1
|
Fu K, Jing C, Shi J, Mao S, Lu R, Yang M, Chen Y, Qian B, Wang Y, Li L. WTAP and METTL14 regulate the m6A modification of DKK3 in renal tubular epithelial cells of diabetic nephropathy. Biochem Biophys Res Commun 2024; 738:150524. [PMID: 39151294 DOI: 10.1016/j.bbrc.2024.150524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Diabetic nephropathy (DN) is an important cause of death in diabetes patients, which is mainly due to its complex pathogenesis. Here, we explored the role of N6-methyladenosine (m6A) RNA methylation in DN development. Renal tubular epithelial cells from DN patients and experimental DN mice treated with streptozotocin (STZ) exhibited a considerable increase in METTL14 and WTAP expression as well as overall m6A methylation. Knocking down the expression of METTL14 and WTAP inhibited the migration and proliferation of tubular epithelial cells. MeRIP-seq analysis of the renal tissues of DN patients revealed that the genes with elevated m6A methylation were concentrated in the Wnt/β-Catenin signaling pathway. Dickkopf homolog 3 (DKK3) was screened out as the gene with the most significant increase in m6A methylation. In addition, the expression change pattern of DKK3 under DN circumstances is in line with those of METTL14 and WTAP. DKK3's m6A methylation sites were confirmed to be located in the 3'UTR region, which is how METTL14 and WTAP improved DKK3's mRNA stability. Finally, YTHDF1, a m6A reader, was demonstrated to recognize m6A-methylated DKK3 and promote DKK3 expression.
Collapse
Affiliation(s)
- Kang Fu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Chenyang Jing
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Jinsong Shi
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, 210002, China
| | - Shuya Mao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Rui Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Miao Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Yang Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Bin Qian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Yu Wang
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, 17 Yongwai Zheng Street, Nanchang, Jiangxi, 330006, China.
| | - Limin Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
2
|
Lin Y, Li J, Liang S, Chen Y, Li Y, Cun Y, Tian L, Zhou Y, Chen Y, Chu J, Chen H, Luo Q, Zheng R, Wang G, Liang H, Cui P, An S. Pan-cancer Analysis Reveals m6A Variation and Cell-specific Regulatory Network in Different Cancer Types. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae052. [PMID: 38970366 PMCID: PMC11514823 DOI: 10.1093/gpbjnl/qzae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
As the most abundant messenger RNA (mRNA) modification, N6-methyladenosine (m6A) plays a crucial role in RNA fate, impacting cellular and physiological processes in various tumor types. However, our understanding of the role of the m6A methylome in tumor heterogeneity remains limited. Herein, we collected and analyzed m6A methylomes across nine human tissues from 97 m6A sequencing (m6A-seq) and RNA sequencing (RNA-seq) samples. Our findings demonstrate that m6A exhibits different heterogeneity in most tumor tissues compared to normal tissues, which contributes to the diverse clinical outcomes in different cancer types. We also found that the cancer type-specific m6A level regulated the expression of different cancer-related genes in distinct cancer types. Utilizing a novel and reliable method called "m6A-express", we predicted m6A-regulated genes and revealed that cancer type-specific m6A-regulated genes contributed to the prognosis, tumor origin, and infiltration level of immune cells in diverse patient populations. Furthermore, we identified cell-specific m6A regulators that regulate cancer-specific m6A and constructed a regulatory network. Experimental validation was performed, confirming that the cell-specific m6A regulator CAPRIN1 controls the m6A level of TP53. Overall, our work reveals the clinical relevance of m6A in various tumor tissues and explains how such heterogeneity is established. These results further suggest the potential of m6A in cancer precision medicine for patients with different cancer types.
Collapse
Affiliation(s)
- Yao Lin
- Life Sciences Institute, Biosafety Level-3 Laboratory, Guangxi Medical University, Nanning 530021, China
| | - Jingyi Li
- Life Sciences Institute, Biosafety Level-3 Laboratory, Guangxi Medical University, Nanning 530021, China
- Department of Pathology, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Shuaiyi Liang
- Department of Bioinformatics, Anjin Biotechnology Co., Ltd., Guangzhou 510000, China
| | - Yaxin Chen
- Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Research Center, West China Hospital, Department of Respiratory and Critical Care Medicine, Sichuan University, Chengdu 610041, China
| | - Yueqi Li
- School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Yixian Cun
- Department of Medical Bioinformatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Lei Tian
- The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yuanli Zhou
- The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yitong Chen
- The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jiemei Chu
- Life Sciences Institute, Biosafety Level-3 Laboratory, Guangxi Medical University, Nanning 530021, China
| | - Hubin Chen
- Life Sciences Institute, Biosafety Level-3 Laboratory, Guangxi Medical University, Nanning 530021, China
| | - Qiang Luo
- Life Sciences Institute, Biosafety Level-3 Laboratory, Guangxi Medical University, Nanning 530021, China
| | - Ruili Zheng
- Life Sciences Institute, Biosafety Level-3 Laboratory, Guangxi Medical University, Nanning 530021, China
| | - Gang Wang
- Life Sciences Institute, Biosafety Level-3 Laboratory, Guangxi Medical University, Nanning 530021, China
| | - Hao Liang
- Life Sciences Institute, Biosafety Level-3 Laboratory, Guangxi Medical University, Nanning 530021, China
| | - Ping Cui
- Life Sciences Institute, Biosafety Level-3 Laboratory, Guangxi Medical University, Nanning 530021, China
| | - Sanqi An
- Life Sciences Institute, Biosafety Level-3 Laboratory, Guangxi Medical University, Nanning 530021, China
- School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
3
|
Chen Z, Yang J, Zhang W, Qian Y, Zhang N, Chen Z, Lu M, Ge L, Liu C, Tian X, Jia G, Ma L, Li B. Understanding m6A changes in chromophobe renal cell carcinoma and predicting patient outcomes survival. BMC Cancer 2024; 24:1187. [PMID: 39334021 PMCID: PMC11438101 DOI: 10.1186/s12885-024-12956-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
N6-methyladenosine (m6A) is a prevalent mRNA modification known for its implications in various cancer types, yet its role in chromophobe renal cell carcinoma (chRCC) remains largely unexplored. In this study, we performed m6A-SEAL-seq and RNA-seq analyses on tissues from three chRCC subjects, aiming to uncover m6A alterations in chRCC. Our findings revealed reduced expression levels of four m6A regulators in chRCC tissues and highlighted differences in m6A levels compared to normal tissues. Furthermore, we identified specific genes and cancer-related pathways affected by these differences, including notable candidates like NOTCH1 and FGFR1, implicated in chRCC development. Additionally, we developed a predictive model based on the expression level of m6A associated genes, demonstrating promising prognostic capabilities for patient survival prediction. Overall, our study provides valuable insights into the role of m6A in chRCC and its potential as a prognostic indicator.
Collapse
Affiliation(s)
- Zhigang Chen
- Department of Urology, Beijing Haidian Hospital (Haidian Section of Peking University Third Hospital), Beijing, 100080, China
| | - Junbo Yang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Wei Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yang Qian
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Nan Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zixin Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Min Lu
- Department of Urology, Peking University Third Hospital, Beijing, 100191, China
- Department of Pathology, Peking University Third Hospital, Beijing, 100191, China
| | - Liyuan Ge
- Department of Urology, Peking University Third Hospital, Beijing, 100191, China
| | - Cheng Liu
- Department of Urology, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaojun Tian
- Department of Urology, Peking University Third Hospital, Beijing, 100191, China
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Lulin Ma
- Department of Urology, Peking University Third Hospital, Beijing, 100191, China.
| | - Baoguo Li
- Department of Urology, Beijing Haidian Hospital (Haidian Section of Peking University Third Hospital), Beijing, 100080, China.
| |
Collapse
|
4
|
He Y, Chen Y, Li Z, Wu C. The m 6A demethylase FTO targets POLQ to promote ccRCC cell proliferation and genome stability maintenance. J Cancer Res Clin Oncol 2024; 150:30. [PMID: 38270643 PMCID: PMC10810938 DOI: 10.1007/s00432-023-05541-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND AND AIM As the first identified m6A demethylase, FTO has been implicated in the progression of various cancers. However, the specific mechanism of FTO in clear cell renal cell carcinoma (ccRCC) remains incompletely understood. In this study, we aimed to explore the potential molecular mechanisms influencing the progression of ccRCC. METHODS We initially assessed the expression of FTO in tumor and adjacent tissues using TCGA database, RT-qPCR, and Western blot. We then conducted CCK-8, cell cycle analysis, and colony formation assay to investigate the impact of FTO on ccRCC cell proliferation. MeRIP-seq and RNA-seq were employed to identify potential downstream targets of FTO in ccRCC, and these findings were further validated through dual-luciferase reporter assays and MeRIP-qPCR. Then, DNA damage and cell death were assessed separately through gammaH2AX immunofluorescence detection and the LIVE/DEAD Fixable Dead Cell Stain assay, respectively. Subsequently, we identified downstream pathways influenced by FTO's regulation of POLQ through TCGA database analysis and GSEA enrichment analysis. Validation was carried out through Western blot. RESULTS FTO is highly expressed in ccRCC tissues and cell lines. Furthermore, ROC curve demonstrates that FTO contributes to the diagnosis of ccRCC. FTO modulates m6A modification, consequently influencing the expression of POLQ, thus facilitating cell proliferation and maintaining genome stability in ccRCC. CONCLUSION FTO could potentially serve as a diagnostic marker for ccRCC. FTO promotes the progression of ccRCC by regulating m6A modification, making the inhibition of FTO a potential novel therapeutic strategy in ccRCC.
