A, De Boisseson C, Vial L, Le Potier MF, Blanchard Y. Evaluation of un-methylated DNA enrichment in sequencing of African swine fever virus complete genome. J Virol Methods 2020; 285:113959. [PMID: 32828806 DOI: 10.1016/j.jviromet.2020.113959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/15/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022]
Abstract
African swine fever is a febrile hemorrhagic fever disease that is caused by the African swine fever virus (ASFV) and is lethal for domestic pigs and wild boar. ASFV also infects soft ticks of the genus Ornithodoros, some species of which can act as a vector for ASFV. Whole genome sequencing of ASFV is a challenge because, due to the size difference of the host genome versus the viral genome, the higher proportion of host versus virus DNA fragments renders the virus sequencing poorly efficient. A novel approach of DNA enrichment, based on the separation of methylated and un-methylated DNA, has been reported but without an evaluation of its efficacy. In this study, the efficiency of the un-methylated DNA enrichment protocol was evaluated for pig and tick samples infected by ASFV. As expected, fewer reads corresponding to ASFV were found in the methylated fraction compared to the un-methylated fraction. However, the sequencing coverage of the un-methylated fraction was not improved compared to the untreated DNA. In our hands, the ASFV DNA enrichment was inefficient for tick samples and very limited for pig samples. This enrichment process represents extra work and cost without a significant improvement of ASFV genome coverage. The efficiency of this enrichment approach and the cost/benefit ratio are discussed.
Collapse
Affiliation(s)
- Rémi Pereira De Oliveira
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, ANSES, Ploufragan, France; UMR ASTRE, CIRAD, Campus International de Baillarguet, F-34398, Montpellier, France; UMR ASTRE, Univ Montpellier, CIRAD, INRAE, Campus International de Baillarguet, F-34398, Montpellier, France
| | - Pierrick Lucas
- Viral Genetic and Biosecurity Unit, Ploufragan-Plouzané-Niort Laboratory, ANSES, Ploufragan, France
| | - Amélie Chastagner
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, ANSES, Ploufragan, France
| | - Claire De Boisseson
- Viral Genetic and Biosecurity Unit, Ploufragan-Plouzané-Niort Laboratory, ANSES, Ploufragan, France
| | - Laurence Vial
- UMR ASTRE, CIRAD, Campus International de Baillarguet, F-34398, Montpellier, France; UMR ASTRE, Univ Montpellier, CIRAD, INRAE, Campus International de Baillarguet, F-34398, Montpellier, France
| | | | - Yannick Blanchard
- Viral Genetic and Biosecurity Unit, Ploufragan-Plouzané-Niort Laboratory, ANSES, Ploufragan, France.
| |
Collapse
|
8
|
Jia L, Chen J, Liu H, Fan W, Wang D, Li J, Liu D. Potential m6A and m5C Methylations within the Genome of A Chinese African Swine Fever Virus Strain. Virol Sin 2020; 36:321-324. [PMID: 32270427 DOI: 10.1007/s12250-020-00217-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/07/2020] [Indexed: 01/26/2023] Open
Affiliation(s)
- Lijia Jia
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianjun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,African Swine Fever Regional Laboratory of China, Wuhan, 430071, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Haizhou Liu
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Wenhui Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | - Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China. .,Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China. .,African Swine Fever Regional Laboratory of China, Wuhan, 430071, China. .,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Rapid Sequence-Based Characterization of African Swine Fever Virus by Use of the Oxford Nanopore MinION Sequence Sensing Device and a Companion Analysis Software Tool. J Clin Microbiol 2019; 58:JCM.01104-19. [PMID: 31694969 DOI: 10.1128/jcm.01104-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/26/2019] [Indexed: 11/20/2022] Open
Abstract
African swine fever virus (ASFV) is the causative agent of a severe and highly contagious viral disease of pigs that poses serious economic consequences to the swine industry due to the high mortality rate and impact on international trade. There is no effective vaccine to control African swine fever (ASF), and therefore, efficient disease control is dependent on early detection and diagnosis of ASFV. The large size of the ASFV genome (∼180 kb) has historically hindered efforts to rapidly obtain a full-genome sequence. Rapid acquisition of data is critical for characterization of the isolate and to support epidemiological efforts. Here, we investigated the capacity of the Oxford Nanopore MinION sequence sensing device to act as a rapid sequencing tool. When coupled with our novel companion software script, the African swine fever fast analysis sequencing tool (ASF-FAST), the analysis of output data was performed in real time. Complete ASFV genome sequences were generated from cell culture isolates and blood samples obtained from experimentally infected pigs. Removal of the host-methylated DNA from the extracted nucleic acid facilitated rapid ASFV sequence identification, with reads specific to ASFV detected within 6 min after the initiation of sequencing. Regardless of the starting material, sufficient sequence was available for complete genome resolution (up to 100%) within 10 min. Overall, this paper highlights the use of Nanopore sequencing technology in combination with the ASF-FAST software for the purpose of rapid and real-time resolution of the full ASFV genome from a diagnostic sample.
Collapse
|