Collapse
Affiliation(s)
- Yichen He
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Yimeng Chen
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Zhengsheng Li
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Changping Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.
| |
Collapse
|
5
|
Chen Y, He Y, Li Z, Zhang N, Zhou C, He X, Xue D. METTL3 facilitates renal cell carcinoma progression by PLOD2 m 6A-methylation under prolonged hypoxia. Cell Death Dis 2024; 15:62. [PMID: 38233403 PMCID: PMC10794171 DOI: 10.1038/s41419-023-06411-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024]
Abstract
N6-methyladenosine (m6A) is the most prevalent reversible modification in eukaryotic mRNA, and it plays a critical role in tumor progression. The purpose of this study was to investigate the function and regulatory mechanisms of the methyltransferase METTL3 in renal cell carcinoma (RCC). METTL3 expression was upregulated and predicted a poor prognosis in patients with advanced RCC. METTL3 facilitated the proliferation, migration, and invasion of RCC cells, depending on its methylase activity. METTL3 positively regulated the expression of PLOD2, and both genes were triggered under prolonged hypoxia. Mechanistically, hypoxia-induced the binding of HIF-1α to the METTL3 promoter, which enhanced its transcriptional activity. METTL3-mediated m6A modifications of PLOD2 mRNA at 3'UTR region, promoting the translation of PLOD2 protein. Furthermore, silencing METTL3 impaired RCC progression in vitro. In vivo, administration of highly potent and selective METTL3 inhibitor STM2457 showed anti-tumor effects, whereas AAV9-mediated re-transduction of PLOD2 largely abolished the above phenomenon in a subcutaneous mouse model. These findings reveal that hypoxia and HIF-driven METTL3 transcription promote RCC progression by increasing PLOD2 expression in an m6A-dependent manner, suggesting that METTL3 may serve as a novel pharmaceutical intervention for RCC.
Collapse
Affiliation(s)
- Yimeng Chen
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Yichen He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Zhengsheng Li
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Nan Zhang
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Cuixing Zhou
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
| | - Dong Xue
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|
6
|
Sun Y, Jin D, Zhang Z, Ji H, An X, Zhang Y, Yang C, Sun W, Zhang Y, Duan Y, Kang X, Jiang L, Zhao X, Lian F. N6-methyladenosine (m6A) methylation in kidney diseases: Mechanisms and therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194967. [PMID: 37553065 DOI: 10.1016/j.bbagrm.2023.194967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
The N6-methyladenosine (m6A) modification is regulated by methylases, commonly referred to as "writers," and demethylases, known as "erasers," leading to a dynamic and reversible process. Changes in m6A levels have been implicated in a wide range of cellular processes, including nuclear RNA export, mRNA metabolism, protein translation, and RNA splicing, establishing a strong correlation with various diseases. Both physiologically and pathologically, m6A methylation plays a critical role in the initiation and progression of kidney disease. The methylation of m6A may also facilitate the early diagnosis and treatment of kidney diseases, according to accumulating research. This review aims to provide a comprehensive overview of the potential role and mechanism of m6A methylation in kidney diseases, as well as its potential application in the treatment of such diseases. There will be a thorough examination of m6A methylation mechanisms, paying particular attention to the interplay between m6A writers, m6A erasers, and m6A readers. Furthermore, this paper will elucidate the interplay between various kidney diseases and m6A methylation, summarize the expression patterns of m6A in pathological kidney tissues, and discuss the potential therapeutic benefits of targeting m6A in the context of kidney diseases.
Collapse
Affiliation(s)
- Yuting Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - De Jin
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Ziwei Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hangyu Ji
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuedong An
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuehong Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cunqing Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjie Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuqing Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingying Duan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaomin Kang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linlin Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuefei Zhao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
7
|
Chen S, Zhang E, Guo T, Wang T, Chen J, Zhang N, Wang X, Zheng J. Development and verification of a deep learning-based m 6A modification model for clinical prognosis prediction of renal cell carcinoma. J Cancer Res Clin Oncol 2023; 149:14283-14296. [PMID: 37558767 DOI: 10.1007/s00432-023-05169-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/09/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND The deep learning-based m6A modification model for clinical prognosis prediction of patients with renal cell carcinoma (RCC) had not been reported for now. In addition, the important roles of methyltransferase-like 14 (METTL14) in RCC have never been fully explored. METHODS A high-level neural network based on deep learning algorithm was applied to construct the m6A-prognosis model. Western blotting, quantitative real-time PCR, immunohistochemistry and RNA immunoprecipitation were used for biological experimental verifications. RESULTS The deep learning-based model performs well in predicting the survival status in 5-year follow-up, which also could significantly distinguish the patients with high overall survival risk in two independent patient cohort and a pan-cancer patient cohort. METTL14 deficiency could promote the migration and proliferation of renal cancer cells. In addition, our study also illustrated that METTL14 might participate in the regulation of circRNA in RCC. CONCLUSIONS In summary, we developed and verified a deep learning-based m6A-prognosis model for patients with RCC. We proved that METTL14 deficiency could promote the migration and proliferation of renal cancer cells, which might throw light on the cancer prevention by targeting the METTL14 pathway.
Collapse
Affiliation(s)
- Siteng Chen
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Encheng Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tuanjie Guo
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinyuan Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Zhang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Junhua Zheng
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Wang Q, Fan X, Sheng Q, Yang M, Zhou P, Lu S, Gao Y, Kong Z, Shen N, Lv Z, Wang R. N6-methyladenosine methylation in kidney injury. Clin Epigenetics 2023; 15:170. [PMID: 37865763 PMCID: PMC10590532 DOI: 10.1186/s13148-023-01586-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
Multiple mechanisms are involved in kidney damage, among which the role of epigenetic modifications in the occurrence and development of kidney diseases is constantly being revealed. However, N6-methyladenosine (M6A), a well-known post-transcriptional modification, has been regarded as the most prevalent epigenetic modifications in higher eukaryotic, which is involved in various biological processes of cells such as maintaining the stability of mRNA. The role of M6A modification in the mechanism of kidney damage has attracted widespread attention. In this review, we mainly summarize the role of M6A modification in the progression of kidney diseases from the following aspects: the regulatory pattern of N6-methyladenosine, the critical roles of N6-methyladenosine in chronic kidney disease, acute kidney injury and renal cell carcinoma, and then reveal its potential significance in the diagnosis and treatment of various kidney diseases. A better understanding of this field will be helpful for future research and clinical treatment of kidney diseases.
Collapse
Affiliation(s)
- Qimeng Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Xiaoting Fan
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Qinghao Sheng
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Meilin Yang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ping Zhou
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Shangwei Lu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ying Gao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Zhijuan Kong
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ning Shen
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
| |
Collapse
|
9
|
You L, Han Z, Chen H, Chen L, Lin Y, Wang B, Fan Y, Zhang M, Luo J, Peng F, Ma Y, Wang Y, Yuan L, Han Z. The role of N6-methyladenosine (m 6A) in kidney diseases. Front Med (Lausanne) 2023; 10:1247690. [PMID: 37841018 PMCID: PMC10569431 DOI: 10.3389/fmed.2023.1247690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/01/2023] [Indexed: 10/17/2023] Open
Abstract
Chemical modifications are a specific and efficient way to regulate the function of biological macromolecules. Among them, RNA molecules exhibit a variety of modifications that play important regulatory roles in various biological processes. More than 170 modifications have been identified in RNA molecules, among which the most common internal modifications include N6-methyladenine (m6A), n1-methyladenosine (m1A), 5-methylcytosine (m5C), and 7-methylguanine nucleotide (m7G). The most widely affected RNA modification is m6A, whose writers, readers, and erasers all have regulatory effects on RNA localization, splicing, translation, and degradation. These functions, in turn, affect RNA functionality and disease development. RNA modifications, especially m6A, play a unique role in renal cell carcinoma disease. In this manuscript, we will focus on the biological roles of m6A in renal diseases such as acute kidney injury, chronic kidney disease, lupus nephritis, diabetic kidney disease, and renal cancer.
Collapse
Affiliation(s)
- Luling You
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haoran Chen
- Science and Education Department, Chengdu Xinhua Hospital, Chengdu, China
| | - Liuyan Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Binjian Wang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiyue Fan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meiqi Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ji Luo
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Peng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Ma
- School of Clinical Medicine, Southeast University, Nanjing, China
| | - Yanmei Wang
- Institute of Traditional Chinese Medicine, Sichuan College of Traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu, China
| | - Lan Yuan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Zeng Y, Lv C, Wan B, Gong B. The current landscape of m6A modification in urological cancers. PeerJ 2023; 11:e16023. [PMID: 37701836 PMCID: PMC10493088 DOI: 10.7717/peerj.16023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023] Open
Abstract
N6-methyladenosine (m6A) methylation is a dynamic and reversible procession of epigenetic modifications. It is increasingly recognized that m6A modification has been involved in the tumorigenesis, development, and progression of urological tumors. Emerging research explored the role of m6A modification in urological cancer. In this review, we will summarize the relationship between m6A modification, renal cell carcinoma, bladder cancer, and prostate cancer, and discover the biological function of m6A regulators in tumor cells. We will also discuss the possible mechanism and future application value used as a potential biomarker or therapeutic target to benefit patients with urological cancers.
Collapse
Affiliation(s)
- Yaohui Zeng
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Cai Lv
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Bangbei Wan
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Binghao Gong
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| |
Collapse
|
11
|
Qi Z, Zhang C, Jian H, Hou M, Lou Y, Kang Y, Wang W, Lv Y, Shang S, Wang C, Li X, Feng S, Zhou H. N 1-Methyladenosine modification of mRNA regulates neuronal gene expression and oxygen glucose deprivation/reoxygenation induction. Cell Death Discov 2023; 9:159. [PMID: 37173310 PMCID: PMC10182019 DOI: 10.1038/s41420-023-01458-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/11/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
N1-Methyladenosine (m1A) is an abundant modification of transcripts, plays important roles in regulating mRNA structure and translation efficiency, and is dynamically regulated under stress. However, the characteristics and functions of mRNA m1A modification in primary neurons and oxygen glucose deprivation/reoxygenation (OGD/R) induced remain unclear. We first constructed a mouse cortical neuron OGD/R model and then used methylated RNA immunoprecipitation (MeRIP) and sequencing technology to demonstrate that m1A modification is abundant in neuron mRNAs and dynamically regulated during OGD/R induction. Our study suggests that Trmt10c, Alkbh3, and Ythdf3 may be m1A-regulating enzymes in neurons during OGD/R induction. The level and pattern of m1A modification change significantly during OGD/R induction, and differential methylation is closely associated with the nervous system. Our findings show that m1A peaks in cortical neurons aggregate at both the 5' and 3' untranslated regions. m1A modification can regulate gene expression, and peaks in different regions have different effects on gene expression. By analysing m1A-seq and RNA-seq data, we show a positive correlation between differentially methylated m1A peaks and gene expression. The correlation was verified by using qRT-PCR and MeRIP-RT-PCR. Moreover, we selected human tissue samples from Parkinson's disease (PD) and Alzheimer's disease (AD) patients from the Gene Expression Comprehensive (GEO) database to analyse the selected differentially expressed genes (DEGs) and differential methylation modification regulatory enzymes, respectively, and found similar differential expression results. We highlight the potential relationship between m1A modification and neuronal apoptosis following OGD/R induction. Furthermore, by mapping mouse cortical neurons and OGD/R-induced modification characteristics, we reveal the important role of m1A modification in OGD/R and gene expression regulation, providing new ideas for research on neurological damage.
Collapse
Affiliation(s)
- Zhangyang Qi
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Chi Zhang
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Huan Jian
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, 300052, P.R. China
| | - Mengfan Hou
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, 300052, P.R. China
| | - Yongfu Lou
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, 300052, P.R. China
| | - Yi Kang
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, 300052, P.R. China
| | - Wei Wang
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Yigang Lv
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, 300052, P.R. China
| | - Shenghui Shang
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Chaoyu Wang
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, 300052, P.R. China
| | - Xueying Li
- Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| | - Shiqing Feng
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, 300052, P.R. China.
| | - Hengxing Zhou
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, 300052, P.R. China.
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
12
|
Waldbillig F, Bormann F, Neuberger M, Ellinger J, Erben P, Kriegmair MC, Michel MS, Nuhn P, Nientiedt M. An m6A-Driven Prognostic Marker Panel for Renal Cell Carcinoma Based on the First Transcriptome-Wide m6A-seq. Diagnostics (Basel) 2023; 13:diagnostics13050823. [PMID: 36899967 PMCID: PMC10001021 DOI: 10.3390/diagnostics13050823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
To date, only a single transcriptome-wide m6A sequencing study of clear cell renal cell carcinoma (ccRCC) has been reported, with no validation so far. Herein, by TCGA analysis of the KIRC cohort (n = 530 ccRCC; n = 72 normal), an external expression validation of 35 preidentified m6A targets was performed. Further in-depth expression stratification enabled assessment of m6A-driven key targets. Overall survival (OS) analysis and gene set enrichment analyses (GSEA) were conducted to assess their clinical and functional impact on ccRCC. In the hyper-up cluster significant upregulation was confirmed for NDUFA4L2, NXPH4, SAA1, and PLOD2 (40%) and in the hypo-up cluster for FCHSD1 (10%). Significant downregulation was observed for UMOD, ANK3, and CNTFR (27.3%) in the hypo-down cluster and for CHDH (25%) in the hyper-down cluster. In-depth expression stratification showed consistent dysregulation in ccRCC only for 11.67%: NDUFA4L2, NXPH4, and UMOD (NNU-panel). Patients with strong NNU panel dysregulation had significantly poorer OS (p = 0.0075). GSEA identified 13 associated and significantly upregulated gene sets (all p-values < 0.5; FDR < 0.25). External validation of the only available m6A sequencing in ccRCC consistently reduced dysregulated m6A-driven targets on the NNU panel with highly significant effects on OS. Epitranscriptomics are a promising target for developing novel therapies and for identifying prognostic markers for daily clinical practice.
Collapse
Affiliation(s)
- Frank Waldbillig
- Department of Urology & Urosurgery, University Medical Centre Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | | | - Manuel Neuberger
- Department of Urology & Urosurgery, University Medical Centre Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Jörg Ellinger
- Department of Urology & Pediatric Urology, University Medical Centre Bonn, University of Bonn, 53127 Bonn, Germany
| | - Philipp Erben
- Department of Urology & Urosurgery, University Medical Centre Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Maximilian C. Kriegmair
- Department of Urology & Urosurgery, University Medical Centre Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Maurice Stephan Michel
- Department of Urology & Urosurgery, University Medical Centre Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Philipp Nuhn
- Department of Urology & Urosurgery, University Medical Centre Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Malin Nientiedt
- Department of Urology & Urosurgery, University Medical Centre Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Correspondence: ; Tel.: +49-(0)621-383-2201
| |
Collapse
|
13
|
Integrated Profiles of Transcriptome and mRNA m6A Modification Reveal the Intestinal Cytotoxicity of Aflatoxin B1 on HCT116 Cells. Genes (Basel) 2022; 14:genes14010079. [PMID: 36672820 PMCID: PMC9858580 DOI: 10.3390/genes14010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Aflatoxin B1 (AFB1) is widely prevalent in foods and animal feeds and is one of the most toxic and carcinogenic aflatoxin subtypes. Existing studies have proved that the intestine is targeted by AFB1, and adverse organic effects have been observed. This study aimed to investigate the relationship between AFB1-induced intestinal toxicity and N6-methyladenosine (m6A) RNA methylation, which involves the post-transcriptional regulation of mRNA expression. The transcriptome-wide m6A methylome and transcriptome profiles in human intestinal cells treated with AFB1 are presented. Methylated RNA immunoprecipitation sequencing and mRNA sequencing were carried out to determine the distinctions in m6A methylation and different genes expressed in AFB1-induced intestinal toxicity. The results showed that there were 2289 overlapping genes of the differentially expressed mRNAs and differentially m6A-methylation-modified mRNAs. After enrichment of the signaling pathways and biological processes, these genes participated in the terms of the cell cycle, endoplasmic reticulum, tight junction, and mitophagy. In conclusion, the study demonstrated that AFB1-induced HCT116 injury was related to the disruptions to the levels of m6A methylation modifications of target genes and the abnormal expression of m6A regulators.
Collapse
|
14
|
Ni S, Luo Z, Fan Y, Zhang W, Peng W, Zhang H. Alteration of m6A epitranscriptomic tagging of ribonucleic acids after spinal cord injury in mice. Front Neurosci 2022; 16:904573. [PMID: 36090276 PMCID: PMC9454195 DOI: 10.3389/fnins.2022.904573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
The m6A methylation is reported to function in multiple physiological and pathological processes. However, the functional relevance of m6A modification to post-spinal cord injured (SCI) damage is not yet clear. In the present study, methylated RNA immunoprecipitation combined with microarray analysis showed that the global RNA m6A levels were decreased following SCI. Then, gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analyses were conducted to demonstrate the potential function of differential m6A-tagged transcripts and the altered transcripts with differential m6A levels. In addition, we found that the m6A “writer,” METTL3, significantly decreased after SCI in mice. The immunostaining validated that the expression of METTL3 mainly changed in GFAP or Iba-1+ cells. Together, this study shows the alteration of m6A modification following SCI in mice, which might contribute to the pathophysiology of the spinal cord after trauma.
Collapse
Affiliation(s)
- Shuangfei Ni
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zixiang Luo
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Yonggang Fan
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weixin Zhang
- Department of Orthopaedics, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Wei Peng
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Wei Peng,
| | - Huafeng Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Huafeng Zhang,
| |
Collapse
|
15
|
Ma T, Wang J, Liu X, Zhang W, Meng L, Zhang Y. m6A Methylation Patterns and Tumor Microenvironment Infiltration Characterization in Clear-Cell Renal Cell Carcinoma. Front Genet 2022; 13:864549. [PMID: 35528542 PMCID: PMC9068873 DOI: 10.3389/fgene.2022.864549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/06/2022] [Indexed: 12/21/2022] Open
Abstract
Increasing evidence suggests the essential regulation of RNA N6-methyladenosine (m6A) modification in carcinogenesis and immune response. Nevertheless, the potential impacts of these modifications on the tumor microenvironment (TME) immune cell infiltration characteristics in clear-cell renal cell carcinoma (ccRCC) remain unclear. Utilizing a consensus clustering algorithm, we determined three m6A modification patterns and identified three m6A-related gene clusters among 569 ccRCC samples, which were associated with different biological functions and clinical outcomes. Thereafter, the m6A score was constructed using m6A-associated signature genes to accurately exploit the m6A modification patterns within individual tumors. The m6A score was further demonstrated to be noticeably related to ccRCC prognosis. In addition, the m6A score was found to be strongly correlated with tumor mutational burden (TMB), microsatellite instability, immune infiltration, immune checkpoint expression, and immunotherapy response, which was also validated in the pan-cancer analyses. Our findings thoroughly elucidated that m6A modification contributes to tumor microenvironment immune-infiltrating characteristics and prognosis in ccRCC. Assessing the m6A modification patterns of individual patients with ccRCC will offer novel insights into TME infiltration and help develop more effective treatment strategies.
Collapse
Affiliation(s)
- Tianming Ma
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiawen Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaodong Liu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Zhang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lingfeng Meng
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yaoguang Zhang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Fang S, Peng B, Wen Y, Yang J, Wang H, Wang Z, Qian K, Wei Y, Jiao Y, Gao C, Dou L. Transcriptome-Wide Analysis of RNA N6-Methyladenosine Modification in Adriamycin-Resistant Acute Myeloid Leukemia Cells. Front Genet 2022; 13:833694. [PMID: 35571033 PMCID: PMC9100953 DOI: 10.3389/fgene.2022.833694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/18/2022] [Indexed: 11/28/2022] Open
Abstract
Acute myeloid leukemia (AML) is one of the most aggressive hematopoietic malignancies. Patients still suffer from refractory/relapsed disease after anthracycline-based therapy, which leads to a poor prognosis. N6-Methyladenosine (m6A) is the most abundant post-transcriptional modification in eukaryotes, the imbalance of which is reported to be associated with various pathological processes, including drug resistance. However, the relationship between m6A modification and drug resistance has not been well defined in AML. In this study, we analyzed the sequencing data of HL60 and its Adriamycin-resistant cell line HL60/ADR. We found a total of 40,550 m6A-methylated peaks, representing 15,640 genes in HL60, and 38,834 m6A-methylated peaks, representing 15,285 genes in HL60/ADR. KEGG pathway analysis showed that pathways were enriched in the FoxO signaling pathway, p53 signaling pathway, and Notch signaling pathway. MeRIP-seq results showed that the fold enrichment of the global m6A level in HL60/ADR was higher than that in HL60, and dot blot assay results indicated that the global m6A level was elevated in HL60/ADR cells compared with that in HL60 cells. Further analysis revealed that the expression level of METTL3 was elevated in HL60/ADR cells compared with that in HL60 cells. After a combined treatment of STM2457 (an inhibitor of METTL3) and Adriamycin, the proliferation of HL60/ADR was inhibited. Thus, we hypothesized that the abnormality of m6A modification played an important role in Adriamycin-resistant AML.
Collapse
Affiliation(s)
- Shu Fang
- School of Medicine, Nankai University, Tianjin, China
- Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Bo Peng
- Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanan Wen
- Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Jingjing Yang
- Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Hao Wang
- Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Ziwei Wang
- Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Kun Qian
- School of Medicine, Nankai University, Tianjin, China
- Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan Wei
- Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Yifan Jiao
- Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Chunji Gao
- School of Medicine, Nankai University, Tianjin, China
- Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Chunji Gao, ; Liping Dou,
| | - Liping Dou
- Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Chunji Gao, ; Liping Dou,
| |
Collapse
|
17
|
Wu Y, Chen X, Bao W, Hong X, Li C, Lu J, Zhang D, Zhu A. Effect of Humantenine on mRNA m6A Modification and Expression in Human Colon Cancer Cell Line HCT116. Genes (Basel) 2022; 13:genes13050781. [PMID: 35627166 PMCID: PMC9140730 DOI: 10.3390/genes13050781] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 01/23/2023] Open
Abstract
Humantenine, an alkaloid isolated from the medicinal herb Gelsemium elegans (Gardner & Chapm.) Benth., has been reported to induce intestinal irritation, but the underlying toxicological mechanisms remain unclear. The object of the present study was to investigate the RNA N6-methyladenosine (m6A) modification and distinct mRNA transcriptome profiles in humantenine-treated HCT116 human colon cancer cells. High-throughput MeRIP-seq and mRNA-seq were performed, and bioinformatic analysis was performed to reveal the role of abnormal RNA m6A modification and mRNA expression in humantenine-induced intestinal cell toxicity. After humantenine treatment of HCT116 cells, 1401 genes were in the overlap of differentially m6A-modified mRNA and differentially expressed mRNA. The Kyoto Encyclopedia of Genes and Genomes and Gene Ontology annotation terms for actin cytoskeleton, tight junctions, and adherens junctions were enriched. A total of 11 kinds of RNA m6A methylation regulators were differentially expressed. The m6A methylation levels of target genes were disordered in the humantenine group. In conclusion, this study suggested that the HCT116 cell injury induced by humantenine was associated with the abnormal mRNA expression of m6A regulators, as well as disordered m6A methylation levels of target genes.
Collapse
Affiliation(s)
- Yajiao Wu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China;
- Department of Pathogen Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Xiaoying Chen
- Experimental Teaching Center of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China;
| | - Wenqiang Bao
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (W.B.); (X.H.); (C.L.); (J.L.); (D.Z.)
| | - Xinyu Hong
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (W.B.); (X.H.); (C.L.); (J.L.); (D.Z.)
| | - Chutao Li
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (W.B.); (X.H.); (C.L.); (J.L.); (D.Z.)
| | - Jiatong Lu
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (W.B.); (X.H.); (C.L.); (J.L.); (D.Z.)
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750000, China
| | - Dongcheng Zhang
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (W.B.); (X.H.); (C.L.); (J.L.); (D.Z.)
| | - An Zhu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China;
- Department of Pathogen Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
- Correspondence:
| |
Collapse
|
18
|
Liu Z, Sun T, Piao C, Zhang Z, Kong C. METTL14-mediated N6-methyladenosine modification of ITGB4 mRNA inhibits metastasis of clear cell renal cell carcinoma. Cell Commun Signal 2022; 20:36. [PMID: 35305660 PMCID: PMC8934459 DOI: 10.1186/s12964-022-00831-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/23/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Integrin β4 (ITGB4) participates in tumorigenesis and progression of several malignancies, but its role and related mechanisms in clear cell renal cell carcinoma (ccRCC) remain unclear.
Methods
Quantitative real-time PCR (qRT-PCR), western blot and immunohistochemistry were used to detect mRNA and protein levels of relevant genes. Biological functions of ITGB4 and methyltransferase-like 14 (METTL14) were determined by in vitro and in vivo experiments. The levels of N6-methyladenosine (m6A) in ccRCC tissues and adjacent normal tissues were calculated via total RNA m6A quantification assay. The m6A modification of ITGB4 was demonstrated via m6A RNA immunoprecipitation (MeRIP), RIP and luciferase reporter assays.
Results
ITGB4 was significantly overexpressed in ccRCC tissues and high level of ITGB4 predicted poor prognosis as well as metastasis. Functionally, ITGB4 stimulated ccRCC cell migration and invasion in vitro and metastasis in vivo with epithelial–mesenchymal transition (EMT) strengthened. Mechanically, the total levels of m6A were reduced in ccRCC tissues. METTL14, a favorable factor for ccRCC patients’ prognosis, facilitated m6A modification on ITGB4 3′UTR and subsequently accelerated ITGB4 mRNA degradation, leading to its declined expression. Furthermore, the METTL14-mediated inhibition of ITGB4 expression was dependent on the YTH domain family protein 2 (YTHDF2), which acted as an m6A reader to bind to ITGB4 mRNA and to promote its decay. In addition, we demonstrated that knockdown of METTL14 promoted ccRCC cell migration, invasiveness and metastasis as well as stimulating the EMT process and the PI3K/AKT signal by overexpressing ITGB4.
Conclusion
Our study reveals that METTL14 inhibits ITGB4 expression via m6A modification to attenuate metastasis and EMT of ccRCC cells, suggesting the METTL14/ITGB4 axis as a potential prognostic biomarker and therapeutic target for ccRCC.
Collapse
|
19
|
Guo F, Zhang Y, Ma J, Yu Y, Wang Q, Gao P, Wang L, Xu Z, Wei X, Jing M. m6A mRNA Methylation Was Associated With Gene Expression and Lipid Metabolism in Liver of Broilers Under Lipopolysaccharide Stimulation. Front Genet 2022; 13:818357. [PMID: 35281825 PMCID: PMC8914017 DOI: 10.3389/fgene.2022.818357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/24/2022] [Indexed: 01/23/2023] Open
Abstract
Hepatic inflammation is always accompanied with abnormal lipid metabolism. Whether N6-methyladenosine (m6A) mRNA methylation affects irregular inflammatory lipid level is unclear. Here, the m6A modification patterns in chicken liver at the acute stage of LPS-stimulated inflammation and at the normal state were explored via m6A and RNA sequencing and bioinformatics analysis. A total of 7,815 m6A peaks distributed in 5,066 genes were identified in the normal chicken liver and were mostly located in the CDS, 3′UTR region, and around the stop codon. At 2 h after the LPS intraperitoneal injection, the m6A modification pattern changed and showed 1,200 different m6A peaks. The hyper- and hypo-m6A peaks were differentially located, with the former mostly located in the CDS region and the latter in the 3′UTR and in the region near the stop codon. The hyper- or hypo-methylated genes were enriched in different GO ontology and pathways. Co-analysis revealed a significantly positive relationship between the fold change of m6A methylation level and the relative fold change of mRNA expression. Moreover, computational prediction of protein–protein interaction (PPI) showed that genes with altered m6A methylation and mRNA expression levels were clustered in processes involved in lipid metabolism, immune response, DNA replication, and protein ubiquitination. CD18 and SREBP-1 were the two hub genes clustered in the immune process and lipid metabolism, respectively. Hub gene AGPAT2 was suggested to link the immune response and lipid metabolism clusters in the PPI network. This study presented the first m6A map of broiler chicken liver at the acute stage of LPS induced inflammation. The findings may shed lights on the possible mechanisms of m6A-mediated lipid metabolism disorder in inflammation.
Collapse
Affiliation(s)
- Feng Guo
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Postdoctoral Research and Development Base, Henan Institute of Science and Technology, Xinxiang, China
| | - Yanhong Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- *Correspondence: Yanhong Zhang, ; Jinyou Ma,
| | - Jinyou Ma
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- *Correspondence: Yanhong Zhang, ; Jinyou Ma,
| | - Yan Yu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Qiuxia Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Pei Gao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Li Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhiyong Xu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiaobing Wei
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Mengna Jing
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
20
|
Xiang X, Guo Y, Chen Z, Mo Z. Molecular Characterization of m6A Modifications in Non-Clear Cell Renal Cell Carcinoma and Potential Relationship with Pathological Types. Int J Gen Med 2022; 15:1595-1608. [PMID: 35210831 PMCID: PMC8858024 DOI: 10.2147/ijgm.s348343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/27/2022] [Indexed: 12/24/2022] Open
Abstract
Background N6-Methyladenosine (m6A) modification is a eukaryotic mRNA modification that modulates the fate of modified RNA and, therefore, the expression of proteins. m6A modifications are associated with important roles in several cancers. Most studies related to m6A modification are based on clear cell renal cell carcinoma (ccRCC) and little is known about its role in non-ccRCC. Methods We summarized the molecular features of different m6A modification patterns in non-ccRCC based on The Cancer Genome Atlas database and correlated them with phenotypes such as immune patterns and prognosis. We also computed the m6Ascore and assessed its prognostic value using multivariate Cox regression analysis. Results We found the immune-excluded phenotype to be predominant in non-ccRCC patients. We also found that in non-clear cell carcinoma, different m6A modification profiles determine different immune patterns and are associated with different prognosis. m6AgeneCluser typing strongly associated with pathological status. Based on our findings, we suggest that the m6Ascore can be used as an independent prognostic value for prognostic assessment in non-ccRCC. Conclusion This study confirms the important role of m6A modifications in non-ccRCC, reveals the heterogeneity of tumor immunity, and highlights the promise of non-ccRCC therapy.
Collapse
Affiliation(s)
- Xuebao Xiang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Yi Guo
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Zhongyuan Chen
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Correspondence: Zengnan Mo, Email
| |
Collapse
|
21
|
Huang JB, Hu BB, He R, He L, Zou C, Man CF, Fan Y. Analysis of N6-Methyladenosine Methylome in Adenocarcinoma of Esophagogastric Junction. Front Genet 2022; 12:787800. [PMID: 35140740 PMCID: PMC8820482 DOI: 10.3389/fgene.2021.787800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/30/2021] [Indexed: 11/21/2022] Open
Abstract
Background: From previous studies, we found that there are more than 100 types of RNA modifications in RNA molecules. m6A methylation is the most common. The incidence rate of adenocarcinoma of the esophagogastric junction (AEG) at home and abroad has increased faster than that of stomach cancer at other sites in recent years. Here, we systematically analyze the modification pattern of m6A mRNA in adenocarcinoma at the esophagogastric junction. Methods: m6A sequencing, RNA sequencing, and bioinformatics analysis were used to describe the m6A modification pattern in adenocarcinoma and normal tissues at the esophagogastric junction. Results: In AEG samples, a total of 4,775 new m6A peaks appeared, and 3,054 peaks disappeared. The unique m6A-related genes in AEG are related to cancer-related pathways. There are hypermethylated or hypomethylated m6A peaks in AEG in differentially expressed mRNA transcripts. Conclusion: This study preliminarily constructed the first m6A full transcriptome map of human AEG. This has a guiding role in revealing the mechanism of m6A-mediated gene expression regulation.
Collapse
|
22
|
Zhang Y, Liang C, Wu X, Pei J, Guo X, Chu M, Ding X, Bao P, Kalwar Q, Yan P. Integrated Study of Transcriptome-wide m 6A Methylome Reveals Novel Insights Into the Character and Function of m 6A Methylation During Yak Adipocyte Differentiation. Front Cell Dev Biol 2021; 9:689067. [PMID: 34926439 PMCID: PMC8678508 DOI: 10.3389/fcell.2021.689067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Yak (Bos grunniens) is considered an iconic symbol of Tibet and high altitude, but they suffer from malnutrition during the cold season that challenges the metabolism of energy. Adipocytes perform a crucial role in maintaining the energy balance, and adipocyte differentiation is a complex process involving multiple changes in the expression of genes. N 6-methyladenosine (m6A) plays a dynamic role in post-transcription gene expression regulation as the most widespread mRNA modification of the higher eukaryotes. However, currently there is no research existing on the m6A transcriptome-wide map of bovine animals and their potential biological functions in adipocyte differentiation. Therefore, we performed methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) to determine the distinctions in m6A methylation and gene expression during yak adipocyte differentiation. In yak adipocyte and preadipocyte the content of m6A and m6A-associated enzymes was substantially different. In the two groups, a total of 14,710 m6A peaks and 13,388 m6A peaks were identified. For the most part, m6A peaks were enriched in stop codons, 3'-untranslated regions, and coding regions with consensus motifs of GGACU. The functional enrichment exploration displayed that differentially methylated genes participated in some of the pathways associated with adipogenic metabolism, and several candidate genes (KLF9, FOXO1, ZNF395, and UHRF1) were involved in these pathways. In addition to that, there was a positive association between m6A abundance and levels of gene expression, which displayed that m6A may play a vital role in modulating gene expression during yak adipocyte differentiation. Further, in the adipocyte group, several methylation gene protein expression levels were significantly higher than in preadipocytes. In short, it can be concluded that the current study provides a comprehensive explanation of the m6A features in the yak transcriptome, offering in-depth insights into m6A topology and associated molecular mechanisms underlying bovine adipocyte differentiation, which might be helpful for further understanding its mechanisms.
Collapse
Affiliation(s)
- Yongfeng Zhang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xuezhi Ding
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qudratullah Kalwar
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
23
|
Deng M, Fang L, Li SH, Zhao RC, Mei J, Zou JW, Wei W, Guo RP. Expression pattern and prognostic value of N6-methyladenosine RNA methylation key regulators in hepatocellular carcinoma. Mutagenesis 2021; 36:369-379. [PMID: 34467992 PMCID: PMC8493108 DOI: 10.1093/mutage/geab032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/01/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is still one of the most common malignancies worldwide. The accuracy of biomarkers for predicting the prognosis of HCC and the therapeutic effect is not satisfactory. N6-methyladenosine (m6A) methylation regulators play a crucial role in various tumours. Our research aims further to determine the predictive value of m6A methylation regulators and establish a prognostic model for HCC. In this study, the data of HCC from The Cancer Genome Atlas (TCGA) database was obtained, and the expression level of 15 genes and survival was examined. Then we identified two clusters of HCC with different clinical factors, constructed prognostic markers and analysed gene set enrichment, proteins’ interaction and gene co-expression. Three subgroups by consensus clustering according to the expression of the 13 genes were identified. The risk score generated by five genes divided HCC patients into high-risk and low-risk groups. In addition, we developed a prognostic marker that can identify high-risk HCC. Finally, a novel prognostic nomogram was developed to accurately predict HCC patients’ prognosis. The expression levels of 13 m6A RNA methylation regulators were significantly upregulated in HCC samples. The prognosis of cluster 1 and cluster 3 was worse. Patients in the high-risk group show a poor prognosis. Moreover, the risk score was an independent prognostic factor for HCC patients. In conclusion, we reveal the critical role of m6A RNA methylation modification in HCC and develop a predictive model based on the m6A RNA methylation regulators, which can accurately predict HCC patients’ prognosis and provide meaningful guidance for clinical treatment.
Collapse
Affiliation(s)
- Min Deng
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lin Fang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shao-Hua Li
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Rong-Ce Zhao
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jie Mei
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jing-Wen Zou
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wei Wei
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Rong-Ping Guo
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
24
|
Yang Z, Deng C, Wu Y, Dai Z, Tang Q, Cheng C, Xu Y, Hu R, Liu C, Chen X, Zhang X, Li A, Xiong X, Su J, Yan A. Insights into the mechanism of multi-walled carbon nanotubes phytotoxicity in Arabidopsis through transcriptome and m6A methylome analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147510. [PMID: 33991908 DOI: 10.1016/j.scitotenv.2021.147510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
With the increasing production and wide application of carbon nanotubes (CNTs), they are inevitably released into the natural environment and ecosystems, where plants are the main primary producers. Hence, it is imperative to understand the toxic effects of CNTs on plants. The molecular mechanisms underlying the toxic effects of CNTs on plants are still unclear. Therefore, in the present study, we investigated the effects of high concentrations of multi-walled CNTs (MWCNTs) on Arabidopsis. Root elongation and leaf development were severely inhibited after MWCNT exposure. Excess production of H2O2, O2-, and malondialdehyde was observed, indicating that MWCNTs induced oxidative stress. The antioxidant system was activated to counter MWCNTs-induced oxidative stress. Combinatorial transcriptome and m6A methylome analysis revealed that MWCNTs suppressed auxin signaling and photosynthesis. Reactive oxygen species metabolism, toxin metabolism, and plant responses to pathogens were enhanced to cope with the phytotoxicity of MWCNTs. Our results provide new insights into the molecular mechanisms of CNT phytotoxicity and plant defense responses to CNTs.
Collapse
Affiliation(s)
- Zemao Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Canhui Deng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Yupeng Wu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Zhigang Dai
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Qing Tang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Chaohua Cheng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Ying Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Rong Hu
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China; Crop Gene Engineering Key Laboratory of Hunan Province, Changsha, Hunan, 410128, China
| | - Chan Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Xiaojun Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Xiaoyu Zhang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Alei Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Xinghua Xiong
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China; Crop Gene Engineering Key Laboratory of Hunan Province, Changsha, Hunan, 410128, China.
| | - Jianguang Su
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - An Yan
- National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore.
| |
Collapse
|
25
|
Li H, Hu J, Yu A, Othmane B, Guo T, Liu J, Cheng C, Chen J, Zu X. RNA Modification of N6-Methyladenosine Predicts Immune Phenotypes and Therapeutic Opportunities in Kidney Renal Clear Cell Carcinoma. Front Oncol 2021; 11:642159. [PMID: 33816290 PMCID: PMC8013979 DOI: 10.3389/fonc.2021.642159] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/23/2021] [Indexed: 12/16/2022] Open
Abstract
RNA modification of N6-methyladenosine (m6A) plays critical roles in various biological processes, such as cancer development, inflammation, and the anticancer immune response. However, the role played by a comprehensive m6A modification pattern in regulating anticancer immunity in kidney renal clear cell carcinoma (KIRC) has not been fully elucidated. In this study, we identified two independent m6A modification patterns with distinct biological functions, immunological characteristics, and prognoses in KIRC. Next, we developed an m6A score algorithm to quantify an individual's m6A modification pattern, which was independently validated in external cohorts. The m6A cluster 1 and low m6A score groups were characterized by a hot tumor microenvironment with an increased infiltration level of cytotoxic immune cells, higher tumor mutation burden, higher immune checkpoint expression, and decreased stroma-associated signature enrichment. In general, the m6A cluster 1 and low m6A score groups reflected an inflammatory phenotype, which may be more sensitive to anticancer immunotherapy. The m6A cluster 2 and high m6A score groups indicated a non-inflammatory phenotype, which may not be sensitive to immunotherapy but rather to targeted therapy. In this study, we first identified m6A clusters and m6A scores to elucidate immune phenotypes and to predict the prognosis and immunotherapy response in KIRC, which can guide urologists for making more precise clinical decisions.
Collapse
Affiliation(s)
- Huihuang Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Jiao Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Anze Yu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,Immunobiology & Transplant Science Center, Houston Methodist Research Institute, Texas Medical Center, Houston, TX, United States
| | - Belaydi Othmane
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Tao Guo
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Jinhui Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Chunliang Cheng
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
26
|
Han Z, Yang B, Wang Q, Hu Y, Wu Y, Tian Z. Comprehensive analysis of the transcriptome-wide m 6A methylome in invasive malignant pleomorphic adenoma. Cancer Cell Int 2021; 21:142. [PMID: 33653351 PMCID: PMC7923655 DOI: 10.1186/s12935-021-01839-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Background Invasive malignant pleomorphic adenoma (IMPA) is a highly invasive parotid gland tumor and lacks effective therapy. N6-Methyladenosine (m6A) is the most prevalent post-transcriptional modification of mRNAs in eukaryotes and plays an important role in the pathogenesis of multiple tumors. However, the significance of m6A-modified mRNAs in IMPA has not been elucidated to date. Hence, in this study, we attempted to profile the effect of IMPA in terms of m6A methylation in mRNA. Methods Methylated RNA immunoprecipitation with next-generation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) were utilized to acquire the first transcriptome-wide profiling of the m6A methylome map in IMPA followed by bioinformatics analysis. Results In this study, we obtained m6A methylation maps of IMPA samples and normal adjacent tissues through MeRIP-seq. In total, 25,490 m6A peaks associated with 13,735 genes were detected in the IMPA group, whereas 33,930 m6A peaks associated with 18,063 genes were detected in the control group. Peaks were primarily enriched within coding regions and near stop codons with AAACC and GGAC motifs. Moreover, functional enrichment analysis demonstrated that m6A-containing genes were significantly enriched in cancer and metabolism relevant pathways. Furthermore, we identified a relationship between the m6A methylome and the RNA transcriptome, indicating a mechanism by which m6A modulates gene expression. Conclusions Our study is the first to provide comprehensive and transcriptome-wide profiles to determine the potential roles played by m6A methylation in IMPA. These results may open new avenues for in-depth research elucidating the m6A topology of IMPA and the molecular mechanisms governing the formation and progression of IMPA.
Collapse
Affiliation(s)
- Zhenyuan Han
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
| | - Biao Yang
- Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, 200040, China
| | - Qin Wang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yuhua Hu
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yuqiong Wu
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China. .,Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Zhen Tian
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
27
|
Identification of a Two-m6A RNA Methylation Regulator Risk Signature as an Independent Prognostic Biomarker in Papillary Renal Cell Carcinoma by Bioinformatic Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4582082. [PMID: 33628782 PMCID: PMC7884118 DOI: 10.1155/2021/4582082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/20/2020] [Accepted: 01/28/2021] [Indexed: 01/22/2023]
Abstract
N6-Methyladenosine (m6A), the most common form of mRNA modification, is dynamically regulated by the m6A RNA methylation regulators, which play an important role in regulating the gene expression and phenotype in both health and disease. However, the role of m6A in papillary renal cell carcinoma (pRCC) is unknown. The purpose of this work is to investigate the prognostic value of m6A RNA methylation regulators in pRCC; thus, we can build a risk score model based on m6A RNA methylation regulators as a risk signature for predicting the prognosis of pRCC. Here, we investigated the expression and corresponding clinical data by bioinformatic analysis based on 289 pRCC tissues and 32 normal kidney tissues obtained from TCGA database. As a result, we identified the landscape of m6A RNA methylation regulators in pRCC. We grouped all pRCC patients into two clusters by consensus clustering to m6A RNA methylation regulators, but we found that the clusters were not correlated to the prognosis and clinicopathological features of pRCC. Therefore, we additionally built a two-m6A RNA methylation regulator risk score model as a risk signature by the univariate Cox regression analysis and least absolute shrinkage and selection operator (LASSO) Cox regression. The risk signature was constructed as follows: 0.031HNRNPC + 0.199KIAA1429. It revealed that the risk score was associated with the clinicopathological features such as pT status and pN status of pRCC. More importantly, the risk score was an independent prognostic marker for pRCC patients. Thus, m6A RNA methylation regulators contributed to the malignant progression of pRCC influencing its prognosis.
Collapse
|
28
|
Li K, Chen J, Lou X, Li Y, Qian B, Xu D, Wu Y, Ma S, Zhang D, Cui W. HNRNPA2B1 Affects the Prognosis of Esophageal Cancer by Regulating the miR-17-92 Cluster. Front Cell Dev Biol 2021; 9:658642. [PMID: 34277606 PMCID: PMC8278577 DOI: 10.3389/fcell.2021.658642] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/09/2021] [Indexed: 02/05/2023] Open
Abstract
N6-methyladenosine (m6A) is the most abundant RNA modification in eukaryotes. Accumulating evidence suggests that dysregulation of m6A modification significantly correlates with tumorigenesis and progression. In this study, we observed an increased expression and positive correlations of all 25 m6A regulators in esophageal cancer (ESCA) data obtained from the TCGA database. Through expression profiling of these regulators, a prognostic score model containing HNRNPA2B1, ALKBH5, and HNRNPG was established, and the high-risk subgroup exhibited strong positive correlations with ESCA progression and outcome. The risk score obtained from this model may represent an independent predictor of ESCA prognosis. Notably, the gene most frequently associated with increased risk was HNRNPA2B1; in ESCA, the increased expression of this gene alone predicted poor prognosis by affecting tumor-promoting signaling pathways through miR-17-92 cluster. An experimental study demonstrated that elevated HNRNPA2B1 expression was positively associated with distant metastasis and lymph node stage, and predicted the poor outcomes of ESCA patients. Knockdown of HNRNPA2B1 significantly decreased the expression of miR-17, miR-18a, miR-20a, miR-93, and miR-106b and inhibited the proliferation of ESCA cells. Therefore, our study indicated that the dynamic changes in 25 m6A regulators were associated with the clinical features and prognosis of patients with ESCA. Importantly, HNRNPA2B1 alone may affect the prognosis of patients with ESCA by regulating the miR-17-92 cluster.
Collapse
Affiliation(s)
- Kexin Li
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiongyu Chen
- Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Xiaoying Lou
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiling Li
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Benheng Qian
- Department of Cardiology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Danfei Xu
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue Wu
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shaohui Ma
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Donghong Zhang
- Department of Cardiology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Wei Cui,
| | - Wei Cui
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Donghong Zhang,
| |
Collapse
|
29
|
Zhong K, Chen D, Wu Z, Wang X, Pan B, Chen N, Zhong W. [Effect of small interfering RNA-mediated BIRC6 silencing on apoptosis and autophagy of renal cancer 786-O cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1651-1655. [PMID: 33243730 DOI: 10.12122/j.issn.1673-4254.2020.11.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To study the expression of BIRC6 in renal cancer tissues and investigate the effect of BIRC6 silencing on apoptosis and autophagy of 786-O cells. METHODS Twenty surgical specimens of renal cancer tissues and adjacent renal tissues were collected from Meizhou People's Hospital between February, 2016 and December, 2018 for detection of BIRC6 protein expression using immunohistochemistry. Renal cancer 786-O cells were transfected with a control small interfering RNA (siRNA) or BIRC6 siRNA via lipofectamine 2000, and the changes in cell proliferation and apoptosis following 5-FU treatment were assessed using CCK8 assay and flow cytometry; the expressions of autophagy-related proteins Beclin and LC3A/B were detected by Western blotting. RESULTS The expression of BIRC6 protein was significantly higher in renal cancer tissues than in the adjacent renal tissues. Western blotting showed that siRNA-mediated silencing of BIRC6 significantly lowered the expression of BIRC6 in 786-O cells. In the cells with BIRC6 silencing, treatment with 12.5, 25, 50, 100 and 200 μg/mL 5-FU resulted in significantly higher proliferation inhibition rates than in the cells transfected with the control siRNA (P < 0.01). BIRC6 silencing also significantly increased the apoptosis rate of 786-O cells following 5-FU treatment (P < 0.01). The results of Western blotting showed that BIRC6 silencing significantly lowered the protein expressions of Beclin and LC3A/B in 786-O cells. CONCLUSIONS Interference of BIRC6 mediated by siRNA can inhibit autophagy and promote 5-FU-induced apoptosis to enhance the sensitivity of 786-O cells to 5-FU.
Collapse
Affiliation(s)
- Kaihua Zhong
- Department of Urology, Meizhou People's Hospital, Meizhou 514031, China
| | - Dong Chen
- Department of Urology, Sun Yat-sen Cancer Center, Guangzhou 510060, China
| | - Zhiming Wu
- Department of Urology, Sun Yat-sen Cancer Center, Guangzhou 510060, China
| | - Xiaohong Wang
- Department of Nephrology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Bin Pan
- Department of Urology, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Nanhui Chen
- Department of Urology, Meizhou People's Hospital, Meizhou 514031, China
| | - Weifeng Zhong
- Department of Urology, Meizhou People's Hospital, Meizhou 514031, China.,Department of Urology, Sun Yat-sen Cancer Center, Guangzhou 510060, China
| |
Collapse
|
30
|
Cui Z, Huang N, Liu L, Li X, Li G, Chen Y, Wu Q, Zhang J, Long S, Wang M, Sun F, Shi Y, Pan Q. Dynamic analysis of m6A methylation spectroscopy during progression and reversal of hepatic fibrosis. Epigenomics 2020; 12:1707-1723. [PMID: 33174480 DOI: 10.2217/epi-2019-0365] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: To dynamically analyze the differential m6A methylation during the progression and reversal of hepatic fibrosis. Materials & methods: We induced hepatic fibrosis in C57/BL6 mice by intraperitoneal injection of CCl4. The reversal model of hepatic fibrosis was established by stopping drug after continuous injection of CCl4. Dynamic m6A methylation was evaluated using MeRIP-Seq in the progression and reversal of hepatic fibrosis at different stages. Result: During the hepatic fibrosis, differential m6A methylation was mainly enriched in processes associated with oxidative stress and cytochrome metabolism, while differential m6A methylation was mainly enriched in processes associated with immune response and apoptosis in the hepatic fibrosis reversal. Conclusion: m6A methylation plays an important role in the progression and reversal of hepatic fibrosis.
Collapse
Affiliation(s)
- Zhongqi Cui
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Nan Huang
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Li Liu
- Department of Clinical Laboratory, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200081, China
| | - Xue Li
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Guohui Li
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China
| | - Yan Chen
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Qi Wu
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Jie Zhang
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Shuping Long
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Minyi Wang
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Fenyong Sun
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Yi Shi
- Department of Clinical Laboratory, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200081, China
| | - Qiuhui Pan
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| |
Collapse
|
31
|
Niu X, Xu J, Liu J, Chen L, Qiao X, Zhong M. Landscape of N 6-Methyladenosine Modification Patterns in Human Ameloblastoma. Front Oncol 2020; 10:556497. [PMID: 33178585 PMCID: PMC7592903 DOI: 10.3389/fonc.2020.556497] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE To comprehensively analyze the global N6-methyladenosine (m6A) modification pattern in ameloblastoma. METHODS m6A peaks in ameloblastoma and normal oral tissues were detected by MeRIP-seq. Differentially methylated m6A sites within messenger RNAs (mRNAs), long no-coding RNA (lncRNAs) and circular RNA (circRNAs) were identified, followed by functional enrichment analysis. By comprehensively analyzing MeRIP-seq and RNA-seq data, differentially expressed mRNAs, lncRNAs and circRNAs containing differentially methylated sites were identified. RNA binding proteins (RBPs) were then identified for differentially methylated m6A sites. RESULTS In total, 3,673 differentially methylated m6A sites within coding genes were detected, of which 16.2% (704/3,673) were significantly upmethylated sites in ameloblastoma compared to normal oral tissues. Furthermore, 4,975 differentially methylated m6A sites within lncRNAs were identified, of which 29.4% (1,465/4,975) were upmethylated sites in ameloblastoma. We also found 364 differentially methylated m6A sites within circRNAs, of which 22.5% (82/364) were upmethylated sites in ameloblastoma. Differentially methylated m6A was most often harbored in the CDS (54.10%), followed by 5'UTR (21.71%). Functional enrichment analysis revealed that m6A modification could be involved in the development of ameloblastoma by organism developmental processes. A total of 158 RBPs within differentially methylated m6A sites were identified, which were significantly involved in mRNA metabolic process, mRNA processing, RNA processing, RNA splicing and RNA transport. CONCLUSION Our findings for the first time provide m6A landscape of human ameloblastoma, which expand the understanding of m6A modifications and uncover regulation of lncRNAs and circRNAs through m6A modification in ameloblastoma.
Collapse
Affiliation(s)
- Xing Niu
- Department of Stomatology, Xiang’an Hospital of Xiamen University, Xiamen, China
- Department of Oral Histopathology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, China
| | - Jingping Xu
- Department of Stomatology, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Jinwen Liu
- Department of Oral Histopathology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, China
| | - Lijie Chen
- Department of Stomatology, Xiang’an Hospital of Xiamen University, Xiamen, China
- Department of Oral Histopathology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, China
| | - Xue Qiao
- Department of Central Laboratory, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, China
| | - Ming Zhong
- Department of Stomatology, Xiang’an Hospital of Xiamen University, Xiamen, China
- Department of Oral Histopathology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, China
| |
Collapse
|
32
|
Huo FC, Zhu ZM, Pei DS. N 6 -methyladenosine (m 6 A) RNA modification in human cancer. Cell Prolif 2020; 53:e12921. [PMID: 33029866 PMCID: PMC7653258 DOI: 10.1111/cpr.12921] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/04/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
N6 -methyladenosine (m6 A) RNA modification, first discovered in 1974, is the most prevalent, abundant and penetrating messenger RNA (mRNA) modification in eukaryotes. This governs the fate of modified transcripts, regulates RNA metabolism and biological processes, and participates in pathogenesis of numerous human diseases, especially in cancer through the reciprocal regulation of m6 A methyltransferases ("writers") and demethylases ("erasers") and the binding proteins decoding m6 A methylation ("readers"). Accumulating evidence indicates a complicated regulation network of m6 A modification involving multiple m6 A-associated regulatory proteins whose biological functions have been further analysed. This review aimed to summarize the current knowledge on the potential significance and molecular mechanisms of m6 A RNA modification in the initiation and progression of cancer.
Collapse
Affiliation(s)
- Fu-Chun Huo
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
| | - Zhi-Man Zhu
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
| | - Dong-Sheng Pei
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
33
|
Guo G, Shi X, Wang H, Ye L, Tong X, Yan K, Ding N, Chen C, Zhang H, Xue X. Epitranscriptomic N4-Acetylcytidine Profiling in CD4 + T Cells of Systemic Lupus Erythematosus. Front Cell Dev Biol 2020; 8:842. [PMID: 32984334 PMCID: PMC7483482 DOI: 10.3389/fcell.2020.00842] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022] Open
Abstract
The emerging epitranscriptome plays an essential role in autoimmune disease. As a novel mRNA modification, N4-acetylcytidine (ac4C) could promote mRNA stability and translational efficiency. However, whether epigenetic mechanisms of RNA ac4C modification are involved in systemic lupus erythematosus (SLE) remains unclear. Herein, we detected eleven modifications in CD4+ T cells of SLE patients using mass spectrometry (LC-MS/MS). Furthermore, using samples from four CD4+ T cell pools, we identified lower modification of ac4C mRNA in SLE patients as compared to that in healthy controls (HCs). Meanwhile, significantly lower mRNA acetyltransferase NAT10 expression was detected in lupus CD4+ T cells by RT-qPCR. We then illustrated the transcriptome-wide ac4C profile in CD4+ T cells of SLE patients by ac4C-RIP-Seq and found ac4C distribution in mRNA transcripts to be highly conserved and enriched in mRNA coding sequence regions. Using bioinformatics analysis, the 3879 and 4073 ac4C hyper-acetylated and hypoacetylated peaks found in SLE samples, respectively, were found to be significantly involved in SLE-related function enrichments, including multiple metabolic and transcription-related processes, ROS-induced cellular signaling, apoptosis signaling, and NF-κB signaling. Moreover, we demonstrated the ac4C-modified regulatory network of gene biological functions in lupus CD4+ T cells. Notably, we determined that the 26 upregulated genes with hyperacetylation played essential roles in autoimmune diseases and disease-related processes. Additionally, the unique ac4C-related transcripts, including USP18, GPX1, and RGL1, regulate mRNA catabolic processes and translational initiation. Our study identified novel dysregulated ac4C mRNAs associated with critical immune and inflammatory responses, that have translational potential in lupus CD4+ T cells. Hence, our findings reveal transcriptional significance and potential therapeutic targets of mRNA ac4C modifications in SLE pathogenesis.
Collapse
Affiliation(s)
- Gangqiang Guo
- School of Life Sciences and Technology, Tongji University, Shanghai, China.,Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xinyu Shi
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huijing Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lele Ye
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinya Tong
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kejing Yan
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ning Ding
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chaosheng Chen
- Department of Nephrology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Huidi Zhang
- Department of Nephrology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Xue
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
34
|
Wang X, Xie H, Ying Y, Chen D, Li J. Roles of N 6 -methyladenosine (m 6 A) RNA modifications in urological cancers. J Cell Mol Med 2020; 24:10302-10310. [PMID: 32808488 PMCID: PMC7521283 DOI: 10.1111/jcmm.15750] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/17/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022] Open
Abstract
Epigenetics has long been a hot topic in the field of scientific research. The scope of epigenetics usually includes chromatin remodelling, DNA methylation, histone modifications, non-coding RNAs and RNA modifications. In recent years, RNA modifications have emerged as important regulators in a variety of physiological processes and in disease progression, especially in human cancers. Among the various RNA modifications, m6 A is the most common. The function of m6 A modifications is mainly regulated by 3 types of proteins: m6 A methyltransferases (writers), m6 A demethylases (erasers) and m6 A-binding proteins (readers). In this review, we focus on RNA m6 A modification and its relationship with urological cancers, particularly focusing on its roles and potential clinical applications.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Urology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyun Xie
- Department of Urology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yufan Ying
- Department of Urology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danni Chen
- Department of Radiation Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiangfeng Li
- Department of Urology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
35
|
Shen H, Lan Y, Zhao Y, Shi Y, Jin J, Xie W. The emerging roles of N6-methyladenosine RNA methylation in human cancers. Biomark Res 2020; 8:24. [PMID: 32612834 PMCID: PMC7325074 DOI: 10.1186/s40364-020-00203-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/22/2020] [Indexed: 12/24/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant form of mRNA modification in eukaryotes. It affects various aspects of RNA metabolism, including nuclear export, translation, decay and alternative splicing. In addition, m6A also participates in a great number of human physiological processes, ranging from spermatogenesis modulation, response to heat shock, the control of T cell homeostasis to stem cell proliferation and differentiation. The dynamic equilibrium of m6A level is regulated by m6A methyltransferases (“writers”), m6A demethylases (“erasers”) as well as m6A-binding proteins (“readers”). Once the balance is broken, numerous diseases will knock on the door. Recently, increasing studies reveal that m6A methylation exerts a profound impact on tumorigenesis and tumor progression. Therefore, in this review, we summarize the functions of m6A modification and its emerging roles in human cancers, and discuss the potential of m6A regulators as biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Huafei Shen
- Department of Hematology, the First Affiliated Hospital of Medical School of Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Yifen Lan
- Department of Hematology, the First Affiliated Hospital of Medical School of Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003 Zhejiang China.,Department of Hematology, Lishui People's Hospital, No. 15 Dazhong Road, Lishui, 323000 Zhejiang China
| | - Yanchun Zhao
- Department of Hematology, the First Affiliated Hospital of Medical School of Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Yuanfei Shi
- Department of Hematology, the First Affiliated Hospital of Medical School of Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Jie Jin
- Department of Hematology, the First Affiliated Hospital of Medical School of Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Wanzhuo Xie
- Department of Hematology, the First Affiliated Hospital of Medical School of Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| |
Collapse
|
36
|
Dompe C, Janowicz K, Hutchings G, Moncrieff L, Jankowski M, Nawrocki MJ, Józkowiak M, Mozdziak P, Petitte J, Shibli JA, Dyszkiewicz-Konwińska M, Bruska M, Piotrowska-Kempisty H, Kempisty B, Nowicki M. Epigenetic Research in Stem Cell Bioengineering-Anti-Cancer Therapy, Regenerative and Reconstructive Medicine in Human Clinical Trials. Cancers (Basel) 2020; 12:E1016. [PMID: 32326172 PMCID: PMC7226111 DOI: 10.3390/cancers12041016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
The epigenome denotes all the information related to gene expression that is not contained in the DNA sequence but rather results from chemical changes to histones and DNA. Epigenetic modifications act in a cooperative way towards the regulation of gene expression, working at the transcriptional or post-transcriptional level, and play a key role in the determination of phenotypic variations in cells containing the same genotype. Epigenetic modifications are important considerations in relation to anti-cancer therapy and regenerative/reconstructive medicine. Moreover, a range of clinical trials have been performed, exploiting the potential of epigenetics in stem cell engineering towards application in disease treatments and diagnostics. Epigenetic studies will most likely be the basis of future cancer therapies, as epigenetic modifications play major roles in tumour formation, malignancy and metastasis. In fact, a large number of currently designed or tested clinical approaches, based on compounds regulating epigenetic pathways in various types of tumours, employ these mechanisms in stem cell bioengineering.
Collapse
Affiliation(s)
- Claudia Dompe
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (C.D.); (L.M.); (M.N.)
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (K.J.); (G.H.)
| | - Krzysztof Janowicz
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (K.J.); (G.H.)
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.); (M.J.N.); (M.D.-K.); (M.B.)
| | - Greg Hutchings
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (K.J.); (G.H.)
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.); (M.J.N.); (M.D.-K.); (M.B.)
| | - Lisa Moncrieff
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (C.D.); (L.M.); (M.N.)
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (K.J.); (G.H.)
| | - Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.); (M.J.N.); (M.D.-K.); (M.B.)
| | - Mariusz J. Nawrocki
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.); (M.J.N.); (M.D.-K.); (M.B.)
| | - Małgorzata Józkowiak
- Department of Toxicology, Poznan University of Medical Sciences, 61-631 Poznan, Poland; (M.J.); (H.P.-K.)
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA;
| | - Jim Petitte
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Jamil A. Shibli
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, São Paulo 07023-070, Brazil;
| | - Marta Dyszkiewicz-Konwińska
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.); (M.J.N.); (M.D.-K.); (M.B.)
- Department of Biomaterials and Experimental Dentistry, Poznan University of Medical Sciences, 61 701 Poznan, Poland
| | - Małgorzata Bruska
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.); (M.J.N.); (M.D.-K.); (M.B.)
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 61-631 Poznan, Poland; (M.J.); (H.P.-K.)
| | - Bartosz Kempisty
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (C.D.); (L.M.); (M.N.)
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.); (M.J.N.); (M.D.-K.); (M.B.)
- Department of Obstetrics and Gynaecology, University Hospital and Masaryk University, 602 00 Brno, Czech Republic
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87 100 Torun, Poland
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (C.D.); (L.M.); (M.N.)
| |
Collapse
